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КРИТЕРИЙ ПОЛОЖИТЕЛЬНОЙ

ОПРЕДЕЛЕННОСТИ КВАДРАТИЧНОГО

ФУНКЦИОНАЛА И ЕГО ПРИЛОЖЕНИЕ

Е. Р. Аваков, Г. Г. Магарил-Ильяев

Аннотация. Доказывается критерий положительной определенности квадратич-
ного функционала на гильбертовом пространстве и приводится его приложение к
доказательству достаточных условий слабого минимума второго порядка в простей-
шей задаче классического вариационного исчисления.
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Ключевые слова: положительная определенность, вариационное исчисление, усло-
вия второго порядка.

Светлой памяти Семёна Самсоновича Кутателадзе

Введение. В теории экстремальных задач в вопросах, связанных с до-

статочными условиями экстремума, принципиальную роль играют условия по-

ложительной определенности некоторого квадратичного функционала, тесно

связанного с исходной экстремальной задачей. В конечномерной ситуации по-

ложительность и положительная определенность данного функционала равно-

сильны. В бесконечномерном случае это не так. В работе доказывается об-

щий результат, представляющий собой критерий положительной определенно-

сти квадратичного функционала на произвольном сепарабельном гильберто-

вом пространстве, связывающий, в определенном смысле, положительность и

положительную определенность этого функционала. Мы применяем этот ре-

зультат к доказательству достаточных условий слабого минимума в терминах

условий Лежандра и Якоби в простейшей задаче вариационного исчисления.

Такой подход нам представляется достаточно естественным, поскольку позво-

ляет избежать обращений к теории поля, или гамильтонову формализму, или

введению понятия лежандровой формы, или завышению гладкости (см. [1–4]).

Критерий положительной определенности.

Теорема 1 (критерий положительной определенности). Пусть H — сепа-
рабельное гильбертово пространство со скалярным произведением (·, ·), � —
линейный непрерывный самосопряженный оператор на H , L — замкнутые под-
пространство H и codimL < ∞. Тогда квадратичный функционал h 7→ (�h, h)

положительно определен на L в том и только в том случае, когда он положите-
лен на L, а подпространство �L замкнуто.

Доказательство Необходимость. Пусть функционал h 7→ (�h, h) по-

ложительно определен на L, т. е. существует α > 0 такое, что

(�h, h) ≥ α‖h‖2H ∀h ∈ L. (1)

c© 2025 Аваков Е. Р., Магарил-Ильяев Г. Г.
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Ясно, что этот функционал положителен на L. Докажем, что пространство �L
замкнуто.

Для любых x, y ∈ L положим

(x, y)0 = (�x, y).

Элементарно проверяется, что (·, ·)0 определяет скалярное произведение на L.

Обозначим через L0 пространство L с этим скалярным произведением. Соот-

ветственно обозначаем ‖h‖20 = (h, h)0. Согласно (1)

α‖h‖2H ≤ (�h, h) = (h, h)0 = ‖h‖20 ≤ ‖�‖‖h‖2H. (2)

Поскольку подпространство L замкнуто, оно гильбертово, а так как в силу

(2) нормы в L и L0 эквивалентны, то L0 также гильбертово.

Обозначим через L⊥ ортогональное дополнение к L. Тогда H = L ⊕ L⊥

и существуют линейные непрерывные операторы Pi на H , i = 1, 2, такие, что

ImP1 = L, ImP2 = L⊥, KerP1 = L⊥ и KerP2 = L.

Пусть y ∈ L. Линейный непрерывный функционал x 7→ (y, x) на L непре-

рывен и на L0 в силу (2). По теореме об общем виде линейного непрерывного

функционала на гильбертовом пространстве найдется элемент z(y) ∈ L0 такой,

что для любого x ∈ L (подпространства L и L0 как множества совпадают)

(y, x) = (z(y), x)0 = (�z(y), x).

Следовательно, �z(y)− y ∈ L⊥ и так как y ∈ L, то

P1�z(y) = y. (3)

Рассмотрим линейный оператор G : L → P1H × P2H , определенный фор-

мулой

Gx = (P1�x, P2�x).

Ясно, что это непрерывный оператор. Из (3) следует, что P1�L = L, а так как

L — подпространство конечной коразмерности, то размерность пространства

L⊥ конечна и тем самым размерность подпространства P2H конечна. Следова-

тельно, по лемме о замкнутости образа (см. [2, § 2.1]) заключаем, что подпро-

странство GL замкнуто.

Докажем, что отсюда следует замкнутость �L. Пусть y — предельная точка

�L и последовательность yk ∈ �L сходится к y при k → ∞. Найдутся xk ∈ L
такие, что �xk = yk. Тогда

Gxk = (P1�xk, P2�xk)→ (P1y, P2y)

при k → ∞. Но (P1y, P2y) ∈ GL, так как GL замкнуто, и поэтому существует

такое x ∈ L, что �x = y, т. е. подпространство �L замкнуто.

Достаточность. Пусть квадратичный функционал h 7→ (�h, h) положи-

телен на L и подпространство �L замкнуто. Покажем, что этот функционал

положительно определен на L, т. е. справедливо соотношение (1). Доказываем

от противного.

Если (1) не выполняется, то для каждого n ∈ N найдется элемент hn ∈ L,

‖hn‖ = 1, такой, что (�hn, hn) < 1/n. Так как единичный шар в гильбертовом

пространстве слабо компактен и слабая топология на этом шаре метризуема в

силу сепарабельности H (см. [5, теорема 3.16]), то можно считать, что hn слабо
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сходится к некоторому элементу h0. Поскольку подпространство L выпукло и

замкнуто, то оно и слабо замкнуто (см. [6, гл. IV, п. 3]) и поэтому h0 ∈ L.

Можно считать, что hn 6= h0, n ∈ N. Тогда

0 < (�(hn − h0), hn − h0) = (�hn, hn)− 2(�h0, hn) + (�h0, h0).

Первое слагаемое справа при n → ∞ стремится по предположению к нулю,

второе стремится к −2(�h0, h0) в силу слабой сходимости hn к h0 и, значит, в

пределе получаем, что 0 ≤ −(�h0, h0) ≤ 0, т. е. (�h0, h0) = 0. Отсюда следует,

что h0 = 0, так как функционал h 7→ (�h, h) положителен на L и тем самым

обращается в нуль только в нуле.

Поскольку последовательность hn ограничена, последовательностьP2(�hn)
также ограничена в конечномерном пространстве L⊥, поэтому можно считать,

что она сходится при n→∞ к некоторому элементу x0 ∈ L⊥.

Учитывая, что P1 = I − P2, где I — тождественный оператор, для любого

n будем иметь

|(�hn, P1�hn)| = |(�hn, �hn)− (�hn, P2�hn)|
≥ ‖�hn‖2 − |(�hn, P2�hn − x0)| − |(�hn, x0)|. (4)

Обозначим через �L сужение � на L. Пространства L и �L замкнуты

по предположению и тем самым банаховы (как нормированные пространства),

оператор �L, очевидно, сюръективен и в силу положительности h 7→ (�h, h)

на L инъективен. Следовательно, по теореме Банаха об обратном операторе

существует обратный линейный непрерывный оператор �−1
L : �L→ L.

Поскольку

1 = ‖hn‖ ≤
∥∥�−1

L

∥∥‖�Lhn‖,

то ‖�Lhn‖2 ≥
∥∥�−1

L

∥∥−2
.

Далее, в силу того, что

|(�hn, P2�hn − x0)| ≤ ‖�hn‖‖P2�hn − x0‖,

P2�hn → x0 и (�hn, x0) = (hn, �x0)→ (h0, �x0) = 0 (h0 = 0) при n→∞, из (4)

следует, что для достаточно больших n

|(�hn, P1�hn)| >
‖�hn‖2

2
=
‖�Lhn‖2

2
≥ 1

2
∥∥�−1

L

∥∥2 . (5)

Расcмотрим для таких n уравнение относительно переменной t ∈ R:

(�(hn + tP1�hn), hn + tP1�hn)

= (�hn, hn) + 2t(�hn, P1�hn) + t2(�P1�hn, P1�hn) = 0.

Из оценки (5), неравенства

(�P1�hn, P1�hn) ≤ ‖�‖3‖P1‖2

и того, что (�hn, hn) < 1/n, следует, что дискриминант этого уравнения

� = (�hn, P1�hn)
2 − (�P1�hn, P1�hn)(�hn, hn)

больше величины
1

4
∥∥�−1

L

∥∥4 −
‖�‖3‖P1‖2

n
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и тем самым положителен для достаточно больших n. Следовательно, для

каждого такого n существует tn, для которого

(�(hn + tnP1�hn), hn + tnP1�hn) = 0.

Поскольку hn + tnP1�hn ∈ L и оператор � на L инъективен, то необходимо

hn + tnP1�hn = 0, т. е. векторы P1�hn и hn пропорциональны и, значит,

|(P1�hn, hn)| = ‖P1�hn‖‖hn‖ = ‖P1�hn‖.

Учитывая это обстоятельство, снова оценку (�hn, hn) < 1/n и то, что P1 =

I − P2, а также ортогональность x0 и hn, получим

|(�hn, P1�hn)| ≤ ‖�‖‖P1�hn‖ = ‖�‖|(P1�hn, hn)| ≤ ‖�‖(�hn, hn)

+ ‖�‖|(P2�hn, hn)| <
‖�‖
n

+ ‖�‖|(P2�hn − x0, hn)|+ ‖�‖|(x0, hn)|

≤ ‖�‖
n

+ ‖�‖‖P2�hn − x0‖.

Выражение справа стремится к нулю при n→∞, что противоречит оценке (5).

Теорема доказана. �

Покажем, что предположение о замкнутости �L существенно для того, что-

бы квадратичный функционал h 7→ (�h, h) был положительно определен на L.

Пусть H = L2([0, 1]), L = H и оператор � : H → H для п. в. t ∈ [0, 1]

задается формулой

(�x(·))(t) = tx(t).

Очевидно, что это линейный непрерывный самосопряженный оператор на H .

Проверим, что подпространство �H незамкнуто.

Действительно, нетрудно проверить, что последовательность функций

xn(t) = t1/2+1/n, t ∈ [0, 1], из H сходится в H при n→∞ к x0(t) =
√
t = t(1/

√
t).

Так как функция 1/
√
t не принадлежит H , то x0(·) не принадлежит подпро-

странству �H и тем самым это подпространство незамкнуто.

Покажем теперь, что в этом случае для любого α > 0 найдется функция

hα(·) ∈ H такая, что неравенство (1) не выполняется. Пусть α > 0, 0 < ε < 1 и

ε < 2α. Положим hα(t) = 1, если 0 ≤ t ≤ ε, и hα(t) = 0, если 0 < t ≤ 1. Тогда

(�hα(·), hα(·)) =

ε∫

0

th2
α(t) dt =

ε2

2
< αε = α

1∫

0

h2
α(t) dt = α‖hα‖2H .

Предварительные сведения и формулировка основного результа-

та. Пусть [t0, t1] — отрезок числовой прямой, L : R2n+1 → R — функция пере-

менных t ∈ R, x ∈ Rn и ẋ ∈ Rn, xi ∈ Rn, i = 0, 1. Задача

t1∫

t0

L(t, x(t), ẋ(t)) dt→ min, x(t0) = x0, x(t1) = x1 (Pr)

называется простейшей задачей (классического) вариационного исчисления.

Эта задача рассматривается на пространстве C1([t0, t1],Rn) (непрерывно

дифференцируемых вектор-функций на отрезке [t0, t1] со значениями в Rn), и

локальный минимум в данной задаче называется слабым минимумом.
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Далее мы предполагаем, что функция L непрерывна вместе со всеми своими

частными производными второго порядка по x и ẋ.

Если фиксирована функция x̂(·), то для сокращения записи используем

обозначения: L̂(t) = L(t, x̂(t), ˙̂x(t)) и аналогично для частных производных L
по x и ẋ.

Через L̂ẋẋ(·), L̂ẋx(·) и L̂xx(·) обозначаем матричные функции на [t0, t1] вто-

рых частных производных функции L в точке x̂(·). Эти функции непрерывны,

симметричны при каждом t ∈ [t0, t1], и ясно, что L̂ẋx(·) = L̂xẋ(·).
Для формулировки теоремы, которую мы хотим доказать, понадобятся

некоторые стандартные определения, связанные с классическим вариационным

исчислением.

Пусть x̂(·) ∈ C1([t0, t1], Rn). Дифференциальное уравнение

− d

dt
(L̂ẋẋ(t)ḣ(t) + L̂ẋx(t)h(t)) + L̂xx(t)h(t) + L̂xẋ(t)ḣ(t) = 0 (6)

называется уравнением Якоби для задачи (Pr).
Напомним, что симметричная матрица A размера n×n называется неотри-

цательно (положительно) определенной, и пишут A ≥ 0 (A > 0), если (Ax, x) ≥ 0

((Ax, x) > 0) для всех x ∈ Rn (x ∈ Rn, x 6= 0) или, равносильно, главные миноры

матрицы A неотрицательны (положительны).

(a) Говорят, что на функции x̂(·) выполнено условие Лежандра, если L̂ẋẋ(t)

≥ 0 для всех t ∈ [t0, t1], и усиленное условие Лежандра, если L̂ẋẋ(t) > 0

для всех t ∈ [t0, t1].
(b) Пусть на x̂(·) выполнено усиленное условие Лежандра. Точка τ ∈

(t0, t1] называется сопряженной точкой к точке t0, если существует

нетривиальное решение h(·) уравнения Якоби такое, что h(t0) = h(τ) =

0.

(c) Говорят, что на функции x̂(·) выполнено условие Якоби, если в интер-

вале (t0, t1) нет точек, сопряженных к t0, и усиленное условие Якоби,

если в полуинтервале (t0, t1] нет точек, сопряженных к t0.
Теперь мы можем сформулировать тот результат, который хотим доказать.

Теорема 2 (достаточные условия слабого минимума в задаче (Pr) в терми-

нах условий Лежандра и Якоби). Пусть функция x̂(·) ∈ C1([t0, t1],Rn) такова,

что L̂ẋ(·) ∈ C1([t0, t1], (Rn)∗), для всех t ∈ [t0, t1] выполнено уpавнение Эйлеpа

− d

dt
L̂ẋ(t) + L̂x(t) = 0

и выполнены усиленные условия Лежандра и Якоби. Тогда x̂(·) доставляет
слабый минимум в задаче (Pr).

Доказательство этой теоремы будет опираться на теорему 1 и один из-

вестный результат о достаточных условиях минимума в задаче (Pr) (см., на-

пример, [1]), который сейчас сформулируем.

Обозначим через W 1
2 ([t0, t1],Rn) пространство абсолютно непрерывных

вектор-функций x(·) на [t0, t1], у которых ẋ(·) принадлежит L2([t0, t1],Rn), ба-

нахову пространству измеримых и суммируемых с квадратом вектор-функций

x(·) на [t0, t1] с нормой

‖x(·)‖L2([t0,t1],Rn) =




t1∫

t0

|x(t)|2 dt




1/2

.
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Пространство W 1
2 ([t0, t1],R

n) является гильбертовым пространством со скаляр-

ным произведением

(x(·), y(·))1 = (x(t0), y(t0)) +

t1∫

t0

(ẋ(t), ẏ(t)) dt,

где (·, ·) — скалярное произведение в Rn.
Очевидно, что C1([t0, t1],Rn) ⊂W 1

2 ([t0, t1],Rn).

Теорема 3 (квадратичные достаточные условия слабого минимума в зада-

че (Pr)). Пусть функция x̂(·) допустима в задаче (Pr). Если L̂ẋ(·) ∈ C1([t0, t1],
(Rn)∗), для каждого t ∈ [t0, t1] выполнено уравнение Эйлера

− d

dt
L̂ẋ(t) + L̂x(t) = 0

и существует константа α > 0 такая, что для всех h(·) ∈ W 1
2 ([t0, t1],Rn), для

которых h(t0) = h(t1) = 0, справедливо неравенство

t1∫

t0

((L̂ẋẋ(t)ḣ(t), ḣ(t)) + 2(L̂ẋx(t)ḣ(t), h(t)) + (L̂xx(t)h(t), h(t))) dt

≥ α‖h(·)‖2W 1
2 ([t0, t1],Rn), (7)

то x̂(·) доставляет слабый минимум в задаче (Pr).

Доказательство теоремы 2. Схема доказательства следующая. Сфор-

мулируем одну известную теорему и докажем четыре леммы, которые позволят

получить утверждение теоремы 2 как непосредственное следствие теоремы 3.

Пусть T ∈ (t0, t1]. Обозначим через A(·), B(·) и C(·) матрицы L̂ẋẋ(·),
L̂ẋx(·) и L̂xx(·) соответственно и рассмотрим квадратичный функционал QT на

W 1
2 ([t0, T ],Rn), определенный равенством

QT (h(·)) =
1

2

T∫

t0

((A(t)ḣ(t), ḣ(t)) + 2(B(t)ḣ(t), h(t)) + (C(t)h(t), h(t))) dt. (8)

Теорема 4 (Лежандра). Пусть выполнено усиленное условие Лежандра.
Тогда найдется число 0 < ε ≤ T − t0 такое, что для любого ε ∈ (0, ε] су-
ществует число γ = γ(ε) > 0, обладающее тем свойством, что для каждого
h(·) ∈W 1

2 ([t0, T ], Rn), h(t0) = 0, выполняется неравенство

Qt0+ε(h(·)) ≥ γ
t0+ε∫

t0

|ḣ(t)|2 dt. (9)

Эта теорема доказана в [4].

Положим

◦
HT =

{
h(·) ∈ W 1

2 ([t0, T ],Rn) : h(t0) = h(T ) = 0
}
.

Так как линейные отображения x(·) 7→ x(t0) и x(·) 7→ x(T ), очевидно, непрерыв-

ны на W 1
2 ([t0, T ],Rn), то подпространство H0 замкнуто в W 1

2 ([t0, T ],Rn) и тем

самым гильбертово.
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Будем говорить, что функционал QT неотрицателен (положителен) на
◦
HT ,

если QT (h(·)) ≥ 0 (QT (h(·)) > 0) для всех h(·) ∈
◦
HT (h(·) ∈

◦
HT , h(·) 6= 0).

Будем также говорить, что функционал QT положительно определен на
◦
HT , если существует такое α > 0, что

QT (h(·)) ≥ α‖h(·)‖ ◦
HT

∀h(·) ∈
◦
HT .

Положим

τ0 = sup{τ ∈ (t0, t1] : Qτ положительно определен на
◦
Hτ}.

Замечание. Из теоремы 4 следует, что множество в фигурных скобках

непусто и, следовательно, определение τ0 корректно.

Перед формулировками и доказательствами лемм сделаем несколько заме-

чаний общего характера.

Пусть X — гильбертово пространство со скалярным произведением (·, ·)X и

B — билинейная симметричная непрерывная функция наX×X . Тогда найдется

самосопряженный оператор � ∈ L (X,X) такой, что для любых x, y ∈ X

B(x, y) = (�x, y)X . (10)

Действительно, для каждого y ∈ X функция x 7→ B(x, y) есть линейный непре-

рывный функционал на X и поэтому по теореме об общем виде линейного

непрерывного функционала на гильбертовом пространстве найдется элемент

γ(y) ∈ X такой, что для всех x ∈ X

B(x, y) = (x, γ(y))X .

Элементарная проверка показывает, что отображение y 7→ γ(y) есть линей-

ный оператор. Обозначим его через �. Для любого y ∈ X в силу определения

� и непрерывности B для некоторого c > 0 имеем

‖�y‖2X = (�y,�y)X = B(y, �y) ≤ c‖y‖X‖�y‖X.

Деля это неравенство на ‖�y‖X , получаем, что � — непрерывный оператор.

Его самосопряженность следует из симметричности билинейной функции. Ра-

венство (10) доказано.

Отметим еще, что линейный оператор � (не обязательно непрерывный),

удовлетворяющий равенству (10), единствен. Действительно, если для опера-

торов �1 и �2 справедливо (10), то для любых x, y ∈ X выполняется равенство

((�1 − �2)x, y)X = 0.

Подставляя сюда y = (�1 − �2)x, получаем, что �1 = �2.

Обозначим

Q(x) =
1

2
B(x, x), x ∈ X.

Простая проверка показывает, что функция Q дифференцируема в каждой точ-

ке x ∈ X и для любого h ∈ X

Q′(x)h = B(x, h) = (�x, h)X .

Положим

HT =
{
h(·) ∈ W 1

2 ([t0, T ],Rn) : h(t0) = 0
}
.
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По тем же причинам, что и для
◦
HT , подпространствоHT замкнуто вW 1

2 ([t0, T ],Rn)
и тем самым гильбертово со скалярным произведением и соответствующей нор-

мой:

(x(·), y(·))HT =

T∫

t0

(ẋ(t), ẏ(t)) dt, ‖x(·)‖HT =




T∫

t0

|ẋ(t)|2 dt




1/2

.

Лемма 1. 1. Квадратичный функционал (8) дифференцируем на HT и в
каждой точке x(·) ∈ HT для любого h(·) ∈ HT справедливо равенство

Q′T (x(·))h(·) = (�T (x(·)), h(·))HT ,

где

�T (x(·))(t) =
1

2

t∫

t0


A(τ)ẋ(τ) +B(τ)x(τ)

+

T∫

τ

(B(s)ẋ(s) + C(s)x(s)) ds


 dτ (11)

для всех t ∈ [t0, T ].

2.Квадратичный функционал (8) дифференцируем на
◦
HT и в каждой точке

x(·) ∈
◦
HT для любого h(·) ∈

◦
HT справедливо равенство

Q′T (x(·))h(·) = (
◦
�T (x(·)), h(·)) ◦

HT

,

где
◦
�T (x(·))(t) = �T (x(·))(t) − t− t0

T − t0
�T (x(·))(T ) (12)

для всех t ∈ [t0, T ].

Доказательство. 1. Рассмотрим билинейную функцию на HT ×HT :

B(x(·), y(·)) =

T∫

t0

((A(t)ẋ(t), ẏ(t)) + 2(B(t)ẋ(t), y(t)) + (C(t)x(t), y(t))) dt.

Ясно, что эта функция симметрична в силу симметричности матриц A(·), B(·)
и C(·) и что

QT (x(·)) =
1

2
B(x(·), x(·)).

Проверим, что функция B(x(·), y(·)) непрерывна. Обозначив через a мак-

симум нормы ‖A(t)‖ на отрезке [t0, T ] (имеется в виду операторная норма и

она непрерывна в силу непрерывности матрицы A(·)), по неравенству Коши —

Буняковского будем иметь

∣∣∣∣∣∣

T∫

t0

(A(τ)ẋ(τ), ẏ(·)) dτ

∣∣∣∣∣∣
≤ a




T∫

t0

|ẋ(t)|2 dt




1/2


T∫

t0

|ẏ(t)|2 dt




1/2

= a‖x(·)‖HT ‖y(·)‖HT .
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Далее, если x(·) ∈ HT , то для любого t ∈ [t0, t1], снова по неравенству Коши —

Буняковского, получим

|x(t)| =

∣∣∣∣∣∣

t∫

t0

ẋ(τ) dτ

∣∣∣∣∣∣
≤

T∫

t0

|ẋ(t)| dt ≤
√
T − t0




T∫

t0

|ẋ(t)|2 dt




1/2

=
√
T − t0 ‖x(·)‖HT . (13)

Имея в виду эту оценку и предыдущую и совершенно аналогично оценивая

второе и третье слагаемые в определении билинейной функции B, приходим к

тому, что существует константа κ > 0 такая, что

|B(x(·), y(·))| ≤ κ‖x(·)‖HT ‖y(·)‖HT ,

т. е. билинейная функция непрерывна на HT ×HT и тем самым функция x(·) 7→
QT (x(·)) непрерывна на HT .

Представим теперь функцию B в виде (10). Положим

�T (x(·))(t) =
1

2

t∫

t0


A(τ)ẋ(τ) +B(τ)x(τ) +

T∫

τ

(B(s)ẋ(s) + C(s)x(s)) ds


 dτ, (14)

где t ∈ [t0, T ]. Ясно, что это линейный оператор из HT в HT и, интегрируя по

частям, получаем, что для любых x(·) и y(·) из HT

(�Tx(·), y(·))HT =

T∫

t0

(
d

dt
�Tx(t), ẏ(t)

)
dt = B(x(·), y(·)).

Оператор �T самосопряжен в силу симметричности билинейной функции и

непрерывен в силу единственности представления (10).

Для любого x(·) ∈ HT квадратичный функционал QT имеет вид

QT (x(·)) =
1

2
B(x(·), x(·)) =

1

2
(�Tx(·), x(·))X

=
1

2

T∫

t0


A(t)ẋ(t) +B(t)x(t) +

T∫

t

(B(τ)ẋ(τ) + C(τ)x(τ)) dτ, ẋ(t)


 dt. (15)

По доказанному для любых x(·) и h(·) из HT

Q′T (x(·))h(·) = (�Tx(·), h(·))HT . (16)

Доказательство второго утверждения леммы совершенно аналогично пер-

вому, и поэтому мы его опускаем. �

Замечание. Билинейная функция B непрерывна и на более широком про-

странстве, а именно, на W 1
2 ([t0, T ],Rn)×W 1

2 ([t0, T ],Rn). Доказательство точно

такое же, нужно только вместо оценки (13) воспользоваться следующей оценкой

для x(·) ∈ W 1
2 ([t0, T ],Rn):

|x(t)| =

∣∣∣∣∣∣
x(t0) +

t∫

t0

ẋ(τ) dτ

∣∣∣∣∣∣
≤ |x(t0)|+

√
T − t0‖x(·)‖L2([t0,T ],Rn)

≤ max(1,
√
T − t0)(|x(t0)|+ ‖x(·)‖L2([t0,T ],Rn)),

где в круглых скобках — норма x(·), эквивалентная норме W 1
2 ([t0, T ],Rn), ко-

торая порождается скалярным произведением. Таким образом, оператор �T
можно рассматривать как оператор, действующий из W 1

2 ([t0, T ],Rn) в H .
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Лемма 2. Функционал Qτ0 неотрицателен на
◦
Hτ0 .

Доказательство. Пусть h(·) ∈
◦
Hτ0 и ε ∈ (0, (τ0 − t0)/2). Положим

hε(t) =





h(t), t ∈ [t0, τ0 − 2ε],

− t−τ0+εε h(τ0 − 2ε), t ∈ (τ0 − 2ε, τ0 − ε],
0, t ∈ (τ0 − ε, τ0].

Ясно, что hε(·) ∈
◦
Hτ0 для указанных ε. Покажем, что hε(·) сходится к h(·) в

метрике
◦
Hτ0 при ε→ 0. Действительно,

‖hε(·)− h(·)‖2◦
Hτ0

=

τ0∫

τ0−2ε

|ḣε(t)− ḣ(t)|2 dt =

τ0∫

τ0−2ε

(ḣε(t)− ḣ(t), ḣε(t)− ḣ(t)) dt

=

τ0−ε∫

τ0−2ε

|ḣε(t)|2 dt− 2

τ0−ε∫

τ0−2ε

(ḣε(t), ḣ(t)) dt +

τ0∫

τ0−2ε

|ḣ(t)|2 dt. (17)

Оценим слагаемые справа. Используя вид функции hε(·) и неравенство Коши —

Буняковского, будем иметь

τ0−ε∫

τ0−2ε

|ḣε(t)|2 dt =
1

ε2

τ0−ε∫

τ0−2ε

|h(τ0 − 2ε)|2 dt =
1

ε
|h(τ0 − 2ε)|2

≤ 1

ε




τ0∫

τ0−2ε

|ḣ(t)| dt




2

≤ 2

τ0∫

τ0−2ε

|ḣ(t)|2 dt.

Величина справа стремится к нулю при ε→ 0 в силу абсолютной непрерывности

интеграла.

Из полученной оценки и неравенства Коши — Буняковского следует, что

второй интеграл справа в (17) стремится к нулю при ε → 0. Третий интеграл

стремится к нулю в силу абсолютной непрерывности интеграла Лебега.

Итак, hε(·) → h(·) в метрике
◦
Hτ0 при ε → 0. Поскольку функционал

Qτ0(hε(·)) = Qτ0−ε(hε(·)) положителен в силу определения τ0, то из его непре-

рывности на
◦
Hτ0 (см. лемму 1) следует, что этот функционал неотрицателен на

◦
Hτ0 . �

Лемма 3. Пусть τ ∈ (t0, t1) и функционал Qτ положительно определен

на
◦
Hτ . Тогда найдется 0 < ε ≤ t1 − τ такое, что функционал Qτ+ε будет

положительно определен на
◦
Hτ+ε.

Доказательство. Пусть 0 < ε < min(t1 − τ, τ − t0), ĥε(·) ∈
◦
Hτ+ε и

‖ĥε(·)‖ ◦
Hτ+ε

= 1. Положим

hε(t) =





ĥε(t), t ∈ [t0, τ − ε],
− t−τε ĥε(τ − ε), t ∈ (τ − ε, τ ],
0, t ∈ (τ, τ + ε].
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Тогда

‖hε(·)− ĥε(·)‖2◦
Hτ+ε

=

τ+ε∫

t0

|ḣε(t)− ˙̂
hε(t)|2 dt

=

τ∫

τ−ε

|ḣε(t)|2 dt− 2

τ∫

τ−ε

(ḣε(t),
˙̂
hε(t)) dt+

τ+ε∫

t0

| ˙̂hε(t)|2 dt.

Оценивая интегралы справа аналогично тому, как это сделано в предыдущей

лемме, получим, что

lim
ε→0
‖hε(·)− ĥε(·)‖ ◦

Hτ+ε

= 0. (18)

Как показано в лемме 1, квадратичный функционал Qτ+ε является зна-

чением на диагонали непрерывной симметричной билинейной функции B на
◦
Hτ+ε ×

◦
Hτ+ε, т. е.

Qτ+ε(h(·)) = Bτ+ε(h(·), h(·)) ∀h(·) ∈
◦
Hτ+ε.

В силу положительной определенности Qτ на
◦
Hτ существует α > 0 такое, что

Qτ+ε(ĥε(·)) ≥ Qτ+ε(hε(·)) − |Qτ+ε(hε(·))−Qτ+ε(ĥε(·))| ≥ α‖hε(·)‖2◦
Hτ+ε

− |B(hε(·) + ĥε(·), hε(·)− ĥε(·))| ≥ α+ α
(
‖hε(·)‖2◦

Hτ+ε

− ‖ĥε(·)‖2◦
Hτ+ε

)

− ‖B‖‖hε(·) + ĥε(·)‖ ◦
Hτ+ε

‖hε(·)− ĥε(·)‖ ◦
Hτ+ε

.

Последние два слагаемых стремятся к нулю при ε → 0. Следовательно, для

достаточно малых ε > 0 величина слева будет не меньше, скажем, чем α/2.

Тогда для таких ε и любого ĥε(·) ∈
◦
Hτ+ε получим, что

Qτ+ε(ĥε(·)) ≥
α

2
‖ĥε(·)‖ ◦

Hτ+ε

,

т. е. квадратичный функционал Qτ+ε положительно определен на
◦
Hτ+ε. �

Лемма 4. Пусть матрица A(t) положительно определена для любого t ∈
[t0, T ]. Если квадратичный функционал QT положителен на пространстве

◦
HT ,

то он положительно определен на этом пространстве.

Доказательство. Гильбертово пространство HT сепарабельно, посколь-

ку является замкнутым подпространством сепарабельного пространства

W 1
2 ([t0, T ],Rn). Как показано в лемме 1 (см. (15)),

QT (h(·)) =
1

2
(�Th(·), h(·)) ∀h(·) ∈ HT ,

где �T — линейный непрерывный самосопряженный оператор на HT , опреде-

ленный формулой (14).

Обозначим L =
◦
HT . Ясно, что codimL = 1.

Оператор �T , как отмечено в замечании после доказательства леммы 1,

можно рассматривать как оператор из W 1
2 ([t0, T ],Rn) в H . Покажем, что в

этом случае

Im�T = HT . (19)
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Для этого достаточно доказать, что для любой функции z(·) ∈ HT найдется

функция x(·) ∈ W 1
2 ([t0, T ],Rn) такая, что для п. в. t ∈ [t0, T ] справедливо

равенство

A(t)ẋ(t) +B(t)x(t) +

T∫

t

(B(τ)ẋ(τ) + C(τ)x(τ)) dτ = ż(t). (20)

Пусть z(·) ∈ HT , и пусть x(·) удовлетворяет уравнению (20). Положим для

п. в. t ∈ [t0, T ]

y(t) = A(t)ẋ(t) +B(t)x(t) − ż(t). (21)

Из (20) следует, что

y(t) = −
T∫

t

(B(τ)ẋ(τ) + C(τ)x(τ)) dτ, y(T ) = 0,

и тем самым

ẏ(t) = B(t)ẋ(t) + C(t)x(t), y(T ) = 0.

По условию матрица A(t) положительно определена для любого t ∈ [t0, T ]

и, значит, обратима. Умножая равенство (21) на (A(t))−1, получим, что

ẋ(t) = −(A(t))−1B(t)x(t) + (A(t))−1y(t) + (A(t))−1ż(t).

Подставляя это выражение в формулу для ẏ(·), приходим к тому, что пара

(x(·), y(·)) удовлетворяет следующему уравнению на отрезке [t0, T ]:

{
ẋ = −(A(t))−1B(t)x + (A(t))−1y + (A(t))−1 ż(t),

ẏ = (C(t) −B(t)(A(t))−1B(t))x +B(t)(A(t))−1y + (A(t))−1ż(t),
y(T ) = 0.

Но это линейное уравнение и, как известно, у него существуют решения на

[t0, T ], удовлетворяющие условию y(T ) = 0. Следовательно, существуют реше-

ния уравнения (20) и тем самым справедливо равенство (19).

Определим теперь линейное отображение

G : W 1
2 ([t0, T ],Rn)→ HT × Rn × Rn,

действующее по правилу

(Gx)(t) = ((�Tx)(t), x(t0), x(T )) ∀ t ∈ [t0, T ].

Так как Im�T = HT , то по лемме о замкнутости образа (см. [2, п. 2.1.6])

подпространство ImG замкнуто. Покажем, что отсюда следует замкнутость

подпространства �TL в HT .

Действительно, пусть w(·) — предельная точка �TL. Существует последо-

вательность элементов xk(·) ∈ L такая, что �Txk(·)→ w(·) при k →∞. Но тогда

последовательность (�Txk(·), 0, 0) ∈ ImG сходится к элементу (w(·), 0, 0) ∈ ImG
в силу замкнутости ImG и, значит, существует x(·) ∈ L, для которого �Tx(·) =

w(·). Таким образом, w(·) ∈ �TL и тем самым подпространство �TL замкнуто.

Итак, для пространства HT , его подпространства L и отображения �T вы-

полнены все предположения теоремы 1 о положительной определенности, из

которой следует утверждение данной леммы. �
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Приступим непосредственно к доказательству теоремы 2. Для этого, как

уже было указано выше, надо показать согласно теореме 3, что квадратичный

функционал Qt1 положительно определен на
◦
Ht1 .

Покажем сначала, что функционал Qτ0 положителен на
◦
Hτ0 . Допустим,

что это не так, т. е. существует ненулевая функция ĥ(·) ∈
◦
Hτ0 такая, что

Qτ0(ĥ(·)) = 0. Поскольку в силу леммы 2 функционал Qτ0 неотрицателен на
◦
Hτ0 , то эта функция доставляет ему глобальный минимум и, значит, Q′τ0(ĥ(·)) =

0 или согласно выражению (12)

◦
�τ0(x(·))(t) = �τ0(x(·))(t) −

t− t0
τ0 − t0

�τ0(x(·))(τ0) = 0

для всех t ∈ [t0, τ0], т. е.

t∫

t0


A(τ)

˙̂
h(τ) +B(τ)ĥ(τ) +

t1∫

τ0

(B(s)
˙̂
h(s) + C(s)ĥ(s)) ds


 dτ

− t− t0
τ0 − t0

�τ0(x(·))(τ0) = 0

для всех t ∈ [t0, τ0].
В больших скобках стоит суммируемая функция, поэтому функция слева

п. в. дифференцируема. Дифференцируя ее, получим, что для п. в. t ∈ [t0, t1]
справедливо равенство

A(t)
˙̂
h(t) +B(t)ĥ(t) +

t1∫

t

(B(τ)
˙̂
h(τ) + C(τ)ĥ(τ)) dτ =

1

τ0 − t0
�τ0(x(·))(τ0).

Третье слагаемое слева в этом равенстве — абсолютно непрерывная функция и,

значит, сумма первых двух слагаемых также абсолютно непрерывна. Диффе-

ренцируя равенство, приходим к тому, что ненулевая функция ĥ(·) удовлетво-

ряет уравнению

− d

dt
(A(t)

˙̂
h(t) +B(t)ĥ(t)) +B(t)

˙̂
h(t) + C(t)ĥ(t) = 0,

которое есть уравнение Якоби (6).

Таким образом, ненулевая функция удовлетворяет уравнению Якоби и об-

ращается в нуль в τ0, т. е. τ0 — сопряженная точка к t0, что невозможно в силу

предположения о выполнении усиленного условия Якоби и тем самым функци-

онал Qτ0 положителен на
◦
Hτ0 .

Покажем, что τ0 = t1. Действительно, если τ0 < t1, то из положительности

функционала Qτ0 на
◦
Hτ0 последовало бы согласно лемме 4, что он и положи-

тельно определен на
◦
Hτ0 . Тогда по лемме 3 этот функционал положительно

определен на
◦
Hτ0+ε, где 0 < ε ≤ t1 − τ0, что противоречит определению τ0.

Итак, τ0 = t1. По доказанному функционал Qt1 положителен на
◦
Ht1 и, зна-

чит, по лемме 4, он положительно определен на
◦
Ht1 . Следовательно, выполнены

предположения теоремы 3, что доказывает теорему 2.
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ВЫТЯНУТОГО ЭЛЛИПСОИДА ВРАЩЕНИЯ

В. Н. Берестовский, А. Мустафа

Аннотация. Найден радиус инъективности вытянутого эллипсоида вращения в
трехмерном евклидовом пространстве. Он равен в точности расстоянию вдоль
двойного меридиана между его сопряженными симметричными относительно по-
люса точками и меньше половины длины экватора. Найден и применен метод сколь
угодно точных компьютерных вычислений радиуса инъективности произвольного
вытянутого эллипсоида вращения.
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Ключевые слова: геодезическая, поле Якоби, радиус инъективности, сопряжен-
ные точки, экспоненциальное отображение, эллипсоид вращения, эллиптические
интегралы.

§ 1. Введение

Радиус инъективности ip (соответственно число σp) полного риманова мно-

гообразия M в его точке p определяется как точная верхняя граница чисел

r > 0 таких, что экспоненциальное отображение Expp многообразия M в точ-

ке p (соответственно его дифференциал d(Expp)) является диффеоморфизмом

на открытом шаре U(0, r) радиуса r с центром в нуле касательного евклидова

пространства Mp к M в точке p (соответственно невырожденный на U(0, r)).
Радиус инъективности i(M) (соответственно число σ) многообразияM есть

точная нижняя граница чисел ip (соответственно σp) для всех p ∈M.
В следствии 4.14 из [1] доказано (формула Клингенберга), что радиус инъ-

ективности i(M) компактного риманова многообразия M равен

i(M) = min{σ, l0/2}, (1)

где l0 — минимум длин нетривиальных геодезических петель на M.
Пусть M —эллипсоид вращения

x2 + y2 +
z2

a2
= 1, a > 0, (2)

в трехмерном евклидовом пространстве R3 с индуцированной из R3 римановой

метрикой. Эллипсоид (2) задается параметрическими уравнениями

(x, y, z) = (cosu cosϕ, cosu sinϕ, a sinu), −π
2
≤ u ≤ π

2
, 0 ≤ ϕ ≤ 2π. (3)

Работа первого автора выполнена в рамках государственного задания ИМ СО РАН,
проект FWNF-2022-0006. Работа второго автора выполнена при поддержке Математического
Центра в Академгородке, соглашение с Министерством науки и высшего образования Россий-
ской Федерации № 075-15-2025-349 от 29.04.2025.

c© 2025 Берестовский В. Н., Мустафа А.
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Здесь u — широта, ϕ — долгота или полярный угол.

Если a = 1, то хорошо известно, что i(M) = σ = l0/2 = π.

Эллипсоид вращения (2) называется сплюснутым, если 0 < a < 1, и вытя-

нутым, если a > 1.

Максимум гауссовой кривизны сплюснутого эллипсоида вращения достига-

ется на его экваторе и равен 1/a2. Поэтому вследствие известных результатов

римановой геометрии σ равно πa, т. е. первому сопряженному значению вдоль

экватора. Главный результат статьи [2]: i(M) = πa < l0/2 < π, если 0 < a < 1.

Основной результат этой статьи — следующая

Теорема 1. Для радиуса инъективности i(M) каждого вытянутого эллип-
соида вращения M, заданного уравнением (2) при a > 1 имеют место соотно-
шения i(M) = σ < min(π, l0/2). При этом σ = σp для любой точки p ∈ M,
отличной от полюсов эллипсоида и такой, что p и ближайшая к p сопряженная
относительно проходящего через p двойного меридиана m(p) точка p′ находятся
на расстоянии σ(p)/2 = σ(p′)/2 вдоль m(p) от одного из полюсов эллипсоида.

Она является непосредственным следствием предложения 1, теоремы 3, ее

следствия 2 и теорем 4, 5 о ближайших сопряженных точках.

Кроме того, в этой статье составлен алгоритм для построения последова-

тельности чисел σn(a), сходящейся сверху к σ = σ(a) = σp = σp(a) для p из

теоремы 1 и каждого a > 1; даны примеры приближенного вычисления σ(a)
посредством этого алгоритма c использованием приложения “Wolfram Mathe-

matica”.

В данной статье на основании [2] доказывается, что l0/2 = π, если 1 < a ≤ 2.
Чему равно l0, если a > 2, авторам неизвестно.

Отметим сильное отличие применяемых методов в этой статье и статье [2].

В статье [2] доказательства и необходимые оценки основаны чаще всего на

применении правила Клеро для поиска геодезических и первой вариации длин

геодезических; поля Якоби не используются.

Используемые в этой статье результаты из [2] суммированы в теореме 2.

Кроме этого, основную роль в доказательствах ключевых теорем 3–5, пред-

ложений 2, 4 и их следствий играют выражение гауссовой кривизны (5) эллип-

соида (2), два вида (10) и (14) линейных однородных обыкновенных диффе-

ренциальных уравнений 2-го порядка для ориентированных длин b(s) и b(u)

как функций длины дуги s или широты u ортогональных к геодезическим по-

лей Якоби, якобиевы вариации, теорема Штурма о нулях решений линейных

однородных ОДУ 2-го порядка и теорема о неявной функции.

В доказательстве теоремы 3 достаточно уравнения (10). Далее требует-

ся общее решение уравнения (14), полученное в предложении 2. Это решение

содержит эллиптические интегралы первого и второго рода. Проводить какие-

либо вычисления с ними невозможно. Поэтому использующее предложение 2 и

теорему 4 доказательство теоремы 5 сводит их к вычислениям с элементарными

функциями и применению теоремы о неявной функции.

Предложение 4 позволяет вычислить приближенно с любой точностью σ(a),
равное радиусу инъективности эллипсоида (2) при разных a > 1. Примеры

таких вычислений представлены в конце статьи.

Заметим, что решить задачу для достаточно простого объекта было непро-

сто.
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§ 2. Некоторые следствия результатов из [2]

Вследствие (3) верхнюю половину эллипсоида (2) можно задать уравнением

z = a
√

1− r2, r =
√
x2 + y2 = cosu, 0 ≤ r ≤ 1. (4).

В [2] установлено, что

K(r) =
a2

(1 + (a2 − 1)r2)2
, (5)

a2 = K(0) ≤ K(r) ≤ K(1) =
1

a2
, 0 < a < 1, (6)

1

a2
= K(1) ≤ K(r) ≤ K(0) = a2, 1 < a, (7)

где K(r)— гауссова кривизна эллипсоида (2).

Доказанные в теореме 1, предложении 1, следствии 3 и предложении 3 из

[2] результаты можно собрать в следующую теорему.

Теорема 2. Для любой геодезической на эллипсоиде (2), отличной от эква-
тора и двойных меридианов, разность v двух последующих значений полярного
угла ϕ при пересечении этой геодезической с экватором заключена в интервале
(πa, π), если 0 < a < 1, и в интервале (π, πa), если a > 1. При этом v может быть
любым числом в указанных интервалах, a длина соответствующей дуги геоде-
зической l = l(v) является строго возрастающей функцией от v при 0 < a < 1 и
1 < a.

Замечание 1. На самом деле в теореме 2 подразумевается не ϕ ∈ [0, 2π),
а ϕ̃ ∈ R, для которого существует локально изометричное накрывающее отоб-

ражение � : R → S1 на единичную окружность S1 ⊂ R2 с полярным углом ϕ
такое, что �(ϕ̃) = ϕ̃ = ϕ, если ϕ̃ ∈ [0, 2π). При этом для любой рассматриваемой

в [2] геодезической γ = γ(s), s ∈ R, на эллипсоиде (2), a 6= 1, не включающей

его полюса, определена строго возрастающая функция ϕ̃(s) := ϕ̃(γ(s)), s ∈ R.
Следствие 1. Если 1 < a ≤ 2, то минимальная длина петли геодезической

эллипсоида (2) равна l0 = 2π.

Доказательство. Длина экватора эллипсоида (2) равна 2π. Так как a >
1, то длина lm двойного меридиана m эллипсоида (2) больше 2π. Вследствие

теоремы 2 при a ≤ 2 максимальная по включению расположенная в полупро-

странстве z ≥ 0 или z ≤ 0 дуга любой геодезической эллипсоида (2), отличной от

экватора и двойных меридианов, не имеет самопересечений, а ее длина больше

lm/2. Стало быть, длина петли такой геодезической больше lm > 2π.

Замечание 2. Вследствие теоремы 2 для любого числа a > 2 располо-

женные в полупространстве z > 0 или z < 0 дуги некоторых геодезических

эллипсоида (2), отличных от экватора и двойных меридианов, имеют самопере-

сечения.

Предложение 1. Если a > 1, то радиус инъективности эллипсоида (2)

меньше π.

Доказательство. Существует непродолжаемая кратчайшая эллипсоида,

проходящая через полюс p эллипсоида и соединяющая симметричные относи-

тельно p точки p1, p2. Она не имеет общих точек с экватором, иначе ее длина l
будет больше π, длины полуэкватора, соединяющего эти точки. Тогда l меньше

l1, половины длины параллели (полуокружности), соединяющей точки p1, p2,

так как параллель, отличная от экватора, не является геодезической эллипсои-

да. Следовательно, l < l1 < π.
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§ 3. Якобиевы вариации и векторные поля Якоби

Далее в этом параграфе M — произвольное полное риманово многообразие

со скалярным произведением (·, ·) на касательном расслоении TM , в частном

случае рассматриваемый нами вытянутый эллипсоид вращения.

Название раздела и терминология соответствуют параграфу 8.3 из [3].

Якобиевой вариацией геодезической (точнее, геодезического отрезка) γ =

γ(s), s ∈ [α, β], называется дифференцируемое отображение V : [α, β]× J →M ,

α < β, где J — открытый интервал в R, 0 ∈ J, такое, что V (s, t0) для каждого

t0 ∈ J, — геодезическая, V (s, 0) = γ(s).
Определение из [3] отличается от данного здесь тем, что [α, β] заменено

на R.
Якобиева вариация V называется нормальной, если для каждого t0 ∈ J

геодезическая V (s, t0) нормальна, т. е. параметризована длиной дуги.

Число σ > 0 называется первым сопряженным значением нормальной гео-

дезической γ, если существует ее якобиева вариация V такая, что α = 0, β = σ,
V (0, t) ≡ γ(0), ∂V

∂t (s, 0) 6= 0, 0 < s < β, и ∂V
∂t (β, 0) = 0. При этом γ(0), γ(σ)

называются (ближайшими) сопряженными точками γ [1, 3, 4].

В разд. 4.2 «Поля Якоби» из [4] гладкое векторное поле Y = Y (s) вдоль

геодезической γ = γ(s), параметризованной длиной дуги, на гладком римановом

многообразии называется векторным полем Якоби вдоль γ, если для тензора

кривизны R
∇γ̇∇γ̇Y +R(Y, γ̇)γ̇ = 0. (8)

Векторное поле Y (s) на геодезической γ(s), s ∈ R, называется в параграфе 8.3

из [3] полем Якоби, если существует якобиева вариация V геодезической γ:

Y (s) =
∂V

∂t
(s, 0) для любого s ∈ R. (9)

Далее в [3] доказывается, что любое поле Якоби Y (s) (в смысле [3]) на геоде-

зической γ(s) удовлетворяет уравнению (8). В [3] дан набросок доказательства

утверждения, что любое решение уравнения (8) является полем Якоби.

Из этих результатов нетрудно вывести, что поля Якоби на данной геоде-

зической риманова многообразия Mn составляют линейное пространство раз-

мерности 2n над R (см. [3]); для нормальных вариаций геодезической вектор-

ные поля вида (9) образуют линейное пространство размерности 2n− 1 над R.

В последнем случае есть 1-мерное пространство касательных к геодезической

параллельных векторных полей и 2(n− 1)-мерное пространство ортогональных

к геодезической векторных полей вида (9).

Пусть γ = γ(s), s ∈ R, — нормальная геодезическая эллипсоида (2) и

X = X(s) — гладкое единичное векторное поле вдоль γ, ортогональное γ̇(s).
Тогда любое векторное поле Якоби Y (s) вдоль γ(s), ортогональное γ̇(s), можно

записать в виде Y (s) = (X(s), Y (s))X(s) и

(∇γ̇∇γ̇Y +R(Y, γ̇)γ̇, Y ) = (∇γ̇∇γ̇Y, Y ) + (R(Y, γ̇)γ̇, Y ) = 0.

Пусть b(s) = (X(s), Y (s)). Тогда

(R(Y, γ̇)γ̇, Y ) = K(γ)|γ̇|2|Y |2 = K(γ)b2(γ),

гдеK(s) := K(γ(s)) = a2/(1+(a2−1) cos2 u(s))2 — гауссова кривизна эллипсоида

в точке γ(s). Используя свойства ковариантной производной векторных полей

и учитывая, что (Y, γ̇) = (X, γ̇) = 0, |X | = |γ̇| = 1, получаем

∇γ̇Y = ∇γ̇(bX) = ḃX + b∇γ̇X = ḃX,



Радиус инъективности вытянутого эллипсоида вращения 1019

∇γ̇∇γ̇Y = ∇γ̇(ḃX) = b̈X + ḃ∇γ̇X = b̈X,

(∇γ̇∇γ̇Y, Y ) + (R(Y, γ̇)γ̇, Y ) = (b̈X, bX) +K(γ)b2 = b̈b+K(γ)b2 = 0,

b̈(s) +K(s)b(s) = 0. (10)

Замечание 3. В замечании (iii) разд. 4.2 из [4] рассматриваются рима-

ново многообразие M2, поле Якоби Y на нормальной геодезической γ, ортого-

нальное γ, и выписано уравнение для Y , совпадающее с (10) с точностью до

обозначений. После этого говорится, что линейное однородное обыкновенное

дифференциальное уравнение второго порядка (10) есть уравнение свободных

колебаний. Его решения при K ≥ κ > 0 (как и у нас) имеют осциллирующий

характер.

§ 4. Реализация радиуса инъективности

на двойном меридиане m

Замечание 4. Далее в доказательстве теоремы 3 будут использоваться

без специальных ссылок теорема Штурма из разд. 38 книги [5] и задача 3 поcле

этого параграфа для О.Д.У. (10).

Лемма 1. Каждая нормальная кратчайшая γ(s), α ≤ s ≤ β, в (2) до-
пускает нормальную вариацию Якоби V (t, s), (t, s) ∈ [α, β] × J , такую, что
V (α, t) ≡ γ(α), ∂V

∂t (s, 0) 6= 0, α < s < β. Если γ(α), γ(β) не сопряжены, то
∂V
∂t (β, 0) 6= 0.

Доказательство. Можно считать, что α = 0. Положим p := γ(0), v0 :=

γ̇(0). Определим кривую единичных векторов v = v(t) ∈ Mp, t ∈ J :=
(
−π4 , π4

)
,

так, что ориентированный угол ∠(v0, v(t)) = t. Тогда отображение V (s, t) :=

Expp(sv(t)), (s, t) ∈ [0, β] × J, — нормальная вариация Якоби кратчайшей γ.
При этом справедливо первое утверждение, так как γ(0) не сопряжена с γ(s),
0 < s < β, и второе утверждение, если γ(α), γ(β) не сопряжены.

Радиус инъективности i(p), p ∈M, для полного риманова многообразия M
— непрерывная положительная функция [4]. Поэтому если M компактно, то

i(M) = min{i(p), p ∈M} := δ > 0.

Теорема 3. Если M — вытянутый эллипсоид вращения в R3, то непродол-
жаемая кратчайшая длины δ — некоторая дуга двойного меридиана эллипсоида.

Доказательство. Предположим, что существует параметризованная дли-

ной дуги непродолжаемая кратчайшая γ = γ(s), s ∈ [0, δ], не равная дуге ме-

ридиана. Тогда определены ϕ(γ(s)), 0 ≤ s ≤ δ; ϕ(γ(0)) 6= ϕ(γ(δ)). Применяя,

если нужно, некоторые из следующих изометрий эллипсоида: вращение эллип-

соида, отражение относительно плоскости экватора, отражение относительно

плоскости некоторого двойного меридиана, можно считать, что

ϕ(γ(0)) = 0 < ϕ(γ(δ)) ≤ π, z(γ(δ)) ≥ |z(γ(0))|. (11)

На основании предложения 1 имеем δ < π и γ не может быть дугой экватора.

Ввиду теоремы 2 γ не более одного раза пересекает экватор и для некоторого

числа ε ∈ (0, δ] функция u(s) := u(γ(s)) строго возрастает на [0, ε] и строго

убывает на [ε, δ], если ε < δ.
Вследствие сказанного из (11) вытекает, что z(γ(δ)) > 0.
Кроме того, ϕ(γ(s)), 0 ≤ s ≤ δ, — строго возрастающая функция.
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Для произвольной нормальной якобиевой вариации V (s, t), (s, t) ∈ [0, δ]×J,
геодезической γ = γ(s) такой, что V (s̃, t) ≡ γ(s̃), t ∈ J, для некоторого s̃ из [0, δ],
все геодезические γt вариации V — кратчайшие, и ∂V

∂t (s, t0) 6= 0 ортогонально
γt0 , t0 ∈ J, если (s, t0) ∈ ((0, δ) \ {s̃})× J .

Если верно предположение в начале доказательства, то возможны два слу-

чая:

1) γ(0), γ(δ) не сопряжены относительно γ, но существует другая кратчай-

шая γ1(s), 0 ≤ s ≤ δ с теми же концами, что γ;

2) γ(0), γ(δ) сопряжены относительно γ.

1) Прежде всего должно быть ϕ(γ(δ)) < π. Иначе, применяя упомянутую

выше нормальную якобиеву вариацию V (s, t) геодезической γ(s), 0 ≤ s ≤ δ, при

s̃ = δ, получим для некоторого фиксированного t > 0 или t < 0, достаточно

близкого к 0, кратчайшую γt с ϕ(γt(0)) < 0, ϕ(γt(δ)) = π, чего не может быть.

Так как ϕ(γ(δ)) < π, то в этом случае для некоторого фиксированного t >
0 или t < 0, достаточно близкого к 0, кратчайшие γ1(s) и V (s, t), s ∈ [0, δ],
пересекутся помимо s = 0 при единственном s̃ ∈ (0, δ). Это противоречит тому,

что эти кривые — кратчайшие.

2) Предположим сначала, что z(γ(0)) ≥ 0.
Применим упомянутую выше нормальную якобиеву вариацию V (s, t) гео-

дезической γ(s), 0 ≤ s ≤ δ, при s̃ = 0.
Вследствие сказанного, в особенности выделенного выше утверждения,

r(V (s, t)) < r(γ(s)), следовательно K(V (s, t)) > K(γ(s)) для фиксированного

t > 0 или t < 0, достаточно близкого к 0, и всех s ∈ (0, δ). Поэтому относи-

тельно геодезической V (s, t), s ∈ [0, δ], точка V (0, t) сопряжена некоторой точке

V (s, t), где 0 < s < δ. Это противоречит определению δ.
Предположим теперь, что z(γ(0)) < 0. Тогда cуществует единственное s̃ ∈

(0, δ) такое, что z(γ(s̃)) = 0. Следовательно, точка p := γ(s̃) не сопряжена отно-

сительно γ ни с γ(0), ни с γ(δ) согласно определению δ.
Применяя доказательство леммы 1, определим вариацию Якоби кратчай-

ших

V (s, t) = Expp((s− s̃)v(t)), (s, t) ∈ [0, δ]× J.

Тогда r(V (s, t)) < r(γ(s)), следовательно, K(V (s, t)) > K(γ(s)) для фиксиро-

ванного t > 0 или t < 0, достаточно близкого к 0, и всех s ∈ [0, δ] \ {s̃}. Поэтому

относительно геодезической V (s, t), s ∈ [0, δ], точка V (0, t) сопряжена некоторой

точке V (s, t), где 0 < s < δ. Это противоречит определению δ.

Следствие 2. Если M — эллипсоид (2), a > 1, то i(M) = δ = σ < l0/2.

Доказательство. В теореме 3 доказано, что радиус инъективности δ до-

стигается на двойном меридиане. Тогда если δ = l0/2, то l0/2 — длина мериди-

ана, l0/2 > π, что противоречит неравенству δ < π из предложения 1.

§ 5. Решения О.Д.У. (10) для двойного меридиана m

Найти общие решения О.Д.У. (10) для m как функции параметра s не уда-

ется.

Найдем эти решения как функции b(u) от модифицированной широты u ∈
[−π/2, 3π/2) двойного меридиана m вытянутого эллипсоида вращения: на од-

ном из его меридианов u есть обычная широта из (3), а если p — внутренняя

точка другого его меридиана, то u(p) = u(−p) + π.
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Пусть на эллипсоиде (2) при a > 1 в плоскости с ϕ = 0 и ϕ = π задан

двойной меридиан γ(u) = (cosu, 0, a sinu), u ∈ [0, 2π]. Тогда его длина дуги

равна

s(u) =

u∫

0

√
1 + (a2 − 1) cos2 τ dτ = a

u∫

0

√
1− k2 sin2 τ dτ, k =

√
a2 − 1

a
, (12)

s′(u) =
√

1 + (a2 − 1) cos2 u, u̇(s) =
1√

1 + (a2 − 1) cos2 u(s)
,

ü(s) =
d

ds
(1 + (a2 − 1) cos2 u(s))−

1
2

= −1

2
(1 + (a2 − 1) cos2 u(s))−

3
2 (−2u̇(s)(a2 − 1) sinu cosu)

=
(a2 − 1) sin 2u(s)

2(1 + (a2 − 1) cos2 u(s))2
.

Пусть γ = γ(s) := γ(u(s)), b(s) := (X(s), Y (s)), где X = X(s) — гладкое

единичное векторное поле вдоль γ, ортогональное γ̇(s), Y (s) = (X(s), Y (s))X(s)
— векторное поле Якоби вдоль γ(s), ортогональное γ̇(s). Тогда согласно диф-

ференциальному уравнению (10) получаем

b̈(s) +K(s)b(s) = 0, (13)

где

K(s) := K(γ(s)) = K(u(s)) = a2/(1 + (a2 − 1) cos2 u(s))2.

При этом

ḃ(s) = u̇(s)b′u(u(s)) =
1√

1 + (a2 − 1) cos2 u(s)
b′u(u(s)),

b̈(s) = ü(s)b′u(u(s)) + (u̇(s))2b′′u(u(s)).

Подставляя последнее выражение в (13) и убрав s, получим

(a2 − 1) sin 2u

2(1 + (a2 − 1) cos2 u)2
b′ +

b′′

1 + (a2 − 1) cos2 u
+

a2

(1 + (a2 − 1) cos2 u)2
b = 0,

b′′ +
(a2 − 1) sin 2u

2(1 + (a2 − 1) cos2 u)
b′ +

a2

1 + (a2 − 1) cos2 u
b = 0. (14)

Получили снова линейное однородное обыкновенное дифференциальное урав-

нение второго порядка для функции b(u).

Предложение 2. Общим решением уравнения (14) является функция

b(u) = c1 cosu+ c2(a sinu
√

1− k2 sin2 u+ a cosu(F (u, k)− E(u, k))), (15)

где k =
√
a2 − 1/a, E(u, k), F (u, k) — эллиптические интегралы Лежандра вто-

рого и первого рода соответственно.

Доказательство. Из теории известно, что общее решение такого О.Д.У.

является линейной комбинацией двух независимых решений того же уравнения
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[5]. В частности, если известно частное решение y1 уравнения y′′ + p(x)y′ +

q(x)y = 0, то функция

y2 = y1

∫
e−
∫
p(x) dx

y2
1

dx

является частным независимым от y1 решением этого же уравнения [5].

Видно, что b1(u) = cosu является частным решением уравнения (14), тогда

второе частное решение b2(u), независимое от b1(u), можно вычислить так:

b2(u) = cosu

∫
e
−
∫

(a2
−1) sin 2u

2(1+(a2
−1) cos2 u)

du

cos2 u
du = cosu

∫
e

1
2 ln(1+(a2−1) cos2 u)

cos2 u
du

= cosu

∫ √
1 + (a2 − 1) cos2 u

cos2 u
du = b2(u). (16)

Вычислим интеграл

I1 =

∫ √
1 + (a2 − 1) cos2 u

cos2 u
du =

∫ √
1 + (a2 − 1) cos2 u(tanu)′ du.

Интегрируя по частям, получим

I1 = tanu
√

1 + (a2 − 1) cos2 u+

∫
(a2 − 1) sinu cosu√
1 + (a2 − 1) cos2 u

tanu du

= tanu
√

1 + (a2 − 1) cos2 u+

∫
(a2 − 1) sin2 u√

1 + (a2 − 1) cos2 u
du

= a tanu
√

1− k2 sin2 u+ I2,

I2 =

∫
(a2 − 1) sin2 u√

1 + (a2 − 1)− (a2 − 1) sin2 u
du = a

∫
k2 sin2 u√

1− k2 sin2 u
du

= a

∫ (
1√

1− k2 sin2 u
−
√

1− k2 sin2 u

)
du.

Неопределенный интеграл I2 символически обозначает некоторое семейство ре-

шений О.Д.У. (14), каждое из которых получается выбором нижнего предела

интегрирования как произвольного конкретного числа, а верхнего предела —

переменной u (при замене переменной интегрирования). Каждое такое реше-

ние годится для предложения 2. Заменяя I2 на a(F (u, k) − E(u, k)), где, как

обычно,

F (u, k) =

u∫

0

(1/
√

1− k2 sin2 v) dv, E(u, k) =

u∫

0

√
1− k2 sin2 v dv, (17)

получаем предложение 2.

Учитывая (15), (17), полагая c1 = 0, c2 = 1/a в (15) и рассматривая b(u),
0 ≤ u ≤ π, на двойном меридиане m, видим, что b(0) = 0, F (u, k) − E(u, k) > 0

при 0 < u ≤ π, b(u) > 0 при 0 < u ≤ π/2, b(π) < 0. Поэтому существует

ũ ∈ (π/2, π) такое, что b(ũ) = 0.
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Теорема 4. Функция

b(u) = sinu
√

1− k2 sin2 u+ cosu[(F (u, k)− F (π/2, k))− (E(u, k)− E(π/2, k))],

u ∈ [0, π], симметрична относительно u = π
2 и является решением О.Д.У. (14).

При этом b(u) = 0 при u = u1 ∈ (0, π/2) и u = u2 = π − u1, где

tanu1 =
1√

1− k2 sin2 u1

[(F (π/2, k)− F (u1, k))− (E(π/2, k)− E(u1, k))]. (18)

Кроме того, длина дуги между двумя соответствующими сопряженными
точками на двойном меридиане равна 2a(E(π/2, k)− E(u1, k)).

Доказательство. Положим c2 = 1/a.Тогда условие симметричности функ-

ции (15) при u ∈ [0, π] относительно u = π
2 запишется в виде

sinu
√

1− k2 sin2 u+ cosu(c1 + F (u, k)− E(u, k))

= sinu
√

1− k2 sin2 u− cosu(c1 + F (π − u, k)− E(π − u, k)).

Следовательно, c1 ≡ 1
2 [(E(u, k) +E(π− u))− (F (u, k) +F (π− u, k))]. Из опреде-

ления функций E(u, k), F (u, k) и симметричности функции
√

1− k2 sin2 u отно-

сительно u = π
2 вытекает, что суммы E(u, k)+E(π−u, k) и F (u, k)+F (π−u, k)

постоянны. Поэтому

c1 =
1

2
[(E(π/2, k) +E(π/2, k))− (F (π/2, k) + F (π/2, k))] = E(π/2, k)− F (π/2, k).

Следовательно, указанная функция b(u), являющаяся решением ОДУ (14), сим-

метрична относительно u = π
2 .

Отсюда следует второе утверждение теоремы.

Из второго утверждения и равенства (12) следует последнее утверждение.

Замечание 5. Величины F (π/2, k) и E(π/2, k) называются соответственно

полными эллиптическими интегралами Лежандра первого и второго рода.

§ 6. Непродолжаемая кратчайшая длины δ

Замечание 6. Далее без специальных ссылок будет использоваться след-

ствие 2 теоремы Штурма из разд. 38 в [5]: Если u1 и u2 — два последовательных

нуля какого-нибудь решения уравнения типа (14), то всякое другое решение это-

го уравнения имеет на интервале (u1, u2) ровно один нуль, если отношение этих

двух решений не постоянно.

Теорема 5. Длина дуги двойного меридиана между ближайшими нулями
u1 < u2 решения b(u) уравнения (14) для эллипсоида (2) минимальна, если a > 1

и

0 < u1 <
π

2
,

1

2
(u1 + u2) =

π

2
.

Доказательство. Рассмотрим семейство решений уравнения (14)

b(v, u) = cosu[F (u, k)− E(u, k)− (F (v, k)− E(v, k))] + sinu
√

1− k2 sin2 u (19)

(вида (15) при c1 = −(F (v, k)− E(v, k)), c2 = 1/a), где v ∈
[
0, π2

]
.

Для каждого v ∈
[
0, π2

]
есть в точности два последовательных нуля ul(v),

l = 1, 2, функции b(v, u) таких, что 0 ≤ u1(v) <
π
2 ,

π
2 < u2(v) ≤ π−u1(v), причем
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равенство в последнем неравенстве достигается только при v = π
2 . Поэтому

ul(
π
2 ), l = 1, 2, — нули ul из теорем 4, 5. Пусть 0 = b(u(v)) := b(v, u(v)), где u(v)

какой-то из нулей ul(v), l = 1, 2, функции b(v, u).
Тогда cos(u(v)) 6= 0 и из (19) следует равенство

f(v, u(v)) := F (v, k)− E(v, k)− (F (u(v), k)− E(u(v), k))

= tanu(v)

√
1− k2 sin2 u(v). (20)

Кроме того, вследствие (19), (20) при всех v ∈ [0, π/2]

(
∂

∂u
b

)
(v, u(v)) = sinu(v)f(v, u(v)) + cosu(v)

(
k2 sin2 u(v)√

1− k2 sin2 u(v)

)

+ cosu(v)
√

1− k2 sin2 u(v) + sinu(v)
−k2 sinu(v) cosu(v)√

1− k2 sin2 u(v)

= sinu(v)

[
tg u(v)

√
1− k2 sin2 u(v)− k2 sinu(v) cosu(v)√

1− k2 sin2 u(v)

]
+

cosu(v)√
1− k2 sin2 u(v)

=
1

cosu(v)
√

1− k2 sin2 u(v)
[sin2 u(v)(1 − k2 sin2 u(v)− k2 cos2 u(v)) + cos2 u(v)]

=

√
1− k2 sin2 u(v)

cosu(v)
6= 0.

Следовательно, ∂
∂u b 6= 0 в некоторой окрестности точки (v, u(v)).

Тогда по теореме о неявной функции (теорема 2.12 в [6]) u(v), v ∈ [0, π/2],

— непрерывно дифференцируемая функция, и на основании (19), (20)

0 = b′v(u(v)) =

√
1− k2 sin2 u(v)u′(v)

cosu(v)
− k2 sin2 v cosu(v)√

1− k2 sin2 v
.

Стало быть,

u′(v) =
k2 sin2 v√

1− k2 sin2 v

cos2 u(v)√
1− k2 sin2 u(v)

.

Пусть

l(v) := a(E(u2(v), k)− E(u1(v), k)) = a

u2(v)∫

u1(v)

√
1− k2 sin2 udu

— длина дуги двойного меридиана между соответствующими сопряженными

точками,

l′(v) = a[u′2(v)
√

1− k2 sin2 u2(v)− u′1(v)
√

1− k2 sin2 u1(v)]

=
ak2 sin2 v√
1− k2 sin2 v

[cos2 u2(v)− cos2 u1(v)] ≤ 0

и в последнем неравенстве достигается равенство только при v = π
2 и v = 0.
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Как следствие функция l(v) строго убывает на отрезке 0 ≤ v ≤ π/2.
Ввиду (15), (19) b(0, u) получается из (15) при c1 = 0 и c2 = 1/a.
Нули u1(v) рассмотренного выше семейства функций b(v, u), v ∈ [0, π2 ], за-

полняют весь отрезок [0, u1], где u1 было в теореме 4, и u = u1(0) = 0.

Рассмотрим теперь при v ∈ [−1, 0] семейство решений уравнения (14)

b(v, u) = −v cosu+ (1 + v)[(F (u, k)− E(u, k)) cosu+ sinu
√

1− k2 sin2 u]. (21)

Заметим, что функции b(v, u) из (19) и (21) совпадают при v = 0.
Есть в точности два последовательных нуля u1(v) и u2(v) функции b(v, u)

для каждого v ∈ (−1, 0] таких, что −π2 < u1(v) ≤ 0, π2 < u2(v) <
3π
2 .

Пусть 0 = b(u(v)) := b(v, u(v)), где u(v) — какой-то из нулей ul(v), l = 1, 2.
Тогда cos(u(v)) 6= 0 при v ∈ (−1, 0] и из (21) получаем равенство

g(v, u(v)) := E(u(v), k)− F (u(v), k) =
−v

1 + v
+ tanu(v)

√
1− k2 sin2 u(v). (22)

Кроме того, вследствие (21), (22) при всех v ∈ (−1, 0]

(
∂

∂u
b

)
(v, u(v)) =

(1 + v)k2 sin2 u(v) cos u(v)√
1− k2 sin2 u(v)

+ (1 + v) tan u(v)

√
1− k2 sin2 u(v) sinu(v)

+ (1 + v) cosu(v)

(√
1− k2 sin2 u(v)− k2 sin2 u(v)√

1− k2 sin2 u(v)

)

=
(1 + v)

√
1− k2 sin2 u(v)

cosu(v)
6= 0.

Следовательно, ∂
∂u b 6= 0 в некоторой окрестности точки (v, u(v)).

По теореме о неявной функции u(v), v ∈ (−1, 0], — непрерывно дифферен-

цируемая функция и на основании (21), (22)

0 = b′v(u(v)) =
(1 + v)

√
1− k2 sin2 u(v)u′(v)

cosu(v)
− [1 + g(v, u(v))] cosu(v)

+ sinu(v)

√
1− k2 sin2 u(v) =

(1 + v)
√

1− k2 sin2 u(v)u′(v)

cosu(v)
− cosu(v)

1 + v
.

Отсюда находим, что

u′(v) =
cos2 u(v)

(1 + v)2
√

1− k2 sin2 u(v)
.

Пусть

l(v) := a(E(u2(v), k)− E(u1(v), k)) = a

u2(v)∫

u1(v)

√
1− k2 sin2 udu
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— длина дуги двойного меридиана между соответствующими сопряженными

точками,

l′(v) = a[u′2(v)
√

1− k2 sin2 u2(v)− u′1(v)
√

1− k2 sin2 u1(v)]

=
a(cos2 u2(v)− cos2 u1(v))

(1 + v)2
.

Последнее выражение отрицательно по крайней мере для v, достаточно близких

к нулю. Оно может равняться нулю, только если u2(v) − u1(v) = π, т. е. когда

l(v) равно длине L меридиана (половины двойного меридиана), и положительно

тогда и только тогда, когда l(v) > L. Это неравенство невозможно, поскольку

тогда l′(v) > 0, что приводит к противоречию.

Следовательно, l′(v) ≤ 0, −1 < v < 0.
Для завершения доказательства заметим, что нули u1(v) < u2(v) семейства

решений b(v, u), v ∈ [−1, π/2], и нули π − u2(v) < π − u1(v) полученного из него

зеркальной симметрией двойного меридиана (относительно полюсов) семейства

решений уравнения (14) дают ближайшие нули u1 < u2 всех ненулевых решений

b(u) уравнения (14). А такая симметрия двойного меридиана индуцируется

зеркальной симметрией эллипсоида относительно некоторой плоскости в R3,
включающей полюсы.

§ 7. Вычисление радиуса инъективности

Предложение 3. Для любого k ∈ [0, 1) существует единственное решение
u1 = u1(k) уравнения (18) на полуинтервале [0, π2 ).

Доказательство. Наличие двух решений уравнения (18) на полуинтерва-

ле [0, π2 ) эквивалентно тому, что функция b(u) из теоремы 4 (другими словами,

векторное поле Якоби) обращается в нуль в двух различных (сопряженных)

точках дуги меридиана, соединяющей верхнюю вершину эллипсоида с эквато-

ром. Этого не может быть, так как каждый меридиан является кратчайшей.

Лемма 2. Если в уравнении (18) 0 ≤ k =
√
a2−1
a и u1 ∈

[
0, π2

)
, то u1 = 0

тогда и только тогда, когда k = 0.

Доказательство. Пусть k = 0. Тогда

tanu1 = F (π/2, 0)− F (u1, 0)− (E(π/2, 0)− E(u1, 0))

=
π

2
−
(π

2
− u1

)
−
(π

2
−
(π

2
− u1

))
= 0

и u1 = 0, поскольку u1 ∈
[
0, π2

)
.

Если же u1 = 0, то

0 = F
(π

2
, k
)
− E

(π
2
, k
)
⇒ k2

π
2∫

0

sin2 u√
1− k2 sin2 u

du = 0⇒ k = 0.

Лемма доказана.

Лемма 3. Существует непрерывно дифференцируемая строго возрастаю-
щая функция u1 = u1(k), 0 ≤ k < 1, где u1— решение уравнения b(u) = 0 в
теореме 4.

Доказательство. Вследствие (18)
√

1− k2 sin2 u1 tanu1 − (F (π/2, k)− F (u1, k)) +E(π/2, k)− E(u1, k) = 0.
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Но

F (π/2, k)− F (u1, k) + E(π/2, k)− E(u1, k) = k2

π
2∫

u1

sin2 τ√
1− k2 sin2 τ

dτ.

Следовательно,

√
1− k2 sin2 u1 tanu1 − k2

π
2∫

u1

sin2 τ√
1− k2 sin2 τ

dτ = 0.

Пусть

f = f(k, u) =
√

1− k2 sin2 u tanu− k2

π
2∫

u

sin2 τ√
1− k2 sin2 τ

dτ.

Тогда

fu(k, u) =

√
1− k2 sin2 u

cos2 u
− k2 sin2 u√

1− k2 sin2 u
+

k2 sin2 u√
1− k2 sin2 u

=

√
1− k2 sin2 u

cos2 u
> 0.

По теореме о неявной функции существует непрерывно дифференцируемая функ-

ция u1 = u1(k), так как f непрерывно дифференцируема на (0, 1)× (0, π2 ). Кро-

ме того, u′1(k) = −fk(k, u1(k))/fu(k, u1(k)). Теперь достаточно доказать, что

fk < 0. Имеем

fk =
−k sin2 u tanu√

1− k2 sin2 u
− 2k

π
2∫

u

sin2 τ√
1− k2 sin2 τ

dτ − k2

π
2∫

u

−1
2 (−2k sin2 τ) sin2 τ

(1− k2 sin2 τ)
3
2

dτ < 0.

Лемма доказана.

Замечание 7. Из доказательства леммы 3 следует, что равенство (18) эк-

вивалентно равенству tan(u1(k)) = gk(u1(k)), где

gk(u) =
k2

√
1− k2 sin2 u

π
2∫

u

sin2 τ√
1− k2 sin2 τ

dτ, u ∈
[
0,
π

2

]
, k ∈ (0, 1).

Ясно, что 0 < gk(u) для всех (u, k) ∈ [0, π2 )× (0, 1).

Лемма 4. Пусть k ∈ (0, 1) фиксировано. Тогда arctan(gk(u)) < u1(k) для
всех u ∈ [0, π2 ], u 6= u1(k), где u1(k) — решение уравнения (18).

Доказательство. Ясно, что

dgk(u)

du
= g′k(u) =

k2 sinu cosu

1− k2 sin2 u
(gk(u)− tanu).

Поэтому g′k(u1(k)) = 0. Вследствие предложения 3 последнее равенство выпол-

няется для единственного u ∈ (0, π2 ), u = u1(k). Далее,

g′k(u) =
k2 sinu

1− k2 sin2 u
(cosu gk(u)− sinu).

Следовательно, g′k
(
π
2

)
< 0. При этом

g′k(u) > 0, u ∈ (0, u1(k)), g′k(u) < 0, u ∈
(
u1(k),

π

2

)
,

т. е. gk(u) < gk(u1(k)) = tanu1(k), если u ∈
[
0, π2

]
, u 6= u1(k).



1028 В. Н. Берестовский, А. Мустафа

Следствие 3. Если G(k) := F
(
π
2 , k)− E(π2 , k

)
, k ∈ (0, 1), то

arctan(gk(0)) = arctan(G(k)) < u1(k).

Предложение 4. Если x0 := 0 и xn := arctan(gk(xn−1)), n ∈ N, то xn ր
u1(k).

Доказательство. Для каждого k ∈ (0, 1) имеем x1 − x0 = arctan(G(k)) >
0.

Предположим, что xn − xn−1 > 0. Тогда

xn+1 − xn = arctan(gk(xn))− arctan(gk(xn−1)) = arctan

(
gk(xn)− gk(xn−1)

1 + gk(xn)gk(xn−1)

)
.

Вследствие леммы 4 x1 = arctan(gk(0)) < arctan(gk(u1(k))) = u1(k) для каждого

k ∈ (0, 1). Предположим, что xn < u1(k). Тогда

xn+1 = arctan(gk(xn)) < arctan(gk(u1(k))) = u1(k).

Поэтому xn < u1(k) для всех натуральных n. Из предположения индукции

и того, что функция gk(u) строго возрастает на полуинтервале u ∈ [0, u1(k)),
следует, что gk(xn)− gk(xn−1) > 0. Аналогично

arctan

(
gk(xn)− gk(xn−1)

1 + gk(xn)gk(xn−1)

)
= xn+1 − xn > 0.

Поэтому xn ր sup
n∈N

xn =: x(k). Поскольку функции gk(u), arctan непрерывны,

имеем

lim
n→∞

xn = arctan(gk( lim
n→∞

xn−1)),

т. е. x(k) = arctan(gk(x(k))) и tan(x(k)) = gk(x(k)). Так как решение u1(k)
уравнения (18) единственно, то x(k) = u1(k).

Замечание 8. Определенная в предложении 4 последовательность xn поз-

воляет получить хорошую оценку для u1(k) снизу.

Следствие 4. Пусть

σn(a) := 2

π
2∫

xn(k)

√
1 + (a2 − 1) cos2 τ dτ.

Тогда σn(a)ց σ(a) (см. введение), где

σ(a) = 2

π
2∫

u1(k)

√
1 + (a2 − 1) cos2 τ dτ,

xn(k)— последовательность из предложения 4 и u1(k)— корень уравнения (18)

для любого k =
√
a2−1
a , a > 1.

Пусть n = 100.

Пример 1. σ100(3) = 0.74959, σ100(4) = 0.431298, σ100(5) = 0.288134, σ100(6)

= 0.211236, σ100(7) = 0.164441, σ100(8) = 0.133409, σ100(9) = 0.111522, σ100(10) =

0.0953589.
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Пример 2. σ100(20) = 0.036365, σ100(30) = 0.0214715, σ100(40) = 0.0149387,

σ100(50) = 0.0113311, σ100(60) = 0.00906516, σ100(70) = 0.00751939, σ100(80) =

0.00640234, σ100(90) = 0.00556003, σ100(100) = 0.0049038.
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Рис. 1.. График функции σ1(a), a ∈ [1, 2].

Предложение 5. Если 1 < a ≤ 2, то σ1(a) < π.

Это предложение подтверждает график функции σ1(a), 1 ≤ a ≤ 2, на рис. 1,

полученный в результате компьютерных вычислений по программе с использо-

ванием “Wolfram Mathematica”.
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ОПИСАНИЕ ИНЦИДЕНТНЫХ 3–ГРАНЯМ

РЕБЕР В 3–МНОГОГРАННИКАХ

БЕЗ СМЕЖНЫХ 3–ГРАНЕЙ

О. В. Бородин, A. O. Иванова

Аннотация. Вес w(e) ребра e в 3-многограннике это сумма степеней его концевых
вершин. Ребро e = uv есть (i, j)-ребро, если d(u) ≤ i и d(v) ≤ j. В 1940 г. Лебег
доказал, что каждый 3-многогранник содержит (3, 11)-ребро, или (4, 7)-ребро, или
(5, 6)-ребро, где 7 и 6 неулучшаемы. В 1955 г. Коциг доказал, что каждый 3-
многогранник содержит ребро с суммой степеней концевых вершин не более 13,
причем граница точна. О. В. Бородин (1987), отвечая на вопрос Эрдеша, доказал,
что каждый плоский граф без вершин степени меньше 3 содержит такое ребро.
Более того, О. В. Бородин (1991) усилил этот результат, доказав, что найдется
либо (3, 10)-ребро, или (4, 7)-ребро, или (5, 6)-ребро.

Для 3-многогранников получены верхние оценки минимального веса (суммы
степеней концевых вершин) всех его ребер, обозначаемого w; инцидентных 3-грани,
w∗; и инцидентных двум 3- граням, w∗∗. В частности, О. В. Бородин (1996) доказал,
что если w∗∗ =∞, т. е. не существует ребер, инцидентных двум 3-граням, то либо
w∗ ≤ 9, либо w ≤ 8, где обе оценки неулучшаемы.

Недавно мы усилили этот факт, доказав, что w∗∗ = ∞ влечет наличие ли-
бо (3, 6)-ребра, либо (4, 4)-ребра, инцидентных с 3-гранью, либо иначе (3, 5)-ребра,
причем описание точно. (Хорошо известно, что если (3, 5)-ребра присутствуют, то
может вообще не быть 3-граней.)

Цель нашей статьи — усилить вышеуказанный результат, доказав, что w∗∗ =
∞ влечет либо (3, 6)-ребро, окруженное 3-гранью и 4-гранью, либо (4, 4)-ребро,
окруженное 3-гранью и 7−-гранью, либо (3, 5)-ребро, где ни один из параметров
не может быть улучшен. Главной трудностью было построение 3-многогранника,
подтверждающего точность 7 в данном описании.

DOI10.33048/smzh.2025.66.603

Ключевые слова: планарный граф, структурные свойства, 3-многогранник, реб-
ро, вес, точное описание.

Посвящается светлой памяти
Семёна Самсоновича Кутателадзе

1. Введение

Степень вершины или грани x, т. е. число инцидентных ей ребер, обозначим

через d(x). k-Вершина это вершина v с d(v) = k. k-Грань f имеет d(f) = k.
Через k+ или k− обозначим любое целое число, не меньшее или не большее, чем

Работа первого автора поддержана Министерством науки и высшего образования Рос-
сии (проект FWNF-2022-0017). Работа второго автора поддержана Министерством науки и
высшего образования России, грант FSRG-2023-0025.

c© 2025 Бородин О. В., Иванова A. O.



Описание инцидентных 3-граням ребер 1031

k, соответственно. Следовательно, k+-вершина v удовлетворяет неравенству

d(v) ≥ k, и т. д.

Ребро uv есть (i, j)-ребро, если d(u) ≤ i и d(v) ≤ j. Вес w(e) ребра e в

3-многограннике это сумма степеней его концевых вершин. Через δ(G) и w(G)

обозначим минимальную вершинную степень и минимальный вес ребер графа

G соответственно. Будем опускать аргумент всякий раз, когда он ясен из кон-

текста.

Еще в 1904 г. Вернике [1] доказал, что каждый 3-многогранник с δ = 5

удовлетворяет неравенству w ≤ 11. В 1940 г. Лебег [2] доказал, что каждый

3-многогранник содержит либо (3, 11)-ребро, либо (4, 7)-ребро, либо (5, 6)-ребро,

где параметры 7 и 6 наилучшие из возможных. В 1955 г. Коциг [3] доказал, что

для каждого 3-многогранника верно неравенство w ≤ 13, причем оценка точна.

В 1972 г. Эрдеш (см. [4]) предположил, что оценка Коцига w ≤ 13 верна

для всех планарных графов с δ ≥ 3. Первое доказательство гипотезы Эрдеша

дал О. В. Бородин [5]. В [6, 7] О. В. Бородин уточнил этот результат, доказав,

что каждый 3-многогранник содержит либо (3, 10)-, либо (4, 7)-, или (5, 6)-ребро

(как простое следствие из некоторых более сильных структурных фактов, име-

ющих приложения к раскраске плоских графов).

В некоторых приложениях к раскраске важно найти легкое ребро, инци-

дентное одной или двум 3-граням. Для 3-многогранников минимальный вес

всех его ребер обозначим через w, инцидентных 3-грани — через w∗, а инци-

дентных двум 3-граням — через w∗∗.
О. В. Бородин [8] доказал, что для каждого 3-многогранника верно либо

w∗∗ ≤ 13, либо w∗ ≤ 10, или w ≤ 8, где все оценки являются наилучшими из

возможных. Некоторые другие связанные с этим результаты, а также гипотезы

и ссылки можно найти в обзорах [9, 12] и работах [1–8, 13–25].

За последние почти три десятилетия множество исследований было посвя-

щено структурным задачам и задачам раскраски плоских графов, разреженных

в том или ином смысле. Нам кажется, что наиболее плотные среди разрежен-

ных плоских графов — те, у которых нет 3-граней, имеющих общее ребро, т. е.

удовлетворяющие равенству w∗∗ =∞.

В частности, новые результаты о структуре плоских графов с минималь-

ной степенью 3 и 4 и w∗∗ = ∞ при различных дополнительных ограничениях

находят применение в 3-раскраске (как правильной, так и неправильной), 3- и

4-выбираемости, а также в недавно введенных 3-DP- и 4-DP-раскрасках (для

получения такой информации см. ссылки в выдающейся работе Дворжака и

Постля [26] и на нее). Кроме того, в тотальной и вершинно-реберно-граневой

раскрасках плоских графов мы часто имеем дело со случаем w∗∗ =∞.

Ранее доказанное в [16] утверждение, что каждый 3-многогранник с w∗∗ =

∞ удовлетворяет точной оценке w ≤ 9, было усилено О. В. Бородиным в [17] до

w∗ ≤ 9 или w ≤ 8, причем обе оценки точны.

Недавно мы [27] усилили этот результат, доказав, что факт w∗∗ =∞ влечет

наличие либо (3, 6)-, либо (4, 4)-ребра, инцидентных 3-грани, либо (3, 5)-ребра,

причем описание точно. Заметим, что, как хорошо известно, если (3, 5)-ребра

допускаются, то может вообще не быть 3-граней.

Целью нашей статьи является доказательство следующего более сильного

результата.

Теорема 1. Каждый 3-многогранник без смежных 3-граней содержит ли-
бо (4, 4)-ребро, инцидентное 3-грани и 7−-грани, либо (3, 6)-ребро, инцидентное
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Рис. 1. Каждое полуслабое (4, 4)-ребро инцидентно 7-грани.

3-грани и 4-грани, либо (3, 5)-ребро, где ни один из параметров не может быть
усилен.

Главной трудностью было построение 3-многогранника, подтверждающего

точность 7 в данном описании.

2. Доказательство теоремы 1

Ребро называется полуслабым, если оно инцидентно 3-грани. На рис. 1 мы

видим граф без 3-вершин, в котором каждое полуслабое (4,4)-ребро инцидентно

7-грани, что подтверждает необходимость и неулучшаемость первого варианта

в теореме 1.

В [17] получен плоский граф (с w∗∗ =∞, что также предполагается в дока-

зательстве ниже) с вершинами степеней только 3 и 6, в котором каждое ребро

является полуслабым и соединяет 3+-вершину с 6-вершиной. Это подтверждает

необходимость и неулучшаемость второго варианта в теореме 1.

Третий вариант подтверждается двойственным многогранником известного

архимедова тела, в котором каждое ребро соединяет 3-вершину с 5-вершиной и

инцидентно двум 4-граням.

2.1. Перераспределение зарядов и его следствия. Через P обозначим

контрпример к теореме 1. Пусть V , E и F — множества вершин, ребер и граней
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Рис. 2. Перераспределение зарядов.

графа P соответственно. Формулу Эйлера |V | − |E|+ |F | = 2 для P перепишем

в виде ∑

x∈V ∪F
(d(x) − 4) = −8. (1)

Каждая вершина и грань x вносит заряд µ(x) = d(x) − 4 в формулу (1),

так что только заряды 3-вершин и 3-граней отрицательны. Используя свой-

ства контрпримера P , перераспределим заряды µ, сохранив их сумму так, что

новый заряд µ′(x) окажется неотрицательным для всех x ∈ V ∪ F . Это будет

противоречить тому, что сумма новых зарядов по формуле (1) равна −8.

В дальнейшем обозначим вершины, смежные (инцидентные) вершине (гра-

ни) x в циклическом порядке, через v1, . . . , vd(x). Ребро назовем сильным, если

оно не инцидентно 3-грани.

Мы применяем следующие правила распределения зарядов (рис. 2).

R1. Каждая 3-грань получает 1
3 от каждой инцидентной вершины.

R2. Каждая 3-вершина v1 получает от смежной вершины v2 вдоль полу-
слабого ребра:

(a) 1
3 , если d(v2) = 6, и

(b) 1
2 , если d(v2) ≥ 7.

R3. Каждая 3-вершина получает 1
3 от смежной вершины вдоль каждого

сильного ребра.

R4. Каждая 4-вершина v, инцидентная грани f1 = v1vv2, получает от
каждой смежной 5+-вершины v2:

(a) 1
6 , если d(v1) ≥ 5, и

(b) 1
12 , если d(v1) = 4.

R5. Каждая 3-вершина, инцидентная 3-грани и 5+-грани f , получает 1
3

от f .

R6. Каждая 4-вершина получает 1
2 от каждой инцидентной 8+-грани.

2.2. Проверка того, что µ′(x) ≥ 0 для всех x ∈ V ∪ F .

Случай 1. f ∈ F . Если d(f) = 3, то µ′(f) = 4− 3 + 3 × 1
3 = 0 по R1. Если

d(f) = 4, то f не участвует в R1–R6, поэтому µ′(f) = µ(f) = 0.
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Подслучай 1.1. 5 ≤ d(f) ≤ 7. Заметим, что f = v1v2 . . . может участво-

вать только в R5. Предположим, f дает 1
3 вершине v2, где d(v1) ≥ 6 и d(v3) ≥ 6

благодаря отсутствию (3, 5)-ребер в P , и ребро v1v2 инцидентно 3-грани. Чтобы

оценить общую передачу от грани f , перебросим 1
12 от v2 на каждую из вершин

v1, v3. Теперь каждая вершина, инцидентная грани f , получает от f не более
1
6 = 2× 1

12 = 1
3 −2× 1

12 . Как результат, µ′(f) = d(f)−4−d(v)× 1
6 =

5d(v)−24
6 > 0,

что и требовалось.

Подслучай 1.2. d(f) ≥ 8. Теперь каждая инцидентная вершина получает

не более 1
2 от грани f по R5 или R6, откуда следует µ′(f) = d(f)−4−d(f)× 1

2 =
d(f)−8

2 ≥ 0.

Случай 2. v ∈ V .

Подслучай 2.1. d(v) = 3. Если v не инцидентна 3-граням, то µ′(v) =

4− 3 + 3× 1
3 = 0 по R3.

Пусть v инцидентна 3-грани f = v1vv2 (в точности одной, поскольку w∗∗ =

∞). Тогда v получает 1
3 от 6+-соседа v3 по R3 и дает 1

3 грани f по R1.

Если d(v1) ≥ 7, то v получает 1
2 от v1 по R2b. Если d(v1) = 6, то v получает

1
3 от v1 по R2a и 1

3 от 5+-грани f3 = v1vv3 . . . по R5 ввиду свойств нашего

контрпримера P . В обоих случаях v1 вместе с f3 приносит вершине v не менее 1
2 .

То же самое верно для v2 и f2 = v2vv3 . . . , откуда µ′(v) ≥ 3−4+2× 1
2 + 1

3− 1
3 = 0.

Подслучай 2.2. d(v) = 4. Заметим, что если v не инцидентна 3-грани, то

v не участвует в R1 и µ′(v) ≥ 0 с учетом R6.

Допустим, что найдется 3-грань f1 = v1vv2. Если d(v1) ≥ 5 и d(v2) ≥ 5, то

v получает 2× 1
6 от v1 и v2 по R4a и отдает 1

3 грани f1 по R1, поэтому 3-грань

f1 ничего не забирает от вершины v. Остается предположить, что d(v1) =

4. Теперь v получает 1
2 по R6 от 8+-грани f4 = v1vv4 . . . по свойствам G.

Поскольку v инцидентна не более чем двум 3-граням, остается рассмотреть

случай, когда найдется f3 = v3vv4.

Теперь, если найдется 4-вершина в {v2, v3}, то v получает еще 1
2 от 8+-грани

f2 = v2vv3 . . . , откуда следует µ′(v) = 4−4+2× 1
2−2× 1

3 > 0 по R1, R6. Наконец,

пусть d(v2) ≥ 5 и d(v3) ≥ 5, что означает, что каждая из v2, v3 дает вершине v
заряд 1

12 по R4b, следовательно, µ′(v) ≥ 1
2 + 2× 1

12 − 2× 1
3 = 0 с учетом R4a.

Подслучай 2.3. d(v) = 5. Здесь v инцидентна не более двум 3-граням, и

каждая 3-грань f1 = v1vv2 получает 1
3 от v по R1, тогда как v1 и v2 забирают

у v либо 2 × 1
12 по R4b, когда d(v1) = d(v2) = 4, либо не более чем 1

6 по R4a в

противном случае. Отсюда µ′(v) = 5− 4− 2× 1
2 = 0.

Подслучай 2.4. d(v) = 6. Теперь каждая 3-грань v1vv2 уносит от v не бо-

лее 1
3+ 1

3 по R1, R2a и R4. Здесь мы перераспределим передачу в 1
3 по R1 следую-

щим образом. Если d(v1) = d(v2) = 4, то переведем 1
6 на каждую из 4-вершин v1

и v2. В противном случае переводим 1
3 на 5+-вершину в грани v1vv2. Заметим,

что после такого усреднения каждое инцидентное полуслабое ребро собирает не

более 1
3 от v, а 3-грани ничего не забирают. С учетом правила R3 каждое ребро

при v уносит от v не более 1
3 . Следовательно, µ′(v) ≥ 6− 4− 6× 1

3 = 0.

Подслучай 2.5. d(v) ≥ 7. Здесь 3-грань при v забирает не более 1
3 + 1

2 = 5
6

от v по R1, R2b и R4. Кроме того, v отдает 1
3 по R3 каждой смежной 3-вершине

по сильному ребру.
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Пусть T — число 3-граней при v. Нетрудно видеть, что T ≤ d(v)
2 , откуда

µ′(v) ≥ d(v)−4−T × 5
6− (d(v)−2T )× 1

3 =
2d(v)

3 −4−T× 1
6 ≥

2d(v)
3 −4− d(v)

2 × 1
6 =

7d(v)−48
12 > 0, что и требовалось.

Таким образом, мы доказали, что µ′(x) ≥ 0 для всех x ∈ V ∪ F , а это

противоречит формуле (1) и завершает доказательство теоремы 1.
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P. 101–103.
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ПРЯМОУГОЛЬНАЯ ГРУППА КОКСЕТЕРА

МИНИМАЛЬНОГО КООБЪЕМА В ТРЕХМЕРНОМ
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А. Ю. Веснин, А. А. Егоров

Аннотация. Доказано, что среди всех прямоугольных групп Коксетера в трехмер-
ном гиперболическом пространстве наименьший кообъем имеет группа, порожден-
ная отражениями в гранях прямоугольной треугольной бипирамиды. Эта бипира-
мида имеет три идеальные и две конечные вершины. Группа является арифмети-
ческой и кообъем равен константе Каталана G = 0,915965 . . . .
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Ключевые слова: гиперболический многогранник, прямоугольный многогран-
ник, прямоугольная группа Коксетера.

Светлой памяти Семёна Самсоновича Кутателадзе

§ 1. Введение

Фундаментальной проблемой в гиперболической геометрии является изу-

чение дискретных подгрупп группы Isom(Hn) изометрий n-мерного гипербо-

лического пространства Hn, в частности, групп, порожденных отражениями.

При этом дискретные группы изометрий, не содержащие кручений, соответ-

ствуют гиперболическим n-мерным многообразиям. Во многих конструкциях

такие группы возникают как подгруппы конечного индекса в группах, порож-

денных отражениями [1–3].

Напомним [4, 5], что группа Коксетера W определяется конечным пред-

ставлением вида W = 〈s ∈ S | (st)mst = 1, ∀s, t ∈ S〉, где mss = 1 и mst ∈
{2, 3, . . . ,∞}, если s 6= t. Здесь mst =∞ означает, что между s и t соотношений

нет. Группа Коксетера W называется прямоугольной, если mst ∈ {2,∞} для

s 6= t.
Выпуклый многогранник P ⊂ Hn с двугранными углами вида π/m для

целого m ≥ 2 при (n−2)-мерных гранях называют гиперболическим многогран-

ником Коксетера. Группа � (P ), порожденная отражениями в (n − 1)-мерных

гранях P , является группой Коксетера. Кообъемом группы � (P ) будем назы-

вать объем многогранника vol(P ). Будем говорить, что группа � (P ) коком-

пактна, если P — компактный многогранник, и что � (P ) конечного кообъема,

если P имеет конечный объем. Как показал Винберг [6], если n ≥ 30, то в Hn

не существует кокомпактных групп Коксетера. Примеры известны только если

n ≤ 8 (см. [7]). Согласно [8, 9], если n > 995, то в Hn не существует групп

Работа выполнена в рамках госзадания ИМ СО РАН: А. Ю. Веснин поддержан проектом
No. FWNF-2022-0004, А. А. Егоров поддержан проектом No. FWNF-2022-0017.

c© 2025 Веснин А. Ю., Егоров А. А.



1038 А. Ю. Веснин, А. А. Егоров

Коксетера конечного кообъема. Примеры известны только для n ≤ 19 [10] и

n = 21 [11]. Как показано в [12], существует бесконечно много групп Коксетера

конечного кообъема (соответственно компактных) в Hn для каждого n ≤ 19

(соответственно n ≤ 6).

В данной работе рассматриваются прямоугольные многогранники конеч-

ного объема в трехмерном гиперболическом пространстве H3 и соответствую-

щие им прямоугольные группы Коксетера. Многогранник P называется прямо-

угольным, если все его двугранные углы равны π/2. В этом случае соответству-

ющая группа отражений � (P ) является прямоугольной группой Коксетера. Из-

вестно, что не существует компактных прямоугольных гиперболических групп

Коксетера, если n > 4 [13], и прямоугольных гиперболических групп Коксетера

конечного кообъема, если n > 12 [14]. В последнем случае примеры известны в

размерностях n ≤ 8 (см. [15]).

Данбар и Мейергофф [16] показали, что множество объемов трехмерных ги-

перболических орбифолдов конечного объема имеет порядковый тип ωω и число

орбифолдов заданного объема конечно. Традиционно объемы многогранников в

трехмерном гиперболическом пространстве вычисляют в терминах следующей

функции Лобачевского (см. [17]):

�(θ) = −
θ∫

0

log |2 sin(t)| dt.

Ниже мы будем использовать величину voct = 8�(π/4) = 3, 663862, равную

объему правильного идеального октаэдра в H3, и величину vtet = 3�(π/3) =

1, 014941, равную объему правильного идеального тетраэдра в H3. Здесь и далее

все приближенные значения функции Лобачевского и значения объемов приво-

дятся с точностью до шести знаков после запятой.

Дискретные группы отражений удобно описывать при помощи схем Коксе-

тера [5, 18]. Каждому многограннику Коксетера, в частности лежащему в H3,

соответствует граф, называемый его схемой Коксетера. Вершины схемы Кок-

сетера соответствуют граням многогранника. Если две грани многогранника

взаимно перпендикулярны, то вершины схемы не соединяются ребром. Если

угол между гранями равен π/m, m ≥ 3, то соответствующие вершины соеди-

няются ребром кратности m− 2 (как правило, если m ∈ {3, 4, 5}) или обычным

ребром с меткой m. Схемы Коксетера также используются для обозначения

групп Коксетера, порожденных отражениями в гранях многогранника Коксе-

тера.

Обозначим через �3,4,4 тетраэдр в H3 с гранями f1, f2, f3, f4, у которого

двугранные углы αi между гранями fi и fi+1, i = 1, 2, 3, имеют значения α1 =

π/3, α2 = π/4, α3 = π/4, а все остальные двугранные углы равны π/2. Схема

Коксетера для группы � (�3,4,4), порожденной отражениями в гранях �3,4,4,

приведена на рис. 1(a), где указаны обозначения граней.

Тетраэдр �3,4,4 имеет три конечные вершины и одну идеальную вершину,

которая принадлежит граням f2, f3 и f4. Под действием диэдральной группы

порядка шесть, порожденной отражениями в гранях f1 и f2, из шести экзем-

пляров �3,4,4 получаем тетраэдр �′3,4,4 на рис. 2(a), у которого три идеальные

вершины лежат в одной плоскости, которая содержит грань f4, а в конечной

вершине встречаются три прямых угла (тетраэдры с таким свойством называют

трипрямоугольными [19]). Схема Коксетера для группы � (�′3,4,4), порожден-

ной отражениями в гранях �′3,4,4, приведена на рис. 1(b). Объединяя тетраэдр
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Рис. 1. Схемы Коксетера для групп � (�3,4,4) и � (�′3,4,4).

(a) (b) (c)

Рис. 2. Тетраэдр �′3,4,4, многогранник P (3,2) и диаграмма Шлегеля для P (3,2).

�′3,4,4 с его зеркальным образом относительно плоскости, содержащей грань f4,
получим треугольную бипирамиду с шестью гранями, у которой все двугранные

углы равны π/2. Поскольку эта бипирамида имеет три идеальных и две конеч-

ные вершины, будем обозначать ее через P(3,2). Многогранник P(3,2) и его

диаграмма Шлегеля приведены на рис. 2(b), (c). Отметим, что многогранник

P(3,2) появлялся в различных контекстах в работах [8, 13, 20, 21].

По построению объем прямоугольного многогранника P(3,2) равен

vol(P(3,2)) = 2 vol(�′3,4,4) = 12 vol(�3,4,4) = 2�
(π

4

)
,

где объем тетраэдра �3,4,4 вычислен через функцию Лобачевского по приведен-

ной ниже формуле (1). Хорошо известно [22], что 2�
(
π
4

)
= G, где

G =

∞∑

n=0

(−1)n

(2n+ 1)2

— константа Каталана, появившаяся в 1867 г. в его работе [23]. С точностью

до шести знаков имеем G = 0,915965. Более точные приближения константы

Каталана G приведены в [24].

Основным результатом данной работы является следующая

Теорема 1.1. Пусть P — прямоугольный многогранник в H3. Тогда имеет
место неравенство vol(P) ≥ G, где G = 2�

(
π
4

)
— константа Каталана. При

этом треугольная бипирамида P(3,2) является единственным прямоугольным
многогранником, для которого достигается равенство.

Хорошо известно, что арифметичность групп трехмерных гиперболических

многообразий и орбифолдов имеет важное значение при изучении их свойств [25].

Вопрос, восходящий к Зигелю [26], состоит в следующем: какие гиперболиче-

ские многообразия и орбифолды имеют наименьший объем в ориентируемом

и неориентируемом случаях? Как отмечено в [27], имеет место фольклорная
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гипотеза, состоящая в том, что минимальные объемы всегда достигаются на

арифметических многообразиях или орбифолдах. К настоящему времени эта

гипотеза полностью подтверждена для n = 3 (см. [28–34]). Отметим, что ана-

логичное свойство арифметичности минимальных объемов имеет место и для

прямоугольных групп Коксетера. А именно, минимальная кокомпактная пря-

моугольная гиперболическая группа Коксетера арифметична в силу [35, 36].

Минимальная прямоугольная гиперболическая группа Коксетера конечного ко-

объема также арифметична, что следует из теоремы 1.1.

Следствие 1.1. Прямоугольная гиперболическая группа Коксетера в H3

минимального кообъема является арифметической.

Статья имеет следующую структуру. В § 2 напомним некоторые резуль-

таты о прямоугольных многогранниках в пространстве H3 и их объемах. Бо-

лее подробную информацию о геометрии пространства H3 и о гиперболических

многообразиях и орбифолдах можно найти в [3]. В § 3 приведем доказательство

теоремы 1.1, представленное последовательностью лемм 3.1–3.4. В § 4 обсудим

арифметичность прямоугольных групп отражений, появившихся при доказа-

тельстве теоремы 1.1. Завершим статью некоторыми открытыми вопросами,

сформулированными в § 5.

§ 2. Предварительные сведения

2.1. Cуществование прямоугольных гиперболических многогран-

ников. Обозначим через Rn,1 векторное пространство Rn+1, снабженное ска-

лярным произведением 〈·, ·〉 сигнатуры (n, 1), а через fn — ассоциированную

с этим произведением квадратичную форму. В подходящем базисе эта форма

выражается следующим образом:

fn(x) = −x2
0 + x2

1 + · · ·+ x2
n.

Пространством Лобачевского Hn размерности n называется верхняя связная

компонента гиперболоида, заданного уравнением fn(x) = −1:

Hn = {x ∈ Rn,1 | fn(x) = −1 и x0 > 0}.

В данной модели точки на абсолюте соответствуют изотропным векторам:

∂Hn = {x ∈ Rn,1 | fn(x) = 0 и x0 > 0}/R+.

Выпуклым гиперболическим многогранником размерности n называется пе-

ресечение конечного семейства замкнутых полупространств в Hn, которое со-

держит непустое открытое множество. Выпуклый гиперболический многогран-

ник называется гиперболическим многогранником Кокстера, если все его дву-

гранные углы являются целыми частями π, т. е. имеют вид π/m для некоторого

целого m ≥ 2. Гиперболический многогранник Кокстера называется прямо-

угольным, если все его двугранные углы равны π/2. Если все двугранные углы

обобщенного1) многогранника не превосходят π/2, то говорят, что этот много-

гранник остроугольный.

1)Обобщенным выпуклым многогранником P называется пересечение (с непустой внут-
ренностью), возможно бесконечного числа, полупространств в Hn, такое, что каждый замкну-
тый шар пересекает лишь конечное число граничных гиперплоскостей, задающих P .
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Известно, что обобщенные многогранники Кокстера являются естествен-

ными фундаментальными областями для дискретных групп, порожденных от-

ражениями в пространствах постоянной кривизны (см. [18]).

Выпуклый n-мерный многогранник имеет конечный объем тогда и только

тогда, когда он является выпуклой оболочкой конечного числа точек в компак-

тификации Hn = Hn ∪ ∂Hn. Многогранник размерности n компактен тогда и

только тогда, когда он является выпуклой оболочкой конечного числа точек

пространства Hn, которые называются конечными. Выпуклый многогранник

называется идеальным, если все его вершины лежат на абсолюте ∂Hn (такие

вершины называются идеальными). Известно [37, теорема 1] что для компакт-

ного остроугольного многогранника конечного объема P ⊂ H3 каждая вершина

имеет симплициальный тип.

Говорят, что два многогранника P и P ′ в евклидовом пространстве En

комбинаторно эквивалентны, если существует биекция между множествами

их граней, которая сохраняет отношение инцидентности. Класс комбинаторно

эквивалентных многогранников называется комбинаторным типом многогран-

ника. Отметим, что если гиперболический многогранник P ⊂ Hn имеет конеч-

ный объем, то его замыкание P ⊂ Hn комбинаторно эквивалентно некоторому

компактному многограннику в En.
Следующая теорема является частным случаем теорем Андреева для ком-

пактного случая [38] и случая конечного объема [37], см. также [39]. Теоремы

Андреева дают необходимые и достаточные условия для реализации в простран-

стве Лобачевского абстрактного многогранника заданного комбинаторного ти-

па с предписанными двугранными углами. Мы сформулируем эти условия для

прямоугольных многоугольников, следуя [40, теорема 2.1]. Обозначим через P ∗

плоский граф, двойственный одномерному скелету P (1) многогранника P .

Теорема 2.1 [38, 37]. Абстрактный многогранник P реализуется как пря-
моугольный многогранник P в H3 тогда и только тогда, когда выполнены сле-
дующие условия:

(1) P имеет не менее шести граней;

(2) в каждой вершине P сходятся три или четыре грани;

(3) для любой тройки граней (Fi, Fj , Fk) такой, что Fi ∩ Fj и Fj ∩ Fk —
ребра в P с различными концами, выполняется Fi ∩ Fk = ∅;

(4) двойственный граф P ∗ не содержит призматических k-обходов, где
k ≤ 4.

При этом каждая вершина валентности три в P соответствует конечной
вершине в P, каждая вершина валентности четыре в P соответствует идеаль-
ной вершине в P, и реализация P единственна с точностью до изометрии.

Здесь для плоского графa G и двойственного ему графа G∗ k-обходом на-

зывается простая замкнутая кривая, состоящая из k ребер в графе G∗. Призма-

тическим k-обходом называется такой k-обход γ, в котором никакие два ребра

графа G, соответствующие ребрам, через которые проходит γ, не имеют общей

вершины.

2.2. Объем бипрямоугольного гиперболического тетраэдра. Тет-

раэдр в H3 называется бипрямоугольным (или ортосхемой), если его вершины

можно обозначить через A,B,C,D таким образом, что ребро AB ортогонально

грани BCD, а грань ABC ортогональна ребру CD. В этом случае получаем сле-

дующее равенство двугранных углов: ∠AC = ∠BC = ∠BD = π/2. Величины
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остальных двугранных углов обозначим через ∠AB = α, ∠AD = β, ∠CD = γ,

где α+ β ≥ π/2 и β+ γ ≥ π/2. В этом случае бипрямоугольный тетраэдр будем

обозначать символом R(α, β, γ). Формула для его объема получена в [41]:

vol(R(α, β, γ)) =
1

2

[
�(α+ δ) + �(α− δ) + �

(π
2

+ β − δ
)

+ �
(π

2
− β + δ

)

+ �(γ + δ)− �(γ − δ) + 2�
(π

2
− δ
)]
, (1)

где

0 ≤ δ = arctan

√
cos2 β − sin2 α sin2 γ

cosα cos γ
<
π

2
.

С помощью формулы (1) вычислим кообъем группы � (�3,4,4), схема Кок-

сетера которой приведена на рис. 1(a), и группы � (�4,4,4), схема Коксетера

которой приведена на рис. 3. А именно, поскольку �3,4,4 = R(π/3, π/4, π/4),

то vol(�3,4,4) = 1
6�(π/4), и аналогично, поскольку �4,4,4 = R(π/4, π/4, π/4), то

vol(�4,4,4) = 1
2�(π/4).
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Рис. 3. Схема Коксетера для группы � (�4,4,4).

2.3. Компактные прямоугольные многогранники. Поскольку усло-

вия реализации абстрактного многогранника как компактного прямоугольного

многогранника в H3 впервые были сформулированы А. В. Погореловым [42],

иногда эти многогранники называют многогранниками Погорелова.

Опишем одно важное бесконечное семейство компактных прямоугольных

многогранников. Для n ≥ 5 рассмотрим (2n+2)-гранник Ln, у которого верхнее

и нижнее основания являются n-угольниками, а боковая поверхность состоит

из двух циклов по n пятиугольников [2], в частности, L5 является додекаэдром

(рис. 4(a)). По теореме 2.1 многогранник Ln реализуется в H3 как компакт-

ный прямоугольный многогранник Ln. Следуя [2], многогранники Ln назы-

вают многогранниками Лёбелля, а трехмерные гиперболические многообразия,

соответствующие подгруппам без кручения индекса восемь в � (Ln), n ≥ 5, —

многообразиями Лёбелля, см. [43].
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Рис. 4. Додекаэдр L5 и октаэдр A3.

Теорема 2.2 [44, следствие 9.2]. Компактным прямоугольным гиперболи-
ческим многогранником наименьшего объема является додекаэдр L5, а следу-
ющим — многогранник L6.

Приведенная ниже формула выражает объемы прямоугольных гиперболи-

ческих многогранников Ln через функцию Лобачевского.
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Теорема 2.3 [45]. Для n ≥ 5 имеет место равенство

vol(Ln) =
n

2

(
2�(θn) + �

(
θn +

π

n

)
+ �

(
θn −

π

n

)
− �

(
2θn −

π

2

))
,

где θn = π
2 − arccos

(
1

2 cos(π/n)

)
.

Непосредственными вычислениями получаем приближенные значения объ-

емов с точностью до шести знаков после запятой: vol(L5) = 4,306207 и vol(L6) =

6,023046. Нетрудно видеть, что vol(Ln) является возрастающей функцией от

n (см. [44, теорема 4.2]) и lim
n→∞

vol(Ln)
n = 5

4vtet (см. [46, предложение 2.10]).

В работе [47] дан список первых 825 объемов компактных прямоугольных ги-

перболических многогранников, а также приведены изображения первых ста

соответствующих многогранников. Вычисления объемов проводились с помо-

щью компьютерной программы Orb [48].

Верхние и нижние оценки объемов компактных прямоугольных многогран-

ников через число их вершин были получены Аткинсоном в [40].

Теорема 2.4 [40, теорема 2.3]. Пусть P — компактный прямоугольный
гиперболический многогранник с V вершинами. Тогда

voct
32

(V − 8) ≤ vol(P) <
5vtet

8
(V − 10). (2)

Более того, существует последовательность компактных прямоугольных много-
гранников Pi с Vi вершинами такая, что vol(Pi)/Vi стремится к 5

8vtet, когда i
стремится к бесконечности.

В силу теоремы 2.1 в теореме 2.4 подразумевается, что V ≥ 20. В [49]

верхняя оценка в (2) была улучшена для компактных прямоугольных гипербо-

лических многогранников с числом вершин V ≥ 24, а в [50] — с числом вершин

V ≥ 81.

2.4. Идеальные прямоугольные многогранники. Напомним, что

многогранник в H3 называется идеальным, если все его вершины являются иде-

альными.

Опишем одно важное семейство идеальных прямоугольных многогранни-

ков. Для n ≥ 3 рассмотрим (2n+ 2)-гранник с верхним и нижним n-угольными

основаниями и с боковой поверхностью из двух слоев по n треугольников, у

которого в каждой вершине сходится по четыре ребра. Такой многогранник

будем называть n-антипризмой и обозначать через An. Отметим, что A3 явля-

ется октаэдром (рис. 4(b)).

По теореме 2.1 для каждого n ≥ 3 многогранник An реализуется в H3 как

идеальный прямоугольный многогранник An. В [51, предложение 5] показано,

что если многогранник имеет минимальное число граней среди всех идеальных

прямоугольных многогранников в H3, у которых хотя бы одна n-угольная, то

он является антипризмой An.

Следующая формула выражает объемы многогранников An через функцию

Лобачевского.

Теорема 2.5 [52]. Для n ≥ 3 имеет место равенство

vol(An) = 2n
[
�
(π

4
+

π

2n

)
+ �

(π
4
− π

2n

)]
. (3)

Верхние и нижние оценки объемов идеальных прямоугольных многогран-

ников через число их вершин были получены Аткинсоном в [40].
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Теорема 2.6 [40, теорема 2.2]. Пусть P — идеальный прямоугольный ги-
перболический многогранник с V вершинами. Тогда

voct
4

(V − 2) ≤ vol(P) <
voct
2

(V − 4). (4)

Оба неравенства превращаются в равенства, если P является правильным иде-
альным гиперболическим октаэдром. Более того, существует последователь-
ность идеальных прямоугольных многогранников Pi с Vi вершинами такая,
что vol(Pi)/Vi стремится к 1

2voct, когда i стремится к бесконечности.

В силу теоремы 2.1 в теореме 2.6 подразумевается, что V ≥ 6. В [49] верхняя

оценка в (4) была улучшена для идеальных прямоугольных гиперболических

многогранников c числом вершин V ≥ 8, а в [50] — с числом вершин V ≥ 25.

2.5. Прямоугольные многогранники с конечными и идеальными

вершинами. Предположим, что прямоугольный гиперболический многогран-

ник P имеет Vf конечных и V∞ идеальных вершин. Обозначим через E число

его ребер, а через F — число его граней. Эйлерова характеристика χ(P) мно-

гогранника P равна

χ(P) = V∞ + Vf − E + F = 2.

Поскольку каждая конечная вершина инцидентна трем ребрам, а идеальная —

четырем, то 3Vf + 4V∞ = 2E. Значит,

F = V∞ +
1

2
Vf + 2, (5)

откуда следует, что число Vf конечных вершин всегда четно. Учитывая, что по

п. (1) теоремы 2.1 выполнено неравенство F ≥ 6, получаем

V∞ +
1

2
Vf ≥ 4. (6)

Лемма 2.1. Пусть f — грань прямоугольного многогранника P ⊂ H3.
Если f треугольная, то она содержит не менее двух идеальных вершин, а если
f четырехугольная, то она содержит не менее одной идеальной вершины.

Доказательство. Напомним, что сумма внутренних углов α1, . . . , αn n-

угольника в H2 удовлетворяет неравенству
n∑
i=1

αi < (n− 2)π. При этом в конеч-

ной вершине грани f внутренний угол равен π/2, а в идеальной — равен 0. Если

f — треугольная грань с k конечными вершинами, то k · π2 < π, откуда k ≤ 1.

Если f — четырехугольная грань с k конечными вершинами, то k · π2 < 2π,

откуда k ≤ 3. �

Аткинсон [40] установил следующие верхнюю и нижнюю оценки на объ-

ем прямоугольного гиперболического многогранника, имеющего хотя бы одну

идеальную вершину.

Теорема 2.7 [40, теорема 2.4]. Пусть P — прямоугольный гиперболиче-
ский многогранник с V∞ ≥ 1 идеальными и Vf конечными вершинами. Тогда
имеют место следующие неравенства:

voct
8
· V∞ +

voct
32
· Vf −

voct
4
≤ vol(P) <

voct
2
· V∞ +

5vtet
8
· Vf −

voct
2
. (7)

В [50] верхняя оценка в (7) была улучшена для прямоугольных гиперболи-

ческих многогранников таких, что V∞ ≥ 1 и V∞ + VF ≥ 18. Пользуясь тем, что

voct = 4G, перепишем нижнюю оценку из (7) в следующем виде:

vol(P) ≥ G

8
(4V∞ + Vf − 8) . (8)
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§ 3. Доказательство основной теоремы

Перейдем к доказательству теоремы 1.1. Пусть P — прямоугольный много-

гранник конечного объема в H3. Обозначим через V∞ ≥ 0 число его идеальных

вершин, а через Vf ≥ 0 — число его конечных вершин. Выясним, при каких V∞
и Vf может иметь место неравенство vol(P ) ≤ G.

Лемма 3.1. Предположим, что для многогранника P имеет место один
из следующих случаев: (1) Vf = 0; (2) V∞ = 0; (3) V∞ = 1. Тогда vol(P) > G.

Доказательство. (1) В этом случае P является идеальным прямоуголь-

ным многогранником и по теореме 2.6 vol(P) ≥ voct = 4G > G.

(2) В этом случае P является компактным прямоугольным многогранни-

ком и по теореме 2.2 его объем ограничен снизу объемом прямоугольного доде-

каэдра, следовательно, vol(P) ≥ 4,306207 > G.

(3) Как показал Нонака [53, лемма 3.1], в этом случае F ≥ 12, а из равенства

(5) следует, что Vf ≥ 18. Тогда по формуле (8) получаем, что

vol(P) ≥ G

8
G(4 · 1 + 18− 8) =

14G

8
> G. �

0 1 2 3 4

1

2

3

4

5

6

7

8

V∞

Vf

Рис. 5. Замкнутая область �.

Лемма 3.2. Пусть � — замкнутая область, ограниченная четырехуголь-
ником с вершинами (2, 4), (3, 2), (3.5, 2) и (2, 8) (рис. 5). Пусть многогранник P
такой, что (V∞, Vf ) 6∈ �. Тогда vol(P) > G.

Доказательство. В силу леммы 3.1 и четности Vf можем считать, что

если vol(P) ≤ G, то P имеет V∞ ≥ 2 идеальных и Vf ≥ 2 конечных вершин.

В силу теоремы 2.1 величины V∞ и Vf удовлетворяют неравенству (6). А в

силу неравенства (8) для выполнения неравенства vol(P) ≤ G величины V∞ и

Vf должны удовлетворять неравенству 4V∞ + Vf ≤ 16. Система неравенств





V∞ ≥ 2,

Vf ≥ 2,

V∞ + 1
2Vf ≥ 4,

4V∞ + Vf ≤ 16

задает замкнутую область �, изображенную на рис. 5. �
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В силу лемм 3.1 и 3.2 неравенство vol(P) ≤ G может выполняться только

если (V∞, Vf ) ∈ {(2, 4), (2, 6), (2, 8), (3, 2), (3, 4)}. Каждый из пяти указанных

случаев мы рассмотрим ниже.

Для многогранника P определим величину W (P), равную суммарному

числу вершин по всем его граням. Поскольку в P каждая идеальная вершина

имеет валентность 4, а каждая конечная вершина — валентность 3, то

W (P) = W (V∞, Vf ) = 4V∞ + 3Vf . (9)

Лемма 3.3. Если число идеальных вершин в многограннике P равно
V∞ = 2, то vol(P) > G.

Доказательство. В силу леммы 3.2 для доказательства утверждения

осталось рассмотреть три случая: (V∞, Vf ) ∈ {(2, 4), (2, 6), (2, 8)}.
Cлучай 1: (V∞, Vf ) = (2, 4). Из формул (5) и (9) получаем, что F = 6 и

W (P) = 20. Обозначим через pn, n ≥ 3, число n-угольных граней в P. Тогда∑
n≥3

pn = F = 6 и
∑
n≥3

npn = W (P) = 20. Отметим, что число треугольных

граней удовлетворяет неравенству p3 ≤ 2. В самом деле, по лемме 2.1 каждая

треугольная грань должна содержать две идеальные вершины, которые при-

надлежат общему ребру. Так как V∞ = 2, то все треугольные грани должны

содержать одно и то же ребро. Значит, таких граней не более двух, а каждая

из оставшихся четырех граней имеет не менее чем четыре вершины. Получаем

оценку W (P) ≥ 3 ·2+4 ·4 = 22, что противоречит равенствуW (P) = 20. Таким

образом, случай 1 не реализуется.

Случай 2: (V∞, Vf ) = (2, 6). Из формул (5) и (9) получаем, что F = 7 и

W (P) = 4V∞ + 3Vf = 26. (10)

Рассмотрим все возможные варианты расположения двух идеальных вершин v1
и v2.

Подслучай 2.1. Предположим, что v1 и v2 не лежат в одной треугольной

грани. Тогда по лемме 2.1 в P нет треугольных граней. Значит, каждая грань

содержит не менее четырех вершин и W (P) ≥ 4F = 28, что противоречит

равенству (10).

Подслучай 2.2. Предположим, что v1 и v2 лежат в одной треугольной гра-

ни (и, следовательно, соединены ребром). Тогда, как и в случае 1, p3 ≤ 2. В силу

леммы 2.1 каждая четырехугольная грань содержит хотя бы одну идеальную

вершину. Поскольку v1 и v2 соединены ребром, то число граней, которые со-

держат хотя бы одну идеальную вершину (а значит, могут быть треугольными

или четырехугольными), не превосходит 6. Следовательно, имеется хотя бы

одна грань, которая не содержит идеальных вершин, и число вершин в этой

грани не менее 5. Получаем W (P) ≥ 3p3 + 4(6 − p3) + 5 · 1 = 29− p3 ≥ 27, что

противоречит (10). Таким образом, случай 2 не реализуется.

Случай 3: (V∞, Vf ) = (2, 8). Из формул (5) и (9) получаем, что F = 8 и

W (P) = 4V∞ + 3Vf = 32. (11)

Рассмотрим все возможные варианты расположения двух идеальных вершин v1
и v2.

Подслучай 3.1. Предположим, что обе идеальные вершины v1 и v2 ле-

жат в k-угольной грани f , k ≥ 4, но не соединены ребром. В силу леммы 2.1
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каждая четырехугольная грань должна содержать хотя бы одну идеальную вер-

шину. Следовательно, помимо грани f вершина v1 может содержаться не более

чем в трех четырехугольных гранях. Аналогичное свойство имеет место и для

вершины v2. Таким образом, P имеет k-угольную грань f и не более чем 6 дру-

гих четырехугольных граней. Следовательно, восьмая грань многогранника P
имеет только конечные вершины и число вершин в этой грани не менее 5. Таким

образом, W (P) ≥ k + 4 · 6 + 5 · 1 ≥ 33 с учетом k ≥ 4, что противоречит (11).

Подслучай 3.2. Предположим, что идеальные вершины v1 и v2 лежат в k-
угольной грани f , k ≥ 4, и соединены ребром e. Тогда грань f1, смежная грани

f по ребру e, также содержит бесконечные вершины v1 и v2, В силу леммы 2.1

каждая четырехугольная грань должна содержать хотя бы одну идеальную вер-

шину. Следовательно, помимо граней f и f1 вершина v1 может содержаться не

более чем в двух четырехугольных гранях. Аналогичное свойство имеет место

для вершины v2. Таким образом, в P число граней, имеющих хотя бы одну

идеальную вершину, не превосходит 6 (при этом f1 может оказаться треуголь-

ной). Значит, найдутся хотя бы две грани, у которых все вершины конечны, и

тем самым каждая их этих граней имеет не менее 5 вершин. Таким образом,

W (P) ≥ k + 3 + 4 · 4 + 5 · 2 ≥ 33 с учетом k ≥ 4, что противоречит (11).

Подслучай 3.3. Предположим, что идеальные вершины v1 и v2 соединены

ребром e и каждая из них лежит в двух треугольных гранях T1 и T2. Обозначим

через Q1, Q2, Q3, Q4 грани, смежные T1 или T2. Заметим, что Q1, Q2, Q3 и Q4

являются четырехугольниками, расположенными, как на рис. 6. В самом деле,

так как каждая из гранейQi содержит не более одной идеальной вершины, тоQi
имеет не менее 4 вершин. Предположим, что хотя бы одна из гранейQi является

k-угольной, где k ≥ 5. Поскольку идеальные вершины v1 и v2 соединены ребром

e, то число граней в P, которые содержат хотя бы одну идеальную вершину,

не превосходит 6. Следовательно, в P найдутся хотя бы две грани, у которых

все вершины являются конечными и число вершин в каждой грани не менее 5.

Таким образом,W (P) ≥ 3·2+4·3+k+5·2≥ 33 с учетом k ≥ 5, что противоречит

(11). Следовательно, все грани Q1, Q2, Q3 и Q4 являются четырехугольниками.

v1 v2

w1

w2

e
u4

u1

u2

u3

Q1 Q2

Q3Q4

T1

T2

Рис. 6. Два смежных треугольника, окруженные четырехугольниками.

Для i = 1, 2, 3, 4 обозначим через ui вершину, принадлежащую общему реб-

ру граней Qi и Qi+1, где индексы берутся по модулю 4, которая не лежит в T1

или T2. Через w1 и w2 обозначим конечные вершины треугольников T1 и T2

соответственно (см. рис. 6).

Рассмотрим следующие случаи.
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Q1

Q2 Q3

Q4

v1
q1

q2

q3

q4

Q′

1

Q′

2

Q′

3

Q′

4

(a)

v1

v2

(b)

Рис. 7. Многогранник P (2,8) и его диаграмма Шлегеля.

(i) Предположим, что вершины u1, u2, u3, u4 попарно различны. Тогда все

вершины, лежащие в гранях T1, T2, Q1, Q2, Q3 и Q4, имеют максимально воз-

можную валентность, а именно, конечные вершины имеют валентность 3, а

идеальные вершины — валентность 4. Следовательно, восемь вершин, изоб-

раженных на рис. 6, не соединены ребрами с оставшимися двумя вершинами

многогранника P, что противоречит связности одномерного остова многогран-

ника.

(ii) Предположим, что совпали две последовательные вершины ui и ui+1.

Тогда Qi+1 превращается в треугольник, что противоречит его четырехуголь-

ности, установленной выше.

(iii) Предположим, что совпали две непоследовательные вершины ui и ui+2,

а вершины ui+1 и ui+3 различны. Если i ∈ {1, 3}, то получим, что вершина

u1 = u3 смежна четырем вершинам w1, w2, u2 и u4, что противоречит ее трех-

валентности. Аналогично, если i ∈ {2, 4} то получим, что вершина u2 = u4

смежна четырем вершинам v1, v2, u1 и u3, что противоречит ее трехвалентно-

сти.

(iv) Предположим, что попарно совпали вершины ui и ui+2, а также вер-

шины ui+1 и ui+3. Тогда все вершины, лежащие в гранях T1, T2, Q1, Q2, Q3 и

Q4, имеют максимально возможную валентность, а именно, конечные вершины

{w1, w2, ui = ui+2, ui+1 = ui+3} являются трехвалентными, а идеальные верши-

ны {v1, v2} — четырехвалентными. Следовательно, указанные шесть вершин не

соединены ребрами с остальными четырьмя вершинами многогранника P, что

противоречит связности одномерного остова многогранника.

Подслучай 3.4. Предположим, что идеальные вершины v1 и v2 не лежат

в общей грани и в P имеется k-угольная грань, где k ≥ 5. По лемме 2.1

многогранник P не может иметь треугольные грани. Следовательно, W (P) ≥
5 + 7 · 4 = 33, что противоречит (11).

Подслучай 3.5. Предположим, что все восемь граней многогранника P
являются четырехугольными. Тогда каждая грань содержит ровно одну иде-

альную вершину.

Обозначим идеальные вершины в P через v1 и v2. Пусть Q1, Q2, Q3, Q4 —

четырехугольные грани, которые содержат v1 (см. рис. 7(a)). Обозначим через

qi, i = 1, . . . , 4, конечную вершину, общую для Qi и Qi+1, где индексы берутся

по модулю 4. Пусть Q′i — 4-угольная грань, имеющая общую вершину qi с гра-

нями Qi и Qi+1. Поскольку P имеет 16 ребер, то четыре ребра, по которым

пересекаются грани Q′i и Q′i+1, должны встретиться в идеальной вершине v2,
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C1 C2 C3 C4 C1

Рис. 8. Многогранник P (2,8) и тетраэдр �4,4,4.

которая на рис. 7(a) предполагается бесконечно удаленной. Таким образом, рас-

сматриваемому случаю соответствует единственный многогранник. Диаграмма

Шлегеля этого же многогранника приведена на рис. 7(b). Поскольку для этого

многогранника V∞ = 2 и Vf = 8, будем обозначать его через P(2,8). На рис. 8

приведено изображение многогранника P(2,8), где левый и правый края долж-

ны быть отождествлены вдоль AB1C1D. Из рисунка видно, что у P(2,8) имеется

диэдральная группа симметрий порядка восемь, порожденная отражениями в

плоскостях (AC3D) и (AB3D), пересекающихся по прямой AD.

При факторизации P(2,8) по этой диэдральной группе симметрий получим

тетраэдр �4,4,4 = ADB3C3, у которого двугранные углы при ребрах AD, AB3

и C3D равны π/4, а остальные углы равны π/2. Диаграмма Коксетера для

группы � (�4,4,4) приведена на рис. 3.

Поскольку vol(�4,4,4) = 1
2�(π4 ), то vol(P(2,8)) = 4�(π4 ) = 2G > G, что

завершает доказательство леммы 3.3. �

Лемма 3.4. Если число идеальных вершин в прямоугольном многогран-
нике P равно V∞ = 3, то vol(P) ≥ G. Более того, равенство достигается тогда
и только тогда, когда P является прямоугольной треугольной бипирамидой
P(3,2).

Доказательство. В силу леммы 3.2 осталось рассмотреть два случая:

(V∞, Vf ) = (3, 2) и (V∞, Vf ) = (3, 4). Чтобы следовать общему порядку пе-

речисления случаев, принадлежащих области �, будем называть эти случаи

четвертым и пятым.

Случай 4: (V∞, Vf ) = (3, 2). Из формул (5) и (9) получаем, что F = 6 и

W (P ) = 18. Предположим, что у P имеется хотя бы одна грань с не менее чем

четырьмя вершинами. Тогда W (P) ≥ 4 + 5 · 3 = 19, что приводит к противо-

речию. Следовательно, все грани многогранника P являются треугольниками.

Обозначим идеальные вершины многогранника P через v1, v2 и v3. Поскольку

каждая из шести треугольных граней должна содержать не менее двух идеаль-

ных вершин, то P должен иметь не менее трех ребер, соединяющих идеальные

вершины v1, v2 и v3. Значит, эти ребра образуют цикл длины три в одномер-

ном остове многогранника, а шесть треугольных граней попарно инцидентны

ребрам этого цикла. Следовательно, P совпадает с многогранником P(3,2),

приведенным на рис. 2(b), объем которого равен vol(P(3,2)) = 2�
(
π
4

)
= G.
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Случай 5: (V∞, Vf ) = (3, 4). Из формул (5) и (9) получаем, что F = 7 и

W (P) = 3Vf + 4V∞ = 24. (12)

Прежде всего заметим, что P имеет только треугольные и четырехугольные

грани. В самом деле, предположим от противного, что найдется такая k-
угольная грань f , что k ≥ 5. Заметим, что грань f имеет хотя бы 2 идеальные

вершины. В противном случае у f найдутся по крайней мере 3 ребра, которые

имеют только конечные вершины. Тогда три грани, смежные с f по этим реб-

рам, имеют не менее чем по 4 вершины. Следовательно,W (P ) ≥ k+4·3+3·3 ≥ 26

с учетом k ≥ 5, что противоречит (12). Однако если f имеет не менее двух иде-

альных вершин, то f имеет общее ребро или общую вершину с не менее, чем

семью гранями. Значит, число граней в P не менее восьми, что противоречит

условию F = 7. Таким образом, P содержит только треугольные и четырех-

угольные грани. Более того, из W (P) = 3p3 + 4p4 = 24 и p3 + p4 = 7 следует,

что p3 = 4 и p4 = 3.

Рассмотрим все возможные варианты расположения треугольных и четы-

рехугольных граней.

Подслучай 5.1. Предположим, что P имеет треугольную грань T0, ко-

торая содержит все три идеальные вершины v1, v2 и v3. Тогда оставшиеся тре-

угольные грани Ti, i = 1, 2, 3, смежны с T0 по ребрам (рис. 9(a)). Для i = 1, 2, 3
обозначим через Qi 4-угольную грань, которая имеет общую идеальную верши-

ну с треугольниками T0, Ti и Ti+1.

Q1

Q2

Q3

T0

T1

T2 T3

(a) (b)

Рис. 9. Многогранник P (3,4) и его диаграмма Шлегеля.

Поскольку P имеет 12 ребер, то три ребра, по которым пересекаются пары

граней Qi, Qi+1, должны иметь общую конечную вершину. На рис. 9(a) эта

вершина предполагается расположенной достаточно далеко. Диаграмма Шле-

геля этого же многогранника приведена на рис. 9(b). Поскольку многогранник

имеет 3 идеальных и 4 конечных вершины, будем обозначать его через P(3,4).

Чтобы найти объем vol(P(3,4)), заметим, что под действием группы диэдра

порядка 4, порожденной отражениями в гранях многогранника P(3,4), проходя-

щих через конечные вершины A, B, D и конечные вершины A, C, D, получим

прямоугольную четырехугольную антипризму A4 (рис. 10). Таким образом,

vol(P(3,4)) = 1
4 vol(A4). Используя формулу (3), получаем приближенное зна-

чение с точностью до шести знаков после запятой: vol(P(3,4)) = 1,505361 > G.

Далее будем предполагать, что P не имеет треугольной грани, которая со-

держит все три идеальные вершины. Напомним, что в рассматриваемом случае

P имеет только 4 треугольные и 3 четырехугольные грани.
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D

Рис. 10. Многогранник P (3,4) как 1
4
-долька антипризмы A4.

Q1Q3

Q2

T2

T1
T3

v1

(a)

Q1Q3

Q2

T2

T1
T3

v1

v2

v3

(b)

Рис. 11. Подслучай 5.2: грань Q1 с одной идеальной вершиной v1.

Подслучай 5.2. Предположим, что в P существует четырехугольная

грань Q1, которая имеет ровно одну идеальную вершину, скажем v1. Далее

будем следовать обозначениям на рис. 11(a).
Так как грани Q2 и Q3 содержат ребра, обе вершины которых конечные, то

Q2 и Q3 не могут быть треугольниками, следовательно, они являются четырех-

угольниками. Таким образом, {Q1, Q2, Q3} — полный список четырехугольных

граней в P , а оставшиеся четыре грани треугольные. Обозначим три из них

через T1, T2 и T3, как на рис. 11(a). Тогда в T1 имеется идеальная вершина

v2, смежная v1, а в T2 имеется идеальная вершина v3, смежная v1 (рис. 11(b)).

Поскольку T3 является треугольником, то вершины v2 и v3 соединены ребром.

Таким образом, у P имеется треугольная грань T3, которая содержит все три

идеальные вершины v1, v2, v3, и мы пришли к ситуации, которая уже была

изучена в подслучае 5.1.

Подслучай 5.3. Предположим, что в P не существует четырехуголь-

ной грани, которая имеет ровно одну идеальную вершину. Поскольку по лем-

ме 2.1 каждая четырехугольная грань должна содержать хотя бы одну идеаль-

ную вершину, то каждая четырехугольная грань в P имеет хотя бы по две

идеальные вершины. Обозначим через Q1, Q2 и Q3 четырехугольные грани

в P, а через k1 ≥ 2, k2 ≥ 2 и k3 ≥ 2 — число идеальных вершин в каж-

дой из них. Для многогранника P обозначим через WI(P) величину, рав-

ную суммарному числу идеальных вершин по всем граням многогранника. По-

скольку V∞ = 3 и каждая идеальная вершина имеет валентность 4, получаем

WI(P) = 4 · 3 = 12. С другой стороны, поскольку P помимо Q1, Q2, Q3 имеет

также четыре треугольные грани, каждая из которых содержит ровно по две
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идеальные вершины, то суммарное число идеальных вершин по всем граням

равно WI(P) = 2 · 4 + k1 + k2 + k3 ≥ 8 + 6 = 14; противоречие. �

Из лемм 3.1–3.4 следует, что объем произвольного прямоугольного гипер-

болического многогранника ограничен снизу константой Каталана G, причем

равенство достигается только для многогранника P(3,2). Таким образом, тео-

рема 1.1 доказана.

§ 4. Арифметичность прямоугольных групп Коксетера

Хорошо известно, что арифметичность дискретных групп � < Isom(H3)

конечного кообъема имеет важную роль при изучении гиперболических много-

образий и орбифолдов H3/� , см. [25]. Отметим здесь лишь следующее важное

свойство: по теореме Маргулиса (см., например, [25, теорема 10.3.5]) соизмери-

тель

Comm(� ) = {γ ∈ Isom(H3) | γ�γ−1 и � соизмеримы}
является дискретной группой тогда и только тогда, когда � неарифметическая.

Для дискретных групп движений пространства Hn, порожденных конеч-

ным число отражений и имеющих фундаментальный многогранник конечного

объема, необходимые и достаточные условия арифметичности были получены

Винбергом в 1967 г. (см. [5]). Поскольку предметом наших обсуждений являют-

ся прямоугольные группы Коксетера, напомним, что в [54] было отмечено, что

группа � (Ln), порожденная отражениями в гранях компактного прямоугольно-

го многогранника Лебелля, при n 6∈ {5, 6, 7, 8, 10, 12, 18} является неарифмети-

ческой, а затем в [35] было показано, что � (Ln) является арифметической тогда

и только тогда, когда n ∈ {5, 6, 8} (см. также [36]). С использованием крите-

рия Винберга в [55] установлено, что группа � (An), порожденная отражениями

в гранях прямоугольной идеальной антипризмы, является арифметической то-

гда и только тогда, когда n ∈ {3, 4}.
Известно [5], что условия арифметичности Винберга сильно упрощаются,

если фундаментальный многогранник P группы � (P ) не является компакт-

ным. А именно, пусть A(P ) = (aij)
N
i,j=1 — матрица Грама многогранника

P . Обозначим через Cyc(A) множество всех циклических произведений вида

ai1i2ai2i3 · · · aim−1imaimi1 . Тогда для арифметичности группы � (P ) необходимо

и достаточно, чтобы все циклические произведения из Cyc(2 ·A(P )) лежали в Z.
Арифметичность группы � (�3,4,4) была отмечена в [5]. Например, для группы

� (�4,4,4) удвоенная матрица Грама имеет вид

2 ·A(�4,4,4) =




2 −
√

2 0 0

−
√

2 2 −
√

2 0

0 −
√

2 2 −
√

2

0 0 −
√

2 2


 ,

что позволяет легко убедиться в арифметичности этой группы.

Хорошо известно, что � (�3,4,4) и � (�4,4,4) соизмеримы с группой Пикара

PSL(2,Z
√
−1) (см., например, [25, рис. 13.3]). Поскольку � (P(3,2)) соизмери-

ма с группой � (�3,4,4) (см. рис. 2), группа � (P(2,8)) соизмерима с группой

� (�4,4,4) (см. рис. 8), а группа � (P(3,4)) соизмерима с группой, порожденной

отражениями в гранях идеальной прямоугольной антипризмы A4 (см. рис. 10),

то все три группы � (P(3,2)), � (P(2,8)) и � (P(3,2)) являются арифметическими.

Зафиксируем этот факт в виде следующего замечания.
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Замечание 4.1. Прямоугольные гиперболические группы Коксетера

� (P(3,2)), � (P(3,4)) и � (P(2,8)) являются арифметическими.

§ 5. Открытые вопросы

В заключение сформулируем некоторые открытые вопросы.

Вопрос 5.1. Классифицировать арифметические прямоугольные гипербо-
лические группы Коксетера.

В [51, предложение 5] установлено, что антипризма An, n ≥ 3, является

минимальной по числу граней в классе прямоугольных идеальных гиперболи-

ческих многогранников, имеющих n-угольную грань. Естественно возникает

вопрос о многограннике с аналогичным свойством в классе компактных много-

гранников.

Вопрос 5.2. Верно ли, что многогранник Лёбелля L(n), n ≥ 5, является
минимальным по числу граней в классе кокомпактных прямоугольных гипер-
болических многогранников, имеющих хотя бы одну n-угольную грань.

В [56] была найдена минимальная по кообъему неарифметическая гипер-

болическая группа Коксетера, имеющая некомпактный фундаментальный мно-

гогранник. Естественно возникает вопрос о прямоугольной группе Коксетера

с аналогичным свойством. Напомним известные результаты для случаев ком-

пактных и идеальных прямоугольных многогранников Коксетера. Согласно [44]

многогранник Лёбелля L7 является четвертым по объему компактным прямо-

угольным многогранником в H3 с vol(L7) = 7,563249. В [35] было показано,

что группы отражений, соответствующие трем предшествующим многогранни-

кам, являются арифметическими, а � (L7) неарифметическая. Следователь-

но, � (L7) является компактной неарифметической прямоугольной гиперболи-

ческой группой Коксетера минимального объема. Согласно [57] идеальная ан-

типризма A5 является четвертым по объему идеальным прямоугольным мно-

гогранником в H3 с vol(A5) = 8,137885. В [55] было показано, что два мно-

гогранника наименьшего объема A3 и A4 являются арифметическими. Более

того, легко заметить, что третий многогранник наименьшего объема получается

склеиванием двух копий A3 по одной из его граней, поэтому он также арифме-

тический. Следовательно, � (A5) является идеальной неарифметической прямо-

угольной гиперболической группой Коксетера минимального объема. Случай,

когда прямоугольный многогранник Коксетера имеет как конечные, так и иде-

альные вершины, остается открытым.

Вопрос 5.3. Какая неарифметическая прямоугольная гиперболическая
группа Коксетера в H3 имеет наименьший кообъем?

Напомним также вопрос, сформулированный в [13, с. 66].

Вопрос 5.4. Верно ли, что наименьшее число гиперграней в компактном
прямоугольном многограннике в H4 равно 120?
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Geom. Topol.. 2025. V. 25, N 4. P. 2281–2295.

37. Андреев Е. М. О выпуклых многогранниках конечного объема в пространстве Лобачев-
ского // Мат. сб.. 1970. Т. 83, № 2. С. 256–260.

38. Андреев Е. М. О выпуклых многогранниках в пространстве Лобачевского // Мат. сб..
1970. Т. 81, № 3. С. 456–478.

39. Roeder R. K. W., Hubbard J. H., Dunbar W. D. Andreev’s theorem on hyperbolic polyhedra //
Ann. Inst. Fourier (Grenoble). 2007. V. 57. P. 825–882.

40. Atkinson C. Volume estimates for equiangular hyperbolic Coxeter polyhedra // Algebraic &
Geometric Topology. 2009. V. 9. P. 1225–1254.

41. Kellerhals R. On the volume of hyperbolic polyhedra // Math. Ann.. 1989. V. 285. P. 541–569.

42. Погорелов А. В. О правильном разбиении пространства Лобачевского // Мат. заметки.
1967. Т. 1, № 1. С. 3–8.

43. Веснин А. Ю. Прямоугольные многогранники и трехмерные гиперболические многооб-
разия // Успехи мат. наук. 2017. Т. 72, № 2. С. 147–190.

44. Inoue T. Organizing volumes of right-angled hyperbolic polyhedra // Algebraic & Geometric
Topology. 2008. V. 8. P. 1523–1565.

45. Веснин А. Ю. Объемы трехмерных многообразий Лебелля // Мат. заметки. 1998. Т. 64,
№ 1. С. 17–23.

46. Matveev S., Pertonio C., Vesnin A. Two-sided asymptotic bounds for the complexity of some
closed hyperbolic three-manifolds // J. Aust. Math. Soc.. 2009. V. 86. P. 205–219.

47. Inoue T. Exploring the list of smallest right-angled hyperbolic polyhedra // Experimental
Mathematics. 2022. V. 31, N 1. P. 165–183.

48. Heard D. Orb. A computer program for creating and studying 3-orbifolds. Available at
http://www.ms.unimelb.edu.au/ snap/orb.html.

49. Egorov A., Vesnin A. Volume estimates for right-angled hyperbolic polyhedra // Rend. Istit.
Mat. Univ. Trieste. 2020. V. 52. P. 565–576.

50. Александров С. А., Богачев Н. В., Веснин А. Ю., Егоров А. А. Об объемах гиперболи-
ческих прямоугольных многогранников // Мат. сб.. 2023. Т. 214, № 2. С. 3–22.

51. Kolpakov A. On the optimality of the ideal right-angled 24-cell // Algebraic & Geometric
Topology. 2012. V. 12. P. 1941–1960.

52. Thurston W. P. The geometry and topology of 3-manifolds. Princeton, NJ: Princeton Univ.
Notes, 1980.

53. Nonaka J. The number of cusps of right-angled polyhedra in hyperbolic spaces // Tokyo J.
Math.. 2015. V. 38, N 2. P. 539–560.

54. Веснин А. Ю. Трехмерные гиперболические многообразия с общим фундаментальным
многогранником // Мат. заметки. 1991. Т. 49, № 6. С. 29–32.

55. Kellerhals R. A polyhedral approach to the arithmetic and geometry of hyperbolic link com-
plements // J. Knot Theory and Its Ramifications. 2023. V. 32. 2350052 (24 pp.).

56. Drewitz S. T., Kellerhals R. The non-arithmetic cusped hyperbolic 3-orbifold of minimal
volume // Trans. Am. Math.. 2023. V. 376. P. 3819–3866.

57. Веснин А. Ю., Егоров А. А. Идеальные прямоугольные многогранники в пространстве



1056 А. Ю. Веснин, А. А. Егоров

Лобачевского // Чебышевский сб.. 2020. Т. 21, № 2. С. 65–83.

Поступила в редакцию 4 августа 2025 г.

После доработки 4 августа 2025 г.

Принята к публикации 11 сентября 2025 г.

Веснин Андрей Юрьевич (ORCID 0000-00001-7553-1269)
Егоров Андрей Александрович (ORCID 0009-0007-8795-8148)
Институт математики им. С. Л. Соболева СО РАН,

пр. Академика Коптюга, 4, Новосибирск 630090
vesnin@math.nsc.ru, a.egorov2@g.nsu.ru



Сибирский математический журнал
Ноябрь—декабрь, 2025. Том 66, № 6

УДК 517.98

ДВА ПРИМЕРА КВАЗИПЛОТНЫХ

ВЕКТОРНЫХ ПОДПРОСТРАНСТВ RN

А. Е. Гутман, И. А. Емельяненков
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Вработе [1] былоинициировано исследование вопроса о том, в какиххаусдор-

фовых локально выпуклых пространствах все архимедовы конусы замкнуты.

(Такие пространства приятны тем, что при любом определении в них архимедо-

ва векторного порядка линейные неравенства выдерживают переход к пределам

сетей.) Конечномерные пространства, как хорошо известно, обладают этим свой-

ством (см., например, [2, 3.4]). В [1] было показано, что пространства, имеющие

несчетную размерность, этим свойством не обладают, а для счетномерных про-

странств вопрос был оставлен открытым.

В работе [3] было введено понятие квазиплотности и получено исчерпыва-

ющее описание счетномерных хаусдорфовых локально выпуклых пространств,

в которых все архимедовы конусы замкнуты. Таковыми оказались в точно-

сти те счетномерные пространства X , у которых топологически сопряженное

пространство X ′ квазиплотно в алгебраически сопряженном пространстве X#,

снабженном слабой∗ топологией.

Благодаря работе [3] квазиплотные пространства стали объектом тщатель-

ного изучения, а поскольку в счетномерном случае пространство X# линейно

и топологически изоморфно RN, класс исследуемых объектов естественным об-

разом сузился до квазиплотных векторных подпространств RN. В работе [4]

такие подпространства были охарактеризованы в терминах их связи с проек-

тивными параллелотопами и автоморфизмами. Эти результаты в значительной

степени прояснили устройство квазиплотных подпространств RN с геометриче-

ской и алгебраической точек зрения, но не привели к немедленному обнаруже-

нию новых примеров и сохранили открытым вопрос о совпадении класса таких

пространств с другими классами, допускающими существенно более простые

определения.

Работа выполнена в рамках государственного задания ИМ СО РАН (проект №FWNF–
2022–0004).

c© 2025 Гутман А. Е., Емельяненков И. А.
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В данной заметке в теоремах 1 и 2 построены примеры, подтверждающие

сформулированную в [3, 9.8] гипотезу о несовпадении трех видов квазиплотных

векторных подпространств RN — экспоненциально плотных, декартово плотных

и рекурсивно плотных.

Символ N обозначает множество натуральных чисел {1, 2, . . .}. Множества

рациональных и вещественных чисел обозначаются символами Q и R. Век-

торное пространство RN числовых последовательностей s : N → R снабжается

тихоновской топологией (также называемой топологией поточечной сходимо-

сти). Кортежи x = (x(1), . . . , x(n)) ∈ Rn, где n ∈ N, считаются функциями

x : {1, . . . , n} → R. Линейный оператор πn : RN → Rn определяется формулой

πns = s
∣∣{1,...,n} = (s(1), . . . , s(n)). (1)

Условимся использовать обозначение (1) не только для последовательностей

s ∈ RN, но и для кортежей s ∈ Rm, где m > n.

Определение 1 [3, 4.1]. Квазивнутренность qiS подмножества S ло-

кально выпуклого пространства X определяется как совокупность элементов

x ∈ S, для которых клин

R+(S − x) = {λ(s− x) : s ∈ S, λ ∈ R, λ > 0}
плотен в X .

Предложение 1 [3, 4.13]. Для любого выпуклого множества S ⊆ RN спра-
ведливо равенство

qiS = {s ∈ S : πns ∈ intπnS для всех n ∈ N},
где intπnS — внутренность πnS в пространстве Rn.

Определение 2 [3]. Рассмотрим следующие свойства множества Y ⊆ RN:
(a) Y содержит степень �N для некоторого плотного подмножества � ⊆ R;

(b) Y содержит произведение
∏
n∈N

�n для некоторой последовательности

плотных подмножеств �n ⊆ R (n ∈ N);

(c) Y содержит некоторое подмножество P ⊆ RN, удовлетворяющее следу-

ющим трем условиям:

(i) если s ∈ RN и πns ∈ πnP для всех n ∈ N, то s ∈ P ;

(ii) множество {p(1) : p ∈ P} плотно в R;

(iii) для всех n ∈ N и q ∈ P множество {p(n + 1) : p ∈ P, πnp = πnq}
плотно в R;

(d) Y имеет непустое пересечение с любым замкнутым ограниченным вы-

пуклым подмножеством RN, имеющим непустую квазивнутренность.

Множество Y , обладающее свойством (a), (b), (c), (d), называется соответствен-

но экспоненциально плотным, декартово плотным, рекурсивно плотным и

квазиплотным (см. [3, 6.2, 8.9, 9.8]).

Предложение 2 [3, 8.9]. Для любого подмножества Y ⊆ RN имеют место
следующие импликации:

(a)⇒ (b)⇒ (c)⇒ (d).

Замечание 1. В [3, 6.4] доказано, что каждое из условий (a)–(d) влечет

плотность Y в RN относительно тихоновской топологии. Там же приведен при-

мер плотного векторного подпространства Y ⊆ RN, не обладающего свойства-

ми (a)–(d).
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До недавнего времени список примеров собственных квазиплотных вектор-

ных подпространств RN включал лишь экспоненциально плотные пространства

linQN, linNN и их образы при проективных автоморфизмах (см. [3, 8.10; 4, 4.2]).

(Здесь и ниже linS — линейная оболочка множества S в векторном простран-

стве RN.) Для векторных подпространств Y ⊆ RN также оставался открытым

вопрос об эквивалентности условий (a)–(d) (см. [3, 9.8]). Приведенные ниже

теоремы частично проясняют этот вопрос.

Теорема 1. Условия (a) и (b) не эквивалентны для векторных подпро-
странств Y ⊆ RN.

Доказательство. Пусть (tn)n∈N — последовательность попарно различ-

ных алгебраически независимых над Q вещественных чисел. Для каждого

n ∈ N рассмотрим плотное подмножество

Q tn = {qtn : q ∈ Q} ⊆ R
и докажем, что декартово плотное векторное подпространство

Y = lin
∏

n∈N
Q tn ⊆ RN

не является экспоненциально плотным.

Достаточно показать, что Y не содержит ни одной ненулевой постоянной

последовательности. Допустим, это не так. Тогда (1, 1, . . . ) ∈ Y , а значит,

найдутся m ∈ N, x ∈ Rm и последовательность (qn)n∈N в Qm такие, что для

каждого n ∈ N справедливо равенство
m∑

i=1

x(i)qn(i)tn = 1

или, что то же самое, 〈qn |x〉 = t−1
n , где 〈u | v〉 =

m∑
i=1

u(i)v(i) для u, v ∈ Rm.

Запишем систему уравнений




〈q1 |x〉 = t−1
1 ,

. . . ,

〈qm |x〉 = t−1
m

в виде Qx = y, где матрица Q ∈ Qm×m состоит из элементов Qij = qi(j),

а вектор y ∈ Rm полагается равным
(
t−1
1 , . . . , t−1

m

)
.

Заметим, что матрица Q обратима. Действительно, в противном случае

транспонированная матрица QT удовлетворяет равенству QTq = 0 для некото-

рого ненулевого вектора q ∈ Qm, и тогда
m∑

i=1

q(i)t−1
i = 〈q | y〉 = 〈q |Qx〉 = 〈QTq |x〉 = 0,

что противоречит алгебраической независимости чисел t1, . . . , tm над Q.

Наконец, используя обратимость матрицы Q и полагая

p = (Q−1)
T
qm+1 ∈ Qm,

заключаем, что
m∑

i=1

p(i)t−1
i = 〈(Q−1)

T
qm+1 | y〉 = 〈qm+1 |Q−1y〉 = 〈qm+1 |x〉 = t−1

m+1

вопреки алгебраической независимости чисел t1, . . . , tm, tm+1 над Q. �
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Теорема 2. Условия (b) и (c) не эквивалентны для векторных подпро-
странств Y ⊆ RN.

Доказательство. Введем обозначение Q◦ = Q\{0} и рассмотрим какую-

либо инъективную функцию

t :
⋃

n∈N
Qn◦ → R,

образ которой является алгебраически независимым над Q подмножеством R.

Для произвольной последовательности ρ ∈ QN◦ определим ρ̂ ∈ RN формулой

ρ̂ = (ρ(1), ρ(2) t(π1ρ), ρ(3) t(π2ρ), . . . , ρ(n) t(πn−1ρ), . . .)

и покажем, что множество

P =
{
ρ̂ : ρ ∈ QN◦

}

удовлетворяет условиям (i)–(iii).

Прежде всего заметим, что для любых ρ, σ ∈ QN◦ равенства ρ = σ и ρ̂ = σ̂
эквивалентны и, более того,

πnρ = πnσ ⇔ πnρ̂ = πnσ̂ (2)

для каждого n ∈ N. Действительно, импликация «⇒» тривиальна, так как

для всякой функции ρ ∈ QN◦ кортеж πnρ̂ однозначно определяется числами

ρ(1), . . . , ρ(n) и значениями функции t на кортежах, составленных из этих чи-

сел. Импликацию «⇐» несложно установить индукцией по n. Для n = 1 она

обеспечивается равенствами ρ̂(1) = ρ(1) и σ̂(1) = σ(1). Если же эта импликация

справедлива для n и имеет место равенство πn+1ρ̂ = πn+1σ̂, то в силу πnρ̂ = πnσ̂
имеем πnρ = πnσ, а недостающее равенство ρ(n+ 1) = σ(n+ 1) следует из соот-

ношений

ρ(n+ 1) t(πnρ) = ρ̂(n+ 1) = σ̂(n+ 1) = σ(n+ 1) t(πnσ) = σ(n+ 1) t(πnρ)

и отсутствия нуля в образе функции t.

(i) Пусть s ∈ RN и пусть πns ∈ πnP для всех n ∈ N, т. е. имеется такая

последовательность (ρn)n∈N элементов QN◦ , что πns = πnρ̂n для всех n ∈ N. По-

кажем, что s ∈ P .

Определим последовательность ρ∈QN◦ , полагая ρ(n)= ρn(n) для всех n∈N.

Индукцией по n установим равенство

πnρ̂n = πnρ̂ (3)

для всех n ∈ N. Действительно, для n = 1 равенство (3) сразу вытекает из (2).

Если же (3) справедливо для n, то

πnρ̂n+1 = πnπn+1ρ̂n+1 = πnπn+1s = πns = πnρ̂n = πnρ̂,

откуда в силу (2) следует соотношение πnρn+1 = πnρ, обеспечивающее недоста-

ющее равенство

ρ̂n+1(n+ 1) = ρn+1(n+ 1) t(πnρn+1) = ρ(n+ 1) t(πnρ) = ρ̂(n+ 1).

Благодаря (3) для всех n ∈ N имеем

s(n) = (πns)(n) = (πnρ̂n)(n) = (πnρ̂)(n) = ρ̂(n),

т. е. s = ρ̂ и тем самым s ∈ P .
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(ii) Множество

{p(1) : p ∈ P} =
{
ρ̂(1) : ρ ∈ QN◦

}

совпадает с Q◦ и поэтому плотно в R.

(iii) С учетом (2) для любых n ∈ N и σ ∈ QN◦ множество

{p(n+ 1) : p ∈ P, πnp = πnσ̂} =
{
ρ̂(n+ 1) : ρ ∈ QN◦ , πnρ̂ = πnσ̂

}

=
{
ρ(n+ 1) t(πnρ) : ρ ∈ QN◦ , πnρ = πnσ

}

совпадает с Q◦ t(πnσ) и поэтому плотно в R.

Таким образом, векторное подпространство

Y = linP ⊆ RN

рекурсивно плотно. Покажем, что оно не является декартово плотным.

Предположим вопреки доказываемому, что Y удовлетворяет условию (b).

В этом случае существуют последовательности y, z ∈ Y , для которых y(1) 6= z(1)

и y(n) = z(n) при n > 1, а значит,

e1 = (1, 0, 0, . . . ) =
1

y(1)− z(1)
(y − z) ∈ Y = linP.

Следовательно, найдутся n ∈ N, ненулевые числа λ1, . . . , λn ∈ R и попарно раз-

личные последовательности ρ1, . . . , ρn ∈ QN◦ такие, что

n∑

i=1

λiρ̂i = e1.

Пусть I — множество всех пар (i, j), где i, j ∈ {1, . . . , n} и i 6= j. Учитывая,

что ρ1, . . . , ρn попарно различны, рассмотрим натуральные числа

mij = min{k ∈ N : ρi(k) 6= ρj(k)}, (i, j) ∈ I,

и положим

m = max{mij : (i, j) ∈ I}.
Тогда πkρi 6= πkρj при k > m и (i, j) ∈ I. В частности, числа t(πkρi) различны

для различных пар (k, i) таких, что k > m и i ∈ {1, . . . , n}.
Поскольку при k > m справедливы соотношения

n∑

i=1

λi ρi(k) t(πk−1ρi) =

n∑

i=1

λi ρ̂i(k) = e1(k) = 0,

имеет место система равенств




n∑

i=1

λi ρi(m+ 1) t(πmρi) = 0,

. . . ,
n∑

i=1

λi ρi(m+n) t(πm+n−1ρi) = 0.

(4)
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Рассмотрим матрицу

M =




ρ1(m+1) t(πmρ1) ρ2(m+1) t(πmρ2) . . . ρn(m+1) t(πmρn)

ρ1(m+2) t(πm+1ρ1) ρ2(m+2) t(πm+1ρ2) . . . ρn(m+2) t(πm+1ρn)

. . . . . . . . . . . .

ρ1(m+n) t(πm+n−1ρ1) ρ2(m+n) t(πm+n−1ρ2) . . . ρn(m+n) t(πm+n−1ρn)




размера n× n. Ее определитель |M | представляет собой значение однородного

многочлена степени n от попарно различных алгебраически независимых над Q
чисел t(πm+j−1ρi), i, j ∈ {1, . . . , n}, причем коэффициенты этого многочлена

рациональны и отличны от нуля, так как с точностью до знака они являются

произведениями чисел вида ρi(m + j) ∈ Q◦. Следовательно, |M | 6= 0. С дру-

гой стороны, система (4) означает равенство Mx = 0 для ненулевого вектора

x = (λ1, . . . , λn). �

Замечание 2. Вопрос об эквивалентности условий (c) и (d) для векторных

подпространств Y ⊆ RN на данный момент остается открытым.
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Памяти Семёна Самсоновича Кутателадзе

1. Введение

В настоящее время имеется большое число работ, посвященных изучению

линейных уравнений с частными производными следующего вида:

L0(Dx)D
l
tu+

l−1∑

k=0

Ll−k(Dx)D
k
t u = f(t, x). (1.1)

Такие уравнения возникают при решении многих прикладных задач гидроди-

намики, физики атмосферы, физики плазмы, теории упругости и др. (см.,

например, монографии [1, 2] и имеющуюся там библиографию). В литерату-

ре уравнения вида (1.1) зачастую называются уравнениями соболевского типа,

поскольку первое глубокое исследование свойств решений уравнений, не разре-

шенных относительно старшей производной, проводилось в работах С. Л. Со-

болева (см. [3, с. 333-463]). Исследования С. Л. Соболева были продолжены его

учениками Р. А. Александряном, Н. Н. Ваханией, Г. В. Вирабяном, А. А. Дези-

ным, Р. Т. Денчевым, Т. И. Зеленяком, В. И. Лебедевым, В. Н. Масленниковой,

С. Г. Овсепяном и др.

Монография [1] является первой монографией, целиком посвященной тео-

рии краевых задач для уравнений вида (1.1). В этой монографии была введена

некоторая классификация таких уравнений в случае, когда оператор L0(Dx)

являлся квазиэллиптическим оператором. В частности, был определен класс

Работа выполнена в рамках государственного задания Института математики им. С. Л. Со-
болева СО РАН (проект № FWNF-2022-0008).

c© 2025 Демиденко Г. В., Ма C.



1064 Г. В. Демиденко, C. Ма

псевдогиперболических уравнений (см. [1, гл. 2]). В этот класс входят много-

мерное уравнение Власова — Релея — Бишопа [4–7]

(αI − β�)D2
t u− γ�u+ σ�2u = f(t, x) (1.2)

(� — оператор Лапласа по x ∈ Rn), уравнение Гальперна [8]

�D2
t u−

n∑

k=1

akD
4
xk
u = f(t, x), ak > 0, k = 1, . . . , n, (1.3)

обобщенное уравнение Буссинеска [9–11]

(a0I+a1�+a2�
2)D2

tu+(b0I+b1�+b2�
2)Dtu+(d0I+d1�+d2�

2+d3�
3)u = f(t, x),

(1.4)

где

a2
1 − 4a0a2 < 0, a2b0 ≥ 0, a2b1 ≤ 0, a2b2 ≥ 0,

a2d0 ≥ 0, a2d1 ≤ 0, a2d2 ≥ 0, a2d3 < 0.

Для некоторых классов уравнений, не разрешенных относительно старшей

производной, известен ряд важных результатов по теории краевых задач (см.,

например, монографии [1, 2, 12]). Для класса псевдогиперболических уравнений

достаточно хорошо изучена задача Коши в случае с постоянными коэффици-

ентами (см., например, [13–16]), в случае с переменными коэффициентами для

таких уравнений в литературе имеется только один результат по энергетиче-

ским оценкам [17], а по теории краевых задач имеются лишь результаты для

конкретных уравнений (см., например, [11, 18–22]).

2. Основные результаты

В настоящей работе мы продолжаем изучение свойств псевдогиперболи-

ческих операторов с переменными коэффициентами. Рассматривается класс

дифференциальных операторов шестого порядка, не разрешенных относитель-

но старшей производной,

L (x;Dt, Dx) = L 1(Dt, Dx) + L 2(x;Dt, Dx), t ∈ R, x ∈ Rn, (2.1)

где L 1(Dt, Dx) — однородный строго псевдогиперболический оператор с посто-

янными вещественными коэффициентами следующего вида:

L 1(Dt, Dx) = L1
0(Dx)D

2
t + L1

1(Dx)Dt + L1
2(Dx), (2.2)

L1
0(Dx) =

∑

|β|=4

a0
βD

β
x , L1

1(Dx) =
∑

|β|=5

a1
βD

β
x , L1

2(Dx) =
∑

|β|=6

a2
βD

β
x , (2.3)

при этом L1
0(Dx) — эллиптический оператор и его символ удовлетворяет оценке

q2|ξ|4 ≥ L1
0(iξ) ≡

∑

|β|=4

a0
βξ
β ≥ q1|ξ|4, ξ ∈ Rn, (2.4)

где q2 ≥ q1 > 0 — постоянные. Будем предполагать, что

−
(
L1

1(iξ)
)2

+ 4L1
2(iξ)L

1
0(iξ) > 0, ξ ∈ Rn\{0}. (2.5)

Отметим, что из (2.5) в силу однородности полиномов L1
0(iξ), L

1
1(iξ), L

1
2(iξ)

вытекает неравенство

p2|ξ|10 ≥ d(ξ) ≡ −
(
L1

1(iξ)
)2

+ 4L1
2(iξ)L

1
0(iξ) ≥ p1|ξ|10, ξ ∈ Rn, (2.6)

где p2 ≥ p1 > 0 — постоянные.

Согласно определению псевдогиперболических операторов [1, гл. 2] опе-

ратор L 1(Dt, Dx) действительно является строго псевдогиперболическим, по-

скольку выполнены следующие условия:
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Условие 1. Символ L 1(iη, iξ) оператора L 1(Dt, Dx) однороден относи-
тельно вектора (α0, α1, . . . , αn) = (1/6, 1/6, . . . , 1/6).

Условие 2. Оператор L1
0(Dx) эллиптический.

Условие 3. Уравнение

(iη)2 +
L1

1(iξ)

L1
0(iξ)

(iη) +
L1

2(iξ)

L1
0(iξ)

= 0, ξ ∈ Rn\{0}, (2.7)

в силу (2.4), (2.5) имеет только вещественные и различные корни η1(ξ), η2(ξ).

Второй дифференциальный оператор в (2.1) с вещественнозначными пере-

менными коэффициентами L 2(x;Dt, Dx) имеет вид

L 2(x;Dt, Dx) =
(
L2

0(x;Dx) + (a(x) + a)I
)
D2
t + L2

1(x;Dx)Dt + L2
2(x;Dx), (2.8)

где

L2
0(x;Dx) =

∑

|β|=4

a0
β(x)D

β
x , L2

1(x;Dx) =
∑

|β|=5

a1
β(x)D

β
x ,

L2
2(x;Dx) =

∑

|β|=6

a2
β(x)D

β
x ,

(2.9)

при этом

a(x), akβ(x) ∈ C∞0 (Rn), a(x) ≈ 0, akβ(x) ≈ 0, k = 0, 1, 2,

a > 0 — константа.

Оператор L 2(x;Dt, Dx) можно рассматривать как возмущение псевдоги-

перболического оператора L 1(Dt, Dx).

Рассматриваемый оператор (2.1)–(2.3), (2.8), (2.9) можно переписать в сле-

дующем виде:

L (x;Dt, Dx) = (L0(x;Dx) + (a(x) + a)I)D2
t + L1(x;Dx)Dt + L2(x;Dx), (2.10)

где

L0(x;Dx) =
∑

|β|=4

(
a0
β + a0

β(x)
)
Dβ
x , L1(x;Dx) =

∑

|β|=5

(
a1
β + a1

β(x)
)
Dβ
x ,

L2(x;Dx) =
∑

|β|=6

(
a2
β + a2

β(x)
)
Dβ
x .

Очевидно, при достаточно малых akβ(x) ≈ 0 оператор L0(x;Dx) является эллип-

тическим.

Наша цель — получение энергетических оценок для строго псевдогипербо-

лических операторов (2.10) с переменными коэффициентами.

В дальнейшем символом W 2,6
2,γ (Rn+1), γ > 0, будем обозначать соболевское

пространство с экспоненциальным весом e−γt, т. е. функция u(t, x) принадле-

жит W 2,6
2,γ (Rn+1), если

uγ(t, x) = e−γtu(t, x) ∈ W 2,6
2 (Rn+1).

По определению положим∥∥u(t, x),W 2,6
2,γ (Rn+1)

∥∥ =
∥∥uγ(t, x),W 2,6

2 (Rn+1)
∥∥.

Символом ûγ(η, ξ) будем обозначать преобразование Фурье функции

uγ(t, x) ∈ L2(R
n+1).

Отметим, что из [1, 14] вытекает энергетическая оценка для псевдогипербо-

лического оператора (L 1(Dt, Dx)+aI), a ≥ 0, с постоянными коэффициентами.

А именно, справедлива
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Теорема 1. Для любой функции u(t, x) ∈W 2,6
2,γ (Rn+1), γ > 0, такой, что

D2
tD

β
xu(t, x) ∈ L2,γ(R

n+1), |β| = 4, (2.11)

имеет место оценка

γ‖(|ξ|4 + a)(|η|+ γ + |ξ|)ûγ(η, ξ), L2(R
n+1)‖

≤ c‖(L 1(Dt, Dx) + aI)u(t, x), L2,γ(R
n+1)‖ (2.12)

с константой c > 0, не зависящей от u(t, x).

В настоящей работе аналогичный результат будет доказан для операторов

вида (2.10) с переменными коэффициентами.

Теорема 2. Существует γ0 > 0 такое, что если коэффициенты akβ(x) и

a(x) оператора (2.10) вместе со своими производными до пятого порядка вклю-

чительно достаточно малы, то для любой функции u(t, x) ∈ W 2,6
2,γ (Rn+1), γ > γ0,

такой, что выполнено (2.11), имеет место оценка

γ‖(|ξ|4 + a)(|η|+ γ + |ξ|)ûγ(η, ξ), L2(R
n+1)‖ ≤ c‖L (x;Dt, Dx)u(t, x), L2,γ(R

n+1)‖
(2.13)

с константой c > 0, не зависящей от u(t, x).

Оценки (2.12), (2.13) являются аналогами энергетических неравенств для

строго гиперболических операторов [23, 24].

Отметим, что энергетические оценки вида (2.13) можно использовать для

изучения корректности задачи Коши для строго псевдогиперболических урав-

нений с переменными коэффициентами

L (x;Dt, Dx) = f(t, x), t > 0, x ∈ Rn, u|t=0 = ϕ1(x), Dtu|t=0 = ϕ2(x) (2.14)

в весовом соболевском пространстве W 2,6
2,γ (Rn+1), γ > 0. В частности, из теоре-

мы 2 вытекает теорема о единственности решения задачи (2.14).

Теорема 3. Пусть выполнены условия теоремы 2, тогда задача Коши
(2.14) не может иметь более одного решения u(t, x) ∈ W 2,6

2,γ (Rn+1), γ > γ0, удо-

влетворяющего (2.11).

3. Энергетические оценки для операторов

с переменными коэффициентами

В этом разделе докажем энергетические оценки (2.13) для строго псевдо-

гиперболических операторов (2.10).

Будем предполагать, что переменные коэффициенты a(x) и akβ(x) опера-

тора (2.10) вместе со своими производными до пятого порядка включительно

достаточно малы. Их малость будет определена в дальнейшем.

В [1, гл. 2] при получении энергетических оценок для строго псевдогипер-

болических операторов с постоянными коэффициентами вида

L(Dt, Dx) = L0(Dx)D
l
t +

l−1∑

k=0

Ll−k(Dx)D
k
t u = f(t, x), (3.1)

где L0(Dx) — квазиэллиптический оператор, использовался аналог схемы Лере

[24], предложенной для изучения корректности задачи Коши для строго гипер-

болических уравнений. В частности, в [1, гл. 2] рассматривался полином

M(iη + γ, iξ) = − Im(L(iη + γ, iξ)DηL(iη + γ, iξ)), (3.2)
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где L(iη, iξ) — символ строго псевдогиперболического оператора (3.1). В [1]

предполагалось, что символ однороден относительно некоторого вектора

(α0, α1, . . . , αn), α0 > 0, 1/αj ∈ N, j = 1, . . . , n,

и в этом случае была получена оценка

M(iη + γ, iξ) ≥ c1γ〈ξ〉2(1−lα0)(|iη + γ|+ 〈ξ〉α0 )2(l−1), γ > 0,

(η, ξ) ∈ Rn+1, 〈ξ〉2 =

n∑

j=1

ξ
2/αj

j , c1 = const > 0.

Из этого неравенства вытекает энергетическая оценка для оператора (3.1)

γ‖〈ξ〉(1−lα0)(|iη + γ|+ 〈ξ〉α0)(l−1)ûγ(η, ξ), L2(R
n+1)‖

≤ c2‖L(Dt, Dx)u(t, x), L2,γ(R
n+1)‖, γ > 0,

с константой c2 > 0, не зависящей от u(t, x) ∈ C∞0 (Rn+1). Отсюда, в частности,

следует неравенство (2.12) при a = 0.

В работе [17] такой подход был использован для получения энергетической

оценки для одного частного случая строго псевдогиперболического оператора

четвертого порядка с переменными коэффициентами следующего вида:

L̂(x;Dt, Dx) = (L̂0(Dx) + aI)D2
t + L̂1(x;Dx)Dt + L̂2(x;Dx), (3.3)

где

L̂0(Dx) =
∑

|β|=2

a0
βD

β
x , L̂1(x;Dx) =

∑

|β|=3

(
a1
β + a1

β(x)
)
Dβ
x ,

L̂2(x;Dx) =
∑

|β|=4

(
a2
β + a2

β(x)
)
Dβ
x , akβ(x) ∈ C∞0 (Rn), akβ(x) ≈ 0, k = 1, 2,

при этом оператор L̂0(Dx) эллиптический с постоянными коэффициентами. От-

метим, что в качестве аналога разделяющего оператора в [17] использовался

такой же оператор, как в [1] и [14] для случая постоянных коэффициентов.

Будем развивать подход из работы [17] для получения энергетической оцен-

ки для оператора (2.10), применяя аналог схемы Лере, но в отличие от [17]

будем использовать аналог разделяющего оператора с учетом переменных ко-

эффициентов. А именно, для любой функции u(t, x) ∈ C∞0 (Rn+1) рассмотрим

следующий аналог формы (3.1) из [17]:

Mu = − Im

∫

Rn+1

e−γtL (x;Dt, Dx)u(t, x)
(
e−γtL 1

1 (x;Dt, Dx)u(t, x)
)
dz, (3.4)

где γ > 0,

L 1
1 (x;Dt, Dx) = 2i(L0(x;Dx) + (a(x) + a)I)Dt + iL1(x;Dx), z = (t, x). (3.5)

Очевидно, (3.4) можно переписать в виде

Mu = − Im

∫

Rn+1

L (x;Dt + γI,Dx)uγ(t, x)
(
L 1

1 (x;Dt + γI,Dx)uγ(t, x)
)
dz.
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В дальнейшем нам будет удобно использовать следующее обозначение для

скалярного произведения в L2(Rn+1):

〈v, ω〉 =
∫

Rn+1

v(z)ω(z)dz,

и для сокращения записи будем писать

L (x) = L (x;Dt + γI,Dx) = (L0(x;Dx) + (a(x) + a)I)(Dt + γI)2

+ L1(x;Dx)(Dt + γI) + L2(x;Dx),

L 1
1 (x) = L 1

1 (x;Dt + γI,Dx) = 2i(L0(x;Dx) + (a(x) + a)I)(Dt + γI) + iL1(x;Dx).

Тогда Mu можно представить в виде

Mu = − Im
〈
L (x)uγ ,L

1
1 (x)uγ

〉

= − 1

2i

(〈
L (x)uγ ,L

1
1 (x)uγ

〉
−
〈
L 1

1 (x)uγ ,L (x)uγ
〉)

= − 1

2i

〈((
L 1

1 (x)
)∗

L (x)− (L (x))∗L 1
1 (x)

)
uγ , uγ

〉
. (3.6)

Введем дифференциальный оператор

P(x;Dt, Dx, γ) = − 1

2i

((
L 1

1 (x)
)∗

L (x) − (L (x))∗L 1
1 (x)

)
. (3.7)

Тогда выражение (3.6) будет иметь вид

Mu = 〈P(x;Dt, Dx, γ)uγ , uγ〉. (3.8)

Учитывая вещественнозначность коэффициентов оператора (2.10) и вид

оператора (3.5), сопряженные к ним операторы можно определить следующим

образом:

(L (x))∗v(x) = (Dt − γI)2
[ ∑

|β|=4

Dβ
x

((
a0
β(x) + a0

β

)
v(x)

)
+ (a(x) + a)v(x)

]

+ (Dt − γI)
∑

|β|=5

Dβ
x

((
a1
β(x) + a1

β

)
v(x)

)
+
∑

|β|=6

Dβ
x

((
a2
β(x) + a2

β

)
v(x)

)
,

(
L 1

1 (x)
)∗
v(x) = 2i(Dt − γI)

∑

|β|=4

Dβ
x

((
a0
β(x) + a0

β

)
v(x)

)

+ 2i(Dt − γI)(a(x) + a)v(x) + i
∑

|β|=5

Dβ
x

((
a1
β(x) + a1

β

)
v(x)

)
.

Тогда дифференциальный оператор (3.7) принимает вид

P(x;Dt, Dx, γ)uγ = −(Dt − γI)
∑

|β|=4

Dβ
x

((
a0
β(x) + a0

β

)
L (x)uγ

)

− (Dt − γI)(a(x) + a)L (x)uγ −
1

2

∑

|β|=5

Dβ
x

((
a1
β(x) + a1

β

)
L (x)uγ

)

+ (Dt − γI)2
∑

|β|=4

Dβ
x

((
a0
β(x) + a0

β

)
L 1

1 (x)uγ
)

+ (Dt − γI)2(a(x) + a)L 1
1 (x)uγ



Об одном классе псевдогиперболических операторов 1069

+ (Dt − γI)
∑

|β|=5

Dβ
x

((
a1
β(x) + a1

β

)
L 1

1 (x)uγ
)

+
∑

|β|=6

Dβ
x

((
a2
β(x) + a2

β

)
L 1

1 (x)uγ
)
.

Учитывая гладкость коэффициентов оператора (2.10), дифференциальный опе-

ратор (3.7) по аналогии с (3.4) из [17] можно представить в следующем виде:

P(x;Dt, Dx, γ) = P (x;Dt, Dx, γ) + p(x;Dt, Dx, γ), (3.9)

где

P (x;Dt, Dx, γ)uγ = −2γ
(
D2
t − γ2I

)( ∑

|α|=4

(
a0
α(x) + a0

α

)
Dα
x + (a(x) + a)I

)

◦
( ∑

|β|=4

(
a0
β(x) + a0

β

)
Dβ
x + (a(x) + a)I

)
uγ

+ 2γ
( ∑

|α|=4

(
a0
α(x) + a0

α

)
Dα
x + (a(x) + a)I

)( ∑

|β|=6

(
a2
β(x) + a2

β

)
Dβ
x

)
uγ

− 2γDt

( ∑

|α|=5

(
a1
α(x) + a1

α

)
Dα
x

)( ∑

|β|=4

(
a0
β(x) + a0

β

)
Dβ
x + (a(x) + a)I

)
uγ

− γ
( ∑

|α|=5

(
a1
α(x) + a1

α

)
Dα
x

)( ∑

|β|=5

(
a1
β(x) + a1

β

)
Dβ
x

)
uγ , (3.10)

а оператор p(x;Dt, Dx, γ) имеет десятый порядок. В дальнейшем будем считать,

что оператор умножения на параметр γk является оператором k-го порядка.

С учетом этого оператор P (x;Dt, Dx, γ) имеет одиннадцатый порядок.

В силу (3.9) выражение (3.8) можно записать в виде

Mu = 〈P (x;Dt, Dx, γ)uγ , uγ〉+ 〈p(x;Dt, Dx, γ)uγ , uγ〉. (3.11)

Представим оператор (3.10) в виде двух дифференциальных операторов:

P (x;Dt, Dx, γ) = P0(Dt, Dx, γ) + P1(x;Dt, Dx, γ), (3.12)

где оператор P0(Dt, Dx, γ) имеет только постоянные коэффициенты, а коэф-

фициенты в P1(x;Dt, Dx, γ), стоящие перед операторами дифференцирования

Dα+β
x , зависят от x. Такое представление можно получить, используя опреде-

ления дифференциальных операторов (2.3). Тогда для оператора P0(Dt, Dx, γ)

получим представление

P0(Dt, Dx, γ) = γ
(
−2
(
D2
t − γ2I

)(
L1

0(Dx) + a
)(
L1

0(Dx) + a
)

+ 2
(
L1

0(Dx) + a
)
L1

2(Dx)− 2Dt

(
L1

0(Dx) + a
)
L1

1(Dx)− L1
1(Dx)L

1
1(Dx)

)
. (3.13)

При таком определении оператора P0(Dt, Dx, γ) все коэффициенты в операторе

P1(x,Dt, Dx, γ) из (3.12) содержат члены a0
α(x), a1

α(x), a2
α(x), которые вместе

со своими производными до пятого порядка включительно достаточно малы.

Поэтому для любой функции u(t, x) ∈ C∞0 (Rn+1) справедлива оценка

|〈P1(x;Dt, Dx, γ)uγ , uγ〉| ≤ γεc1‖(|ξ|4+a)(|η|+γ+ |ξ|)ûγ(η, ξ), L2(R
n+1)‖2, (3.14)

где c1 > 0 — константа, зависящая от a и коэффициентов оператора (2.2), ε >
0 определяется малостью коэффициентов akα(x) и их производных до пятого

порядка включительно.
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Аналогичная оценка имеет место для второго слагаемого из (3.11):

|〈p(x;Dt, Dx, γ)uγ , uγ〉| ≤ c2‖(|ξ|4 + a)(|η|+ γ + |ξ|)ûγ(η, ξ), L2(R
n+1)‖2, (3.15)

где c2 > 0 — константа, зависящая от a и коэффициентов оператора (2.10).

Рассмотрим форму

〈P0(Dt, Dx, γ)uγ, uγ〉, u(t, x) ∈ C∞0 (Rn+1), γ > 0.

В силу равенства Парсеваля имеем

〈P0(Dt, Dx, γ)uγ , uγ〉 = γ
(〈

2(η2 + γ2)
(
L1

0(iξ) + a
)2
ûγ(η, ξ), ûγ(η, ξ)

〉

+
〈
2
(
L1

0(iξ) + a
)
L1

2(iξ)ûγ(η, ξ), ûγ(η, ξ)
〉
−
〈
2iη
(
L1

0(iξ) + a
)
L1

1(iξ)ûγ(η, ξ), ûγ(η, ξ)
〉

−
〈(
L1

1(iξ)
)2
ûγ(η, ξ), ûγ(η, ξ)

〉)
.

Учитывая определение операторов (2.3), это можно переписать в виде

〈P0(Dt, Dx, γ)uγ , uγ〉 = γ
〈
[2(η2 + γ2)

(
L1

0(iξ) + a
)2 − 2

(
L1

0(iξ) + a
)
L1

2(ξ)

+ 2η
(
L1

0(iξ) + a
)
L1

1(ξ) +
(
L1

1(ξ)
)2]

ûγ(η, ξ), ûγ(η, ξ)
〉
.

Введем обозначение

M(η, γ, ξ, a) = γ
[
2(η2 + γ2)

(
L1

0(ξ) + a
)2 − 2

(
L1

0(ξ) + a
)
L1

2(ξ)

+ 2η
(
L1

0(ξ) + a
)
L1

1(ξ) +
(
L1

1(ξ)
)2]

. (3.16)

Тогда предыдущую формулу можно переписать в виде

〈P0(Dt, Dx, γ)uγ, uγ〉 = 〈M(η, γ, ξ, a)ûγ(η, ξ), ûγ(η, ξ)〉. (3.17)

Запишем функцию (3.16) в виде

M(η, γ, ξ, a) = 2γ
(
L1

0(ξ) + a
)2
((

η +
L1

1(ξ)

2(L1
0(ξ) + a)

)2

+

(
L1

1(ξ)
)2 − 4

(
L1

0(ξ) + a
)
L1

2(ξ)

4
(
L1

0(ξ) + a
)2 + γ2

)
.

Введем обозначение

Q(η, γ, ξ, a) =

(
η +

L1
1(ξ)

2
(
L1

0(ξ) + a
)
)2

+

(
L1

1(ξ)
)2 − 4

(
L1

0(ξ) + a
)
L1

2(ξ)

4
(
L1

0(ξ) + a
)2 + γ2. (3.18)

Тогда полином (3.16) можно представить в виде

M(η, γ, ξ, a) = 2γ
(
L1

0(ξ) + a
)2
Q(η, γ, ξ, a). (3.19)

Заметим, что функция Q(η, γ, ξ, 0), (η, γ, ξ) ∈ Rn+2, однородная степени 2 и

в силу условий (2.4), (2.5) обращается в 0 только при η = γ = |ξ| = 0. Поэтому

существуют положительные константы r2 ≥ r1, для которых выполнена оценка

r2(η
2 + γ2 + |ξ|2) ≥ Q(η, γ, ξ, 0) ≥ r1(η2 + γ2 + |ξ|2), (3.20)

или

r2 ≥ Q(η′, γ′, ξ′, 0) ≥ r1 > 0,
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η′ = η/�, γ′ = γ/�, ξ′ = ξ/�, � =
√
η2 + |ξ|2 + γ2.

Рассмотрим функцию (3.18) при a > 0 и запишем ее следующим образом:

Q(η, γ, ξ, a) = �2Q
(
η′, γ′, ξ′,

a

�4

)
.

Тогда в силу равномерной непрерывности функции

Q(η′, γ′, ξ′, α), (η′)2 + (γ′)2 + |ξ′|2 = 1, α ∈ [0, α0],

из оценки (3.20) следует, что существует γ1 > 0 такое, что при всех (η, ξ) ∈ Rn+1,

γ ≥ γ1 будет выполняться неравенство

2r2(η
2 + |ξ|2 + γ2) ≥ Q(η, γ, ξ, a) ≥ r1

2
(η2 + |ξ|2 + γ2).

Отсюда в силу (3.19) получаем

4r2γ
(
L1

0(ξ) + a
)2

(η2 + |ξ|2 + γ2) ≥M(η, γ, ξ, a) ≥ r1γ
(
L1

0(ξ) + a
)2

(η2 + |ξ|2 + γ2).

Следовательно, учитывая (2.4), имеем

4r2γ(q2|ξ|4 + a)2(η2 + |ξ|2 + γ2) ≥M(η, γ, ξ, a)

≥ r1γ(q1|ξ|4 + a)2(η2 + |ξ|2 + γ2), γ ≥ γ1, (η, ξ) ∈ Rn+1.

Поэтому для (3.17) получаем оценку снизу

〈M(η, γ, ξ, a)ûγ(η, ξ), ûγ(η, ξ)〉
≥ r1γ〈(q1|ξ|4 + a)2(η2 + |ξ|2 + γ2)ûγ(η, ξ), ûγ(η, ξ)〉
≥ ργ‖(|ξ|4 + a)(|η|+ γ + |ξ|)ûγ(η, ξ), L2(R

n+1)‖2, γ ≥ γ1, (3.21)

где ρ > 0 — константа, зависящая от a, r1, q1.
Перейдем к доказательству теоремы 2.

Учитывая формулы (3.6), (3.8), (3.11), (3.12), (3.17), форму (3.4) можно

записать в виде

Mu = 〈M(η, γ, ξ, a)ûγ(η, ξ), ûγ(η, ξ)〉
+ 〈P1(x;Dt, Dx, γ)uγ , uγ〉+ 〈p(x;Dt, Dx, γ)uγ , uγ〉.

Отсюда

Mu ≥ 〈M(η, γ, ξ, a)ûγ(η, ξ), ûγ(η, ξ)〉
− |〈P1(x;Dt, Dx, γ)uγ , uγ〉| − |〈p(x;Dt, Dx, γ)uγ , uγ〉|.

Используя оценки (3.14), (3.15) и (3.21), при γ ≥ γ1 получим неравенство

Mu ≥ γ
(
ρ− εc1 −

c2
γ

)
‖(|ξ|4 + a)(|η|+ γ + |ξ|)ûγ(η, ξ), L2(R

n+1)‖2. (3.22)

Пусть γ2 = 4c2/ρ, и предположим, что коэффициенты оператора (2.8) вме-

сте с производными до пятого порядка включительно настолько малы, что

4c1ε ≤ ρ. Тогда из оценки (3.22) при γ ≥ γ0 = max{γ1, γ2} для любой u(t, x) ∈
C∞0 (Rn+1) вытекает неравенство

Mu ≥ γ ρ
2
‖(|ξ|4 + a)(|η|+ γ + |ξ|)ûγ(η, ξ), L2(R

n+1)‖2. (3.23)
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Оценим форму (3.4) сверху. В силу неравенства Гёльдера имеем

∣∣Mu
∣∣ ≤ ‖e−γtL (x;Dt, Dx)u(t, x), L2(R

n+1)‖
×
∥∥e−γtL 1

1 (x;Dt, Dx)u(t, x), L2(R
n+1)

∥∥
= ‖L (x;Dt, Dx)u(t, x), L2,γ(R

n+1)‖
∥∥L 1

1 (x;Dt + γI,Dx)uγ(t, x), L2(R
n+1)

∥∥.

Поскольку все коэффициенты оператора (2.10) постоянны вне некоторого ком-

пакта, из определения оператора (3.5) следует оценка

|Mu| ≤ c3‖L (x;Dt, Dx)u(t, x), L2,γ(R
n+1)‖

× ‖(|ξ|4 + a)(|η| + γ + |ξ|)ûγ(η, ξ), L2(R
n+1)‖,

где c3 > 0 — константа, зависящая от коэффициентов (3.5).

Из этого неравенства и (3.23) при достаточно малых возмущениях коэффи-

циентов оператора (2.10) при γ ≥ γ0 вытекает энергетическая оценка (2.13) для

любых функций u(t, x) ∈ C∞0 (Rn+1). Следовательно, в силу теоремы о всюду

плотности C∞0 (Rn+1) в соболевском пространстве W 2,6
2,γ (Rn+1) эта оценка спра-

ведлива для любых функций u(t, x) ∈ W 2,6
2,γ (Rn+1), удовлетворяющих условию

(2.11).

Теорема 2 доказана.

Замечание. Учитывая доказанную теорему и используя теорему о раз-

биении единицы, нетрудно установить энергетическую оценку для операторов

вида (2.10), являющихся строго псевдогиперболическими при любом x0 ∈ Rn и

имеющих достаточно гладкие коэффициенты, постоянные вне компакта.

Из теоремы 2 вытекает теорема 3 о единственности решения задачи Коши

(2.14) в указанном классе функций. Действительно, если u(t, x) — решение

задачи Коши с нулевыми данными

f(t, x) = ϕ1(x) = ϕ2(x) = 0,

то, продолжая его нулем при t < 0, получим функцию u(t, x), удовлетворяющую

условиям теоремы 2. Следовательно, из оценки (2.13) получим

‖(|ξ|4 + a)(|η|+ γ + |ξ|)ûγ(η, ξ), L2(R
n+1)‖ = 0, γ > γ0.

Отсюда, очевидно, вытекает, что u(t, x) = 0, т. е. двух различных решений

задачи (2.14) не существует.

Теорема 3 доказана.

ЛИТЕРАТУРА

1. Демиденко Г. В., Успенский С. В. Уравнения и системы, не разрешенные относительно
старшей производной. Новосибирск: Науч. книга, 1998.

2. Свешников А. Г., Альшин А. Б., Корпусов М. О., Плетнер Ю. Д. Линейные и нелинейные
уравнения соболевского типа. М.: Физматлит, 2007.

3. Соболев С. Л. Избранные труды. Новосибирск: Изд-во Ин-та математики; Филиал «Гео»
Изд-ва СО РАН, 2003. Т. I.

4. Власов В. З. Тонкостенные упругие стержни. М.: Физматгиз, 1959. (2-е изд., перераб. и
доп.).

5. Герасимов С. И., Ерофеев В. И. Задачи волновой динамики элементов конструкций.
Саров: ФГУП РФЯЦ-ВНИИЭФ, 2014.

6. Bishop R. E. D. Longitudinal waves in beams // Aeronautical Quarterly. 1952. V. 3, N 4.
P. 280–293.



Об одном классе псевдогиперболических операторов 1073

7. Rao J. S. Advanced theory of vibration. New York: John Wiley and Sons, 1992.
8. Гальперн С. А. Задача Коши для общих систем линейных уравнений с частными произ-

водными // Успехи мат. наук. 1963. Т. 18, № 2. С. 239–249.
9. Wang Y., Guo B. Blow-up of solution for a generalized Boussinesq equation // Appl. Math.

Mech.. 2007. V. 28, N 11. P. 1437–1443.
10. Polat N., Piskin E. Existence and asymptotic behavior of solution of Cauchy problem for the

damped sixth-order Boussinesq equations // Acta Math. Appl. Sin. Engl. Ser.. 2015. V. 31,
N 3. P. 735–746.

11. Бондарь Л. Н., Ма С. О краевой задаче в цилиндре для одного псевдогиперболического
уравнения шестого порядка // Мат. тр.. 2024. Т. 27, № 3. С. 30–51.

12. Sviridyuk G. A., Fedorov V. E. Sobolev type equations and degenerate semigroups of opera-
tors. Utrecht; Boston; Koln: VSP, 2003.

13. Fedotov I., Volevich L. R. The Cauchy problem for hyperbolic equations not resolved with re-
spect to the highest time derivative // Russian J. Math. Physics. 2006. V. 13, N 3. P. 278–292.

14. Демиденко Г. В. Условия разрешимости задачи Коши для псевдогиперболических урав-
нений // Сиб. мат. журн.. 2015. Т. 56, № 6. С. 1289–1303.

15. Fedotov I., Shatalov M., Marais J. Hyperbolic and pseudo-hyperbolic equations in the theory
of vibration // Acta Mechanica. 2016. V. 227, N 11. P. 3315–3324.

16. Бондарь Л. Н., Демиденко Г. В. О корректности задачи Коши для псевдогиперболиче-
ских уравнений в весовых соболевских пространствах // Сиб. мат. журн.. 2023. Т. 64,
№ 5. С. 895–911.

17. Демиденко Г. В. Энергетические оценки для одного класса псевдогиперболических опе-
раторов с переменными коэффициентами // Журн. вычисл. математики и мат. физики.
2024. Т. 64, № 8. С. 1466–1475.

18. Pereira P. J. S., Lopes N. D., Trabuco L. Soliton-type and other travelling wave solutions for
an improved class of nonlinear sixth-order Boussinesq equations // Nonlinear Dynam.. 2015.
V. 82, N 1–2. P. 783–818.

19. Zhang Z., Huang J., Sun M. Well-posedness and decay property for the generalized damped
Boussinesq equation with double rotational inertia // Kodai Math. J.. 2016. V. 39, N 3.
P. 535–551.

20. Умаров Х. Г. Разрушение и глобальная разрешимость задачи Коши для псевдогипер-
болического уравнения, связанного с обобщенным уравнением Буссинеска // Сиб. мат.
журн.. 2022. Т. 63, № 3. С. 672–689.

21. Бондарь Л. Н., Демиденко Г. В., Нурмахматов В. С. Краевая задача в цилиндре для
одного псевдогиперболического уравнения // Челябинск. физ.-мат. журн.. 2023. Т. 8, № 4.
С. 469–482.

22. Шеметова В. В. Одна краевая задача для псевдогиперболического уравнения в четверти
пространства // Мат. тр.. 2025. Т. 28, № 2. С. 102–123.

23. Петровский И. Г. Избранные труды. Системы уравнений с частными производными.
Алгебраическая геометрия. М.: Наука, 1986.

24. Лере Ж. Гиперболические дифференциальные уравнения. М.: Наука, 1984.

Поступила в редакцию 1 августа 2025 г.

После доработки 1 августа 2025 г.

Принята к публикации 27 августа 2025 г.

Демиденко Геннадий Владимирович (ORCID 0000-0001-6338-7247),
Ма Синь
Институт математики им. С. Л. Соболева СО РАН,
пр. Академика Коптюга, 4, Новосибирск 630090;
Новосибирский государственный университет,
ул. Пирогова, 1, Новосибирск 630090
demidenko@math.nsc.ru, s.ma2@g.nsu.ru



Сибирский математический журнал
Ноябрь—декабрь, 2025. Том 66, № 6

УДК 512.62+517.54

ШВАРЦИАН И КРИТИЧЕСКИЕ ЗНАЧЕНИЯ

ПОЛИНОМА С ВЕЩЕСТВЕННЫМИ

КРИТИЧЕСКИМИ ТОЧКАМИ

В. Н. Дубинин

Аннотация. Для комплексного полинома степени не меньше двух, сохраняющего
начало координат и имеющего все свои критические точки на вещественной поло-
жительной либо отрицательной полуоси, устанавливается точная нижняя граница
для наибольшего модуля критических значений. Данная оценка включает произ-
водную Шварца этого полинома в начале координат и не зависит от степени по-
линома. Аналогичная оценка приводится в случае, когда все критические точки
полинома вещественные и расположены по разные стороны от начала координат.
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Ключевые слова: полиномы, критические точки, критические значения, швар-
циан.

Памяти Семёна Самсоновича Кутателадзе

§ 1. Введение и формулировка результатов

Исследование неравенств для критических точек и критических значений

комплексных полиномов во многом инициировала известная статья Смейла [1].

К настоящему времени этой тематике посвящено немало публикаций (см., на-

пример, библиографию в обзорах [2, 3]). В частности, в работе [4] (см. также

[5]) показано, что для любого полинома вида P (z) = c1z + · · · + cnz
n, c1cn 6= 0,

n ≥ 2, справедливо неравенство

max{|P (ζ)| : P ′(ζ) = 0} ≥ 2

(
1

n
sin

π

2n

) n
n−1

∣∣∣∣
cn1
cn

∣∣∣∣
1

n−1

.

Равенство достигается в случае P (z) = aTn(bz − cos(π/(2n))) при подходящих

комплексных значениях a и b, зависящих от c1 и cn, где Tn(z) = 2n−1zn + . . .
— полином Чебышева первого рода. Естественно поставить вопрос о нижней

оценке модуля критического значения, не зависящей от степени полинома P.
Впервые неравенства для модулей критических значений, не зависящие от сте-

пени полинома, появились в работе Хинкканена и Каюмова [6]. Следуя [6],

ограничимся полиномами с вещественными критическими точками. Такие по-

линомы представляют интерес при решении различных задач теории функций

[6–10].

Исследование выполнено в рамках государственного задания ИПМ ДВО РАН № 075-
00459-25-00.

c© 2025 Дубинин В. Н.
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Всюду ниже рассматриваются полиномы вида

P (z) = z + c2z
2 + c3z

3 + · · ·+ cnz
n, n ≥ 2. (1)

Полученные в данной статье точные оценки модуля |P (ζ)| в критической точ-

ке ζ, т. е. точке, где P ′(ζ) = 0, являются одновременно неравенствами для

производной Шварца (шварциана) SP (0) полинома P, вычисленной в начале

координат:

SP (0) = 6
(
c3 − c22

)
.

Справедливы следующие утверждения.

Теорема 1. Предположим, что все критические точки полинома (1) сте-
пени n ≥ 2 расположены на вещественной положительной либо отрицательной
полуоси. Тогда SP (0) < 0 и существует критическая точка ζ такая, что

|P (ζ)| ≥
(
−2

2

3
SP (0)

)−1/2

. (2)

Равенство в (2) достигается для полинома P (z) = z− cz2 при любом веществен-
ном c 6= 0.

Теорема 2. Если все критические точки полинома (1) степени n ≥ 3 веще-
ственные и расположены по разные стороны от начала координат, то SP (0) < 0

и существует критическая точка ζ, для которой

|P (ζ)| ≥
(
−1

1

8
SP (0)

)−1/2

. (3)

Равенство в (3) имеет место при P (z) = z − cz3 при любом c > 0.

Ранее [11] нами было показано, что в условиях теоремы 1 либо теоремы 2

справедливо неравенство

SP (0) ≤ 0.

Заметим, что неравенства для шварциана во внутренних точках области

определения голоморфной неоднолистной функции появились сравнительно

недавно [12], а неравенства для производной Шварца с учетом критического

значения в литературе не рассматривались.

§ 2. Доказательство теоремы 1

Поскольку все критические точки полинома (1) вещественные, значения

P (z) также вещественные при всех вещественных z. Обозначим через R(P )

риманову поверхность функции P, обратной заданному полиному P. Мы рас-

сматриваем P как отображение поверхности R(P ) на комплексную сферу Cz.
Всевозможные радиальные лучи на поверхности R(P ), соединяющие ее точки

разветвления с бесконечностью, разбивают эту поверхность на конечное число

листов {U}. Пусть U0, U0 ∈ {U}, — тот лист, который содержит прообраз точки

z = 0 при отображении P. Полагая, что все критические точки полинома P
отрицательные, обозначим через ζ наибольшую критическую точку. Из сообра-

жений непрерывности можно считать, что P ′′(ζ) 6= 0. В силу P (0) = 0, P ′(0) > 0

выполняется P (ζ) < 0 и вещественная функция P отображает луч [ζ,+∞] в

луч [P (ζ),+∞]. Отсюда следует, что проекция области U0 есть w-плоскость с

разрезом L := [−∞, P (ζ)].
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Покажем, что на границе области P(U0) нет критических точек полинома

P, отличных от ζ. Предположим противное. Тогда найдется критическая точка

ζ′ ∈ ∂P(U0), ζ
′ < ζ (пусть ζ′ — ближайшая к ζ такая точка), и соответствующая

точка разветвления P−1(ζ′) принадлежит ∂U0. Замкнутая жорданова кривая

на поверхности R(P ) вида P−1([ζ′, ζ])∪ [P−1(ζ′),P−1(ζ)] разбивает эту по-

верхность на две области, каждая из которых содержит бесконечно удаленную

точку. Здесь [P−1(ζ′),P−1(ζ)] — отрезок на границе области U0. Получен-

ное противоречие показывает, что точка ζ является единственной критической

точкой на границе P(U0).
В силу вышесказанного и условия P ′′(ζ) 6= 0 определен единственный лист

из совокупности {U}, пусть U ′, который имеет с U0 общие берега разрезов над

лучом L и на границе которого лежит точка P−1(ζ). Кроме того, у листов U0

и U ′ нет других примыкающих к ним общих точек разветвления, лежащих над

L, исключая точку P−1(ζ).
Обозначим через G1 риманову область на R(P ), полученную склеиванием

листов U0 и U ′ крест-накрест по берегам разрезов над L с последующим разреза-

нием приклеенного листа U ′ вдоль радиального луча, лежащего над [P (ζ),+∞].
Положим

Q1(z) := z − 1

4P (ζ)
z2.

Непосредственно из определения видно, что функция w = Q1(z) отображает

полуплоскость Re z > 2P (ζ) (Re z < 2P (ζ)) на w-плоскость с разрезом по лучу

L. Таким образом, Q1 отображает сферу Cz на риманову поверхность R(Q1),

образованную склеиванием двух экземпляров области Cw \ L крест-накрест по

берегам разреза L. Построенную выше область G1 можно рассматривать как

подмножество поверхности R(Q1). Функция Q1 отображает область

H = Cz \ {z : Re z ≤ 2P (ζ), Im z = 0}

конформно и однолистно на областьG1. Следовательно, суперпозиция функций

f1 := P ◦Q1

является однолистной в области H, f1(0) = 0. Применение к функции f1 теоре-

мы 3 работы [11], где g(z) ≡ z, ведет к неравенству

ReSf1(0) ≥ 0. (4)

Для вычисления шварциана от суперпозиции f1 удобно воспользоваться фор-

мулой

Sα◦β = (Sα ◦ β)(β′)2 + Sβ .

После элементарных преобразований неравенство (4) перепишется так:

3

8P 2(ζ)
≤ −SP (0).

Отсюда вытекает, что SP (0) < 0, и справедливо неравенство (2).

Достижимость равенства в (2) проверяется непосредственно либо простым

замечанием, что при P (z) = z− cz2 будет f1(z) ≡ z и, следовательно, в (4) и (2)

имеет место знак равенства.

Случай, когда все критические точки полинома P положительные, сводится

к предыдущему рассмотрением полинома −P (−z). Теорема 1 доказана.
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§ 3. Доказательство теоремы 2

Пусть ζ1 и ζ2 — ближайшие к началу координат критические точки по-

линома P , ζ1 < 0 < ζ2. Можно считать, что P ′′(ζk) 6= 0, k = 1, 2. Тогда

P (ζ1) < 0 < P (ζ2) и вещественная функция P отображает отрезок [ζ1, ζ2] в

[P (ζ1), P (ζ2)]. Отсюда следует, что проекция области U0 есть w-плоскость с

разрезами L1 = [−∞, P (ζ1)] и L2 = [P (ζ2),+∞]. Здесь вновь используются обо-

значения U0, R(P ), P и разбиение поверхности R(P ) на листы радиальными

разрезами из § 2. Повторяя соответствующую часть доказательства теоремы 1

(где L = L1, ζ = ζ1), убеждаемся в существовании единственного листа (пусть

U ′), который имеет с U0 общие берега разрезов над L1 и на границе которого нет

других точек разветвления поверхности R(P ), отличных от P−1(ζ1). Анало-

гично существует лист U ′′, который имеет с U0 общие берега разрезов над L2 и

на границе которого нет точек разветвления R(P ), кроме P−1(ζ2). Обозначим

через G2 риманову область на R(P ), полученную склеиванием листов U0 и U ′

крест-накрест по берегам разрезов над L1 с последующим разрезанием по листу

U ′ вдоль луча, лежащего над [P (ζ1),+∞], а затем приклеиванием к U0 листа

U ′′ крест-накрест по берегам разрезов над L2 с последующим разрезанием по

листу U ′′ вдоль луча, лежащего над [−∞, P (ζ2)].
Положим

Q2(z) :=
1

ab

z∫

0

(u− a)(u− b) du = z − a+ b

2ab
z2 +

1

3ab
z3,

где числа a, b заданы условиями a < 0 < b, Q2(a) = P (ζ1), Q2(b) = P (ζ2).
Несложно показать, что риманова поверхность R(Q2), на которую полином Q2

отображает комплексную сферу Cz, образована приклеиванием крест-накрест

к w-плоскости с двумя разрезами L1, L2 двух областей Cw \L1 и Cw \L2 вдоль

берегов разрезов L1 и L2. Построенную выше область G2 можно рассматривать

как подмножество поверхности R(Q2). Функция Q2 отображает область

T = Cz \ {z : Im z = 0, Re z ≤ a либо Re z ≥ b}

конформно и однолистно на область G2. Поэтому суперпозиция функций

f2 := P ◦Q2

однолистна в области T , f2(0) = 0. Применение вновь теоремы 3 работы [11]

приводит к неравенству

ReSf2(0) ≥ 0. (5)

Прямые вычисления дают

ReSf2(0) = Sf2(0) = −SP (0) +
2

ab
− 3

2

(
a+ b

ab

)2

.

Предположим, что |a| ≤ b. Тогда неравенство (5) влечет

−SP (0) ≥ 3

2

(
1

a2
+

1

b2

)
− 1

|ab| =
3

2

1

|ab|

[ |a|
b

+
b

|a| −
2

3

]
≥ 2

b2
.

С другой стороны,

P (ζ2) = Q2(b) =
b

2
− b2

6a
=
b

2

[
1 +

b

3|a|

]
≥ 2

3
b.
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Следовательно,

−SP (0) ≥ 8

9

1

(P (ζ2))2
.

Отсюда вытекает, что SP (0) < 0 и справедливо неравенство (3) при ζ = ζ2.
Случай |a| ≥ b рассматривается аналогично.

Утверждение о знаке равенства в (3) проверяется прямым вычислением.

Теорема 2 доказана.

ЛИТЕРАТУРА

1. Smale S. The fundamental theorem of algebra and complexity theory // Bull. Am. Math. Soc..
1981. V. 4, N 1. P. 1–36.

2. Дубинин В. Н. Методы геометрической теории функций в классических и современных
задачах для полиномов // Успехи мат. наук. 2012. Т. 67, № 4. С. 3–88.

3. Авхадиев Ф. Г., Каюмов И. Р., Насыров С. Р. Экстремальные проблемы в геометрической
теории функций // Успехи мат. наук. 2023. Т. 78, № 2. С. 3–70.

4. Дубинин В. Н. Об одной экстремальной задаче для комплексных полиномов с ограниче-
ниями на их критические значения // Сиб. мат. журн.. 2014. Т. 55, № 1. С. 79–69.

5. Дубинин В. Н. Неравенство марковского типа и нижняя оценка модулей критических
значений полиномов // Докл. АН. 2013. Т. 451, № 5. С. 495–497.

6. Hinkkanen A., Kayumov I. On critical values of polynomials with real critical points // Con-
structive Approximation. 2010. V. 32, N 2. P. 385–392.

7. Epstein A. Symmetric rigidity for real polynomials with real critical points // Contemp. Math..
Providence, RI: Am. Math. Soc., 2002. V. 311. P. 107–114.

8. Brown J. E., Powell V. F. A result on real polynomials with real critical points // J. Anal.
Appl.. 2007. V. 5, N 1. P. 41–52.

9. Kozlovski O., Shen W., van Strien S. Rigidity for real polynomials // Ann. Math.. 2007. V. 2,
N 3. P. 749–841.

10. Bishop D. L. Approximation by polynomials with only real critical points // Rev. Mat.
Iberoam. 2024. V. 40, N 6. P. 2251–2290.

11. Дубинин В. Н. Об одном классе однолистных функций // Дальневост. мат. журн.. 2012.
Т. 12, № 2. С. 184–194.

12. Bolotnikov V. Several inequalities for the Schwarzian derivative of a bounded analytic func-
tion // Complex Var. Elliptic Equ.. 2019. V. 64, N 7. P. 1093–1102.

Поступила в редакцию 15 июля 2025 г.

После доработки 15 июля 2025 г.

Принята к публикации 30 июля 2025 г.

Дубинин Владимир Николаевич (ORCID 0000-0002-4403-155X)
Институт прикладной математики ДВО РАН,
ул. Радио, 7, Владивосток 690041
dubinin@iam.dvo.ru



Сибирский математический журнал
Ноябрь—декабрь, 2025. Том 66, № 6

УДК 517.537

ДИСКРЕТНЫЕ ПАРАБОЛИЧЕСКИЕ

ФУНКЦИИ И РЯДЫ ТЕЙЛОРА

С. Лу, О. А. Данилов, А. Д. Медных

Аннотация. Доказано, что любая дискретная параболическая функция, опреде-
ленная в положительном квадранте гауссовой плоскости, допускает разложение в
абсолютно сходящийся ряд Тейлора по системе псевдостепеней.
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Ключевые слова: Целая функция, дискретная параболическая функция, ряд
Тейлора, теорема Гельфонда — Шеффера.

§ 1. История вопроса

1.1. Основные понятия. Обозначим через G гауссову плоскость G =

{z = x + iy : x, y ∈ Z} и через G+ — положительный квадрант гауссовой

плоскости G+ = {z ∈ G : x ≥ 0, y ≥ 0}. Комплекснозначная функция f :

G→ C называется дискретной аналитической функцией первого рода на тройке

{z; z + 1; z + i}, если справедливо соотношение

f(z + i)− f(z)

i
= f(z + 1)− f(z). (1)

Если соотношение (1) верно для любой тройки {z; z+1; z+i} ⊂ E для некоторого

множества E ⊂ G, то f является дискретной аналитической функцией первого

рода на E. Множество всех таких функций обозначим через D1(E).

Соотношение (1) является дискретным аналогом уравнений Коши — Рима-

на для классических аналитических функций.

Действительно, для векторов z1 = (z + 1) − z = 1, z2 = (z + i) − z = i,
w1 = f(z + 1)− f(z) и w2 = f(z + i)− f(z) из равенства (1) получим

w2

w1
=
f(z + i)− f(z)

f(z + 1)− f(z)
=
i

1
=
z2
z1
. (2)

Так как |z2| = |z1| = 1, из (2) следует

|w2| = |w1|, w2 = iw1, (3)

откуда

ŵ1, w2 =
π

2
= ẑ1, z2. (4)

Работа С. Лу выполнена при поддержке Китайского Стипендиального Фонда, проект
202110100026. Работа А. Д. Медных выполнена в рамках государственного задания ИМ СО
РАН, проект FWNF-2022-0005.

c© 2025 Лу С., Данилов О. А., Медных А. Д.
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Равенства (3) и (4) утверждают постоянство искажения масштаба отображени-

ем f и свойство консерватизма углов на тройке {z; z + 1; z + i}. Это аналог

конформности для классических аналитических функций.

Комплекснозначная функция f :G→ C называется дискретной аналитиче-

ской функцией второго рода на квадрате {z; z+1; z+1+i; z+i} если справедливо

равенство
f(z + 1 + i)− f(z)

1 + i
=
f(z + i)− f(z + 1)

i− 1
(5)

или, что то же самое,

∂f(z) = f(z) + if(z + 1) + i2f(z + 1 + i) + i3f(z + i) = 0. (6)

Если соотношение (5) верно на любом квадрате {z; z+1; z+1+ i; z+ i} ⊂ E
для некоторого множества E ⊂ G, то f называется дискретной аналитической

функцией второго рода на E. Множество всех таких функций обозначим через

D2(E).

Соотношение (5) также является дискретным аналогом уравнений Коши —

Римана.

Для векторов

z1 = (z + 1 + i)− z = 1 + i, z2 = (z + i)− (z + 1) = i− 1,

w1 = f(z + 1 + i)− f(z), w2 = f(z + i)− f(z + 1)

из (5) имеем равенство
w2

w1
=
z2
z1

=
i− 1

1 + i
= i. (7)

Так как |z2| = |z1| =
√

2, получаем из (7), что

|w2| = |w1|, w2 = iw1, (8)

откуда

ŵ1, w2 =
π

2
= ẑ1, z2. (9)

И в этом случае из равенств (8) и (9) получается свойство постоянства иска-

жения масштаба отображения f и свойство консерватизма углов на четверке

{z; z + 1; z + 1 + i; z + i}.
1.2. Линейная теория. Теория дискретных аналитических функций вос-

ходит к работам Айзекса 40-х гг. прошлого столетия. В своих исследованиях

Айзекс [1] ввел дискретные аналитические функции первого и второго рода и

исследовал функции первого рода. Все работы, основанные на линейных соот-

ношениях (1) и (5), получили название «линейная теория дискретных аналити-

ческих функций».

Далее, в 1944 г. Ферран [2] начала исследовать дискретные аналитиче-

ские функции второго рода. Базисные свойства для дискретных аналитических

функций второго рода, аналогичные свойствам классических аналитических

функций, были установлены в работе Даффина [3]. С. Л. Соболев [4] полу-

чил важные результаты, связанные с поведением дискретных аналитических и

гармонических функций на бесконечности.

Новые комбинаторные и аналитические идеи Цайльбергера [5] дали им-

пульс к развитию теории. Эти идеи развил и обобщил А. Д. Медных в иссле-

довании [6].
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Новое понимание природы дискретных аналитических функций было пред-

ложено Даффиным в [7] Здесь гауссова решетка G была заменена графом с ром-

бическими гранями. Эти идеи далеко продвинул Мерка [8], где линейная теория

дискретных аналитических функций была распространена на случай дискрет-

ных римановых поверхностей. Кэниён [9] построил функцию Грина для опера-

тора Дирака на ромбических графах. Этот подход позволил получить важные

результаты в теории кодирования Идальго [10]. В работах И. А. Дынникова и

C. П. Новикова [11] изучены дискретные аналитические функции на треуголь-

ных и шестиугольных решетках.

1.3. Нелинейная теория. Помимо дискретных аналитических функций

первого и второго рода, определенных формулами (1) и (5), развивалась нели-

нейная теория, основанная на идеях Тёрстона [12] и его учеников.

Пусть f : G → C — функция, удовлетворяющая на каждой четверке

{z; z + 1; z + 1 + i; z + i} соотношению

(f(z + 1)− f(z))(f(z + 1 + i)− f(z + i))

(f(z + i)− f(z))(f(z + 1 + i)− f(z + 1))
= −1. (10)

Нелинейное соотношение (10) введено в работе [13] и определяет шаровые упа-

ковки. Более глубокие комбинаторные идеи и обобщения шаровых упаковок на

произвольные четырехугольные графы даны в работе [14]. Этот подход пока-

зывает, что шаровые упаковки являются естественным дискретным аналогом

аналитических функций [15–18].

Одним из важнейших результатов в этом направлении является доказа-

тельство того, что голоморфное отображение в классической теореме Римана

может быть аппроксимировано шаровыми упаковками [19–21].

Вариационный подход к шаровым упаковкам обсуждается в работе [22].

До недавнего времени линейная и нелинейная теории развивались раздель-

но. В [23] показано, что в некотором точном смысле первая теория является

линеаризацией второй теории.

После 2000-х число работ в области дискретных аналитических функций

значительно выросло, поэтому очень трудно упомянуть все замечательные ре-

зультаты с этого момента.

В 2010 г. С. Смирнов получил медаль Филдса. В своих исследованиях он

активно использовал идеи и методы теории дискретных аналитических функ-

ций.

1.4. Применение в численных методах. История развития числен-

ных методов решения уравнения теплопроводности начинается с первой рабо-

ты немецкого математика Рунге [24], вышедшей в 1908 г. В ней был описан

метод сеток, основанный на замене производных, входящих в дифференциаль-

ное уравнение, разностными отношениями.

Одной из важнейших работ в этой области стала монография советского

математика Ш. Е. Микеладзе [25], вышедшая в свет в 1936 г. С 1932 г. нача-

ли печататься работы Д. Ю. Панова, а в 1938 г. вышла его книга, в которой

собраны ценные практические результаты [26]. С появлением этих работ за-

дача численного интегрирования уравнений в частных производных получила

твердые основания для своего теоретического и практического развития.

1.5. Основные результаты. Пусть A (C) — пространство целых анали-

тических функций, а D(G+) — пространство дискретных параболических функ-

ций, определенное ниже.
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В § 2 введены псевдостепени πk(z) в пространстве D(G+). Установлено, что

для них выполнены свойства (A1)–(A3) (теоремы 1 и 2).

В § 3 доказано, что оператор � : A (C) → D(G+) корректно определен,

удовлетворяет свойству (A4) и таким образом является оператором эволюции

(теоремы 3 и 4).

Теорема 5 устанавливает сюръективность отображения � : A (C)→ D(G+),

откуда следует существование разложения в ряд Тейлора произвольной дис-

кретной параболической функции.

Теорема 6 дает описание ядра отображения � : A (C)→ D(G+).

§ 2. Дискретные параболические функции

2.1. Определение. Пусть G — гауссова плоскость, f(z) = f(x, y) — ком-

плекснозначная функция, определенная на G. Тогда f — дискретная параболи-

ческая функция на G, если для любой четверки

� = {z + i, z, z + 1, z + 2} ∈ G
справедливо соотношение

f(z + i)− f(z) = f(z + 2)− 2f(z + 1) + f(z) (11)

или, что то же самое,

Lf(z) = −f(z + i) + f(z + 2)− 2f(z + 1) + 2f(z) = 0. (12)

Если соотношение (11) верно для любой четверки � = {z + i; z; z + 1; z + 2},
принадлежащей некоторому подмножеству E ⊂ G, то f — дискретная парабо-

лическая функция на E ⊂ G. Обозначим множества всех дискретных парабо-

лических функций на E и G через D(E) и D(G) соответственно. Оператор L,

определенный формулой (12), является дискретным аналогом оператора тепло-

проводности ∂
∂t − ∂2

∂x2 , определенного на классических гладких функциях.

Интересен случай схемы, которая определяется уравнением f(z+1)−2f(z)+
f(z−1) = f(z+ i)− f(z). Он приводит к изучению дискретных параболических

функций, заданных в нижней половине положительного квадранта гауссовой

плоскости. Однако в такой ситуации не получается корректно определить опе-

ратор эволюции и восстановить на положительном квадранте дискретную па-

раболическую функцию по начальным значениям, заданным на положительной

полуоси.

2.2. От разностного уравнения к экспоненте. Воспользуемся фунда-

ментальным фактом (см. [27]), что решение большинства разностных уравне-

ний является линейной комбинацией экспонент. Покажем, как естественным

образом прийти к понятию экспоненты разностного уравнения. Будем искать

решение уравнения (12) в виде

f(ζ, z) = ax(ζ) · by(ζ) (13)

для некоторых аналитических функций a(ζ), b(ζ), где ζ ∈ U (0, r) для некото-

рого r > 0, z = x+ iy ∈ G+. Подставив выражение из (13) для f(ζ, z) в формулу

(12), получим

Lf(z) = axby(−b+ a2 − 2a+ 2) = 0 (14)

при всех z = x+ iy ∈ G+. Отсюда следует, что

b(ζ) = a2(ζ) − 2a(ζ) + 2 = (a(ζ) − 1)2 + 1. (15)
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Потребуем дополнительно, чтобы

a(ζ) ∼ 1 + ζ при ζ → 0.

В частности, подходит a(ζ) = eζ . Тогда из формулы (15)

b(ζ) = (eζ − 1)2 + 1 = e2ζ − 2eζ + 2 (16)

и, значит, в качестве f(ζ, z) подходит функция

f(ζ, z) = e(ζ, z) = e(ζ, x, y) = eζx((eζ − 1)2 + 1)y. (17)

Функция e(ζ, z), определяемая формулой (17), называется экспонентой раз-

ностного уравнения (12). Для нее при всех z1, z2 ∈ G+ и ζ ∈ C верно соот-

ношение

e(ζ, z1 + z2) = e(ζ, z1) · e(ζ, z2). (18)

2.3. Псевдостепени {πk(z)}∞k=0 и их свойства.

2.3.1. Определение функций {πk(z)}∞k=0. Пусть ζ ∈ C, z ∈ G+. Положим

∂k0 e(ζ, z) =
dke(ζ, z)

dζk

∣∣∣∣
ζ=0

, k = 1, 2, . . . , ∂0
0e(ζ, z) = e(0, z), k = 0.

Рассмотрим разложение функции e(ζ, z) с центром в ζ0 = 0 по степеням ζ, где

ζ ∈ C:

e(ζ, z) = e(ζ, x, y) = eζx((eζ − 1)2 + 1)y =

∞∑

k=0

πk(z)

k!
ζk, где πk(x, y) := πk(x+ iy).

(19)

Очевидно, что верны равенства

πk(z) = ∂k0 e(ζ, z), k = 1, 2, . . . , π0(z) = ∂0
0e(ζ, z) = e(0, z) ≡ 1. (20)

В частности, для k = 0, 1, 2 имеем π0(z) = 1, π1(z) = x, π2(z) = x2 + 2y.

Замечание 1. Для экспоненты

e1(ζ, z) = e1(ζ, x, y) = ((1 + i)e
ζ

1+i − i)x · ((1− i)
−ζ
1+i + i)y, (21)

где ζ ∈ C, z ∈ G+, многочлены pk(z), определенные по формулам

pk(z) = ∂k0 e1(ζ, z), k = 1, 2, . . . , p0(z) = ∂0
0e1(ζ, z) = e(0, z) ≡ 1, (22)

введены в [5].

2.3.2. Рекуррентные соотношения для псевдостепеней {πk(z)}∞k=0.

Теорема 1. Для функций {πk(z)}∞k=0, определенных формулой (20), спра-
ведливо рекуррентное соотношение

πk+1(x, y) = xπk(x, y) + 2yπk(x, y) + 2yπk(x+ 1, y − 1)− 4yπk(x, y − 1). (23)

Доказательство. Выполним цепочку преобразований при k = 0, 1, 2, . . .
по формуле (20):

πk+1(z) = ∂k+1
0 e(ζ, z) = ∂k0

(
∂

∂ζ
e(ζ, z)

)
= ∂k0 ((eζx · (e2ζ − 2eζ + 2)y)′ζ)
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= ∂k0 (xeζx(e2ζ − 2eζ + 2)y + eζx · y(e2ζ − 2eζ + 2)y−1 · (2e2ζ − 2eζ))

= ∂k0 (xe(ζ, z) + 2yeζx(e2ζ − 2eζ + 2)y−1 · (e2ζ − 2eζ + eζ + 2− 2))

= x∂k0 e(ζ, z) + 2y∂k0e(ζ, z) + 2y∂k0 (eζx(e2ζ − 2eζ + 2)y−1 · (eζ − 2))

= xπk(z)+2yπk(z)+2y∂k0 (eζ(x+1) · (e2ζ−2eζ+2)y−1)−4y∂k0 (eζx(e2ζ−2eζ+2)y−1)

= xπk(z) + 2yπk(z) + 2yπk(x+ 1, y − 1)− 4yπk(x, y − 1).

Замечание 2. Из теоремы 1 по индукции получим равенства πk(x, 0) = xk,
k = 0, 1, 2, . . . .

2.3.3. Свойства системы функций {πk(z)}∞k=0. В этом пункте устано-

вим основные свойства системы функций {πk(z)}∞k=0.

Теорема 2. Для системы функций {πk(z)}∞k=0, определенной формулой
(20), справедливы следующие утверждения:

(A1) πk(0) = 0 при k = 1, 2, . . . ;
(A2) для любых z1 = x1 + iy1, z2 = x2 + iy2, z1, z2 ∈ G+, при любом целом

неотрицательном k

πk(z1 + z2) =

k∑

s=0

(
k

s

)
πs(z1)πk−s(z2); (24)

(A3) π0(z) = 1, πk(z) — многочлен, для которого верно следующее равен-
ство:

πk(z) = πk(x, y) = xk + σk−1(x, y), (25)

где σk−1(x, y) — многочлен степени ≤ k − 1.

Доказательство. Свойство (A1) очевидно. При вычислении производ-

ных ∂ke(ζ, z) получим слагаемые, содержащие x и y, которые при x = 0 и y = 0

обращаются в нуль.

Свойство (A2) установим по формуле Лейбница:

πk(z1 + z2) = ∂k0 e(ζ, z1 + z2) = ∂k0 [e(ζ, z1) · e(ζ, z2)]

=

k∑

s=0

(
k

s

)
∂s0e(ζ, z1) · ∂k−s0 e(ζ, z2) =

k∑

s=0

(
k

s

)
πs(z1) · πk−s(z2).

Методом математической индукции установим свойство (A3). Имеем π0(z)
= e(0, z) = 1.

База. Для k = 1 по формуле (23) получим

π1(x, y) = xπ0(x, y) + 2yπ0(x, y) + 2yπ0(x+ 1, y − 1)− 4yπ0(x, y − 1)

= x · 1 + 2y · 1 + 2y · 1− 4y · 1 = x.

Предположим, что для k ∈ N верно

πk(x, y) = xk + σk−1(x, y).

Тогда для k + 1 из формулы (23) следует:

πk+1(x, y) = xπk(x, y) + 2yπk(x, y) + 2yπk(x + 1, y − 1)− 4yπk(x, y − 1)

= x(xk + σk−1(x, y)) + 2y(xk + σk−1(x, y)) + 2y((x+ 1)k + σ′k−1(x, y))

− 4y(xk + σ′′k−1(x, y)) = xk+1 + 2yxk + 2yxk − 4yxk + σ̃k(x, y) = xk+1 + σ̃k(x, y),
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где

σ̃k(x, y) = x ·πk−1(x, y)+2yσk−1(x, y)+2yσ′k−1(x, y)−4yσ′′k−1(x, y)+2y ·k ·xk−1

+ слагаемые степени ≤ k − 1.

Таким образом, свойство (A3) доказано.

Теоремы 1, 2 аналогичны лемме 1 работы [28].

2.3.4. Определение. Пусть B = {pk(z)}∞k=0 — система полиномов pk(z) ∈
D(G+). k = 0, 1, 2, . . . . Система B называется системой псевдостепеней, если

для нее выполнены свойства (A1), (A2), (A3).

Замечание 3. В частности, система {πk(z)}∞k=0 является системой псев-

достепеней. Псевдостепени {pk(z)}∞k=0 являются дискретным аналогом клас-

сических аналитических функций {ζk}∞k=0 и будут активно использоваться в

дальнейшем.

§ 3. Соотношения между классическими

аналитическими и дискретными

аналитическими функциями

3.1. Определение. Пусть f(z) ∈ D(G+), pk(z) — некоторая система псев-

достепеней. По аналогии с классической теорией равенство

f(z) =

∞∑

k=0

akpk(z) (26)

называется тейлоровским разложением функции f(z) на G+, если оно выпол-

нено для всех z ∈ G+ и ряд, стоящий в правой части (26), сходится абсолютно.

Цайльбергер [5] поставил следующие два вопроса.

(Q1) Всякая ли дискретная аналитическая функция второго рода разлага-

ется в абсолютно сходящийся ряд по псевдостепеням pk(z) на G+?

(Q2) Является ли данное разложение однозначным?

Ответ дан А. Д. Медных в работе [6]. Оказалось, что для дискретных

аналитических функций 2-го рода формула (26) имеет место, однако само раз-

ложение не является однозначным. Там же в [6] указана степень неединственно-

сти. Всякая тождественно нулевая дискретная аналитическая функция f(z) ≡ 0

представима нетривиальным рядом

f(z) =

∞∑

k=0

akpk(z),

где {ak}∞k=0 — коэффициенты тейлоровского разложения аналитической функ-

ции

F (ζ) =

∞∑

k=0

ak

(
ζ

1 + i

)k

такой, что F (s) = 0 при всех s ∈ Z. Такие функции F (ζ) принадлежат идеалу

I, порожденному функцией sinπζ(1 + i) на множестве целых аналитических

функций.

Аналогичные результаты были получены О. А. Даниловым в работе [28]

для случая дискретных аналитических функций второго рода, определенных
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на дискретных квадратах QR, R > 0. Цель данной статьи — установить соот-

ветствующие результаты для дискретных параболических функций.

3.2. Каноническое отображение. Приведем следующее определение.

Целая функция

F (ζ) =

∞∑

k=0

akζ
k

является функцией экспоненциального типа, если для некоторого действитель-

ного v > 0 найдется действительное r0 > 0 такое, что для каждого действитель-

ного r ≥ r0 выполнено неравенство MF (r) < evr, где MF (r) = sup
|ζ|≤r

|F (ζ)|.

Заметим, что для функции e(ζ, z) = eζx(e2ζ − 2eζ + 2)y при ζ ∈ C, z ∈ G+,

r0 = 2, r ≥ r0 выполнена цепочка неравенств

Me(ζ,z) = sup
|ζ|≤r

|eζx(e2ζ − 2eζ + 2)y| ≤ sup
|ζ|≤r

|eζ |x · sup
|ζ|≤r

|e2ζ − 2eζ + 2|y

≤ erx(e2r + 2er + 2)y ≤ erx(e2r + 3er)y ≤ erx(e2r + e2r)y ≤ erx · e3ry = er(x+3y).

Таким образом, доказано, что экспонента e(ζ, z) является целой функцией

экспоненциального типа переменной ζ. Для оценки ее тейлоровских коэффи-

циентов нам понадобится следующая

Лемма 1 [29, лемма 1, с. 264]. Пусть F (ζ) =
∞∑
k=0

ckζ
k и MF (r) = sup

|ζ|≤r
|F (ζ)|.

Если найдется действительное r0 > 0 такое, что для каждого действительного
r ≥ r0 выполнено неравенство MF (r) < evr для некоторого положительного
v ∈ R, то для коэффициентов ck ее тейлоровского разложения найдется целое
k0 такое, что для всех целых k ≥ k0 справедлива оценка

|ck| <
(
ev

k

)k
. (27)

Зададим отображение � : F (ζ) 7→ f(z) формулой

�

( ∞∑

k=0

akζ
k

)
=

∞∑

k=0

akπk(z). (28)

Теорема 3. Отображение � обладает свойством
(A4) для любой целой функции

F (ζ) =

∞∑

k=0

akζ
k

ассоциированный с ней дискретный ряд

f(z) =

∞∑

k=0

akπk(z)

сходится абсолютно на множестве G+.

Доказательство. По лемме 1 для функции e(ζ, z) в качестве v годится

v = x+ 3y. Значит, из равенства

e(ζ, z) =

∞∑

k=0

ckζ
k =

∞∑

k=0

πk(z)

k!
ζk
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следует оценка

|ck| =
|πk(z)|
k!

≤
(
e(x+ 3y)

k

)k
(29)

при всех целых k ≥ k0. Из асимптотической формулы Стирлинга k! ∼
√

2πk
(
k
e

)k
при k→∞ получим из (29) неравенство

|ck| ≤
(x + 3y)k
√

2πk
(
k
e

)k ·
√

2πk.

Отсюда при k ≥ k1 для некоторого k1 ∈ Z+ получим

|ck| ≤
√

2πk(x+ 3y)k

k!
⇒ |πk(z)|

k!
≤
√

2πk(x+ 3y)k

k!
,

|πk(z)| ≤
√

2πk(x + 3y)k. (30)

Так как F (ζ) =
∑
akζ

k целая, то lim
k→∞

k
√
|ak| = 0, откуда для дискретного ряда

f(z) верна оценка

|f(z)| ≤
∞∑

k=0

|ak||πk(z)| ≤
∞∑

k=0

|ak|
√

2πk(x + 3y)k.

Отсюда по признаку Коши получим сходимость ряда f(z):

0 ≤ k
√
|ak||πk(z)| ≤ k

√
|ak| 2k

√
2πk(x + 3y). (31)

Правая часть k
√
|ak| 2k

√
2πk(x + 3y) стремится к нулю при k → ∞ для любого

z ∈ G+, значит, ряд
∞∑
k=0

|ak|
√

2πk(x+3y)k сходится, откуда вытекает сходимость

дискретного ряда f(z).

Замечание 4. В силу линейности оператора � и абсолютной сходимо-

сти ряда (�F )(z) при z ∈ G+ можно утверждать, что � является операто-

ром эволюции на G+, т. е. f(z) = (�F )(z) является решением разностного

уравнения f(z + i) − f(z) = f(z + 2) − 2f(z + 1) + f(z) с начальным условием

f(x, 0) = (�F )(x, 0) = F (x), где x ∈ Z+, а F (ζ) =
∞∑
k=0

akζ
k — целая функция.

Действительно, из абсолютной сходимости ряда

F (ζ) =

∞∑

k=0

akζ
k, ζ ∈ C,

имеем абсолютную сходимость ряда

f(x) =

∞∑

k=0

akπk(x) =

∞∑

k=0

akx
k

при x = 0, 1, . . . . Следовательно,

Lf(z) = −f(z + i) + f(z + 2)− 2f(z + 1) + 2f(z)

= −
∞∑

k=0

akπk(z + i) +

∞∑

k=0

akπk(z + 2)− 2

∞∑

k=0

akπk(z + 1) + 2

∞∑

k=0

akπk(z)

=

∞∑

k=0

ak(−πk(z + i) + πk(z + 2)− 2πk(z + 1) + 2πk(z)) =

∞∑

k=0

akLπk(z) = 0,
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поскольку Lπk(z) = 0.

Замечание 5. Следующее замечание принадлежит рецензенту. Абсолют-

ную сходимость функции (�F )(z) при z ∈ G+ можно показать следующим об-

разом. Повторно применяя формулу f(z+ i)− f(z) = f(z+2)−2f(z+1)+ f(z),
представим f(x, y) в виде

f(x, y) =

2y∑

k=0

αkf(x+ k, 0),

где αk — некоторые константы, не зависящие от x.
В силу абсолютной сходимости ряда

f(x) =

∞∑

k=0

akπk(x) =

∞∑

k=0

akx
k

при x = 0, 1, . . . получим, что ряд

f(x, y) =

∞∑

k=0

akπk(x, y)

абсолютно сходится как конечная сумма абсолютно сходящихся рядов.

3.3. Соотношение между классическими аналитическими и дис-

кретными параболическими функциями. Обозначим через A (C) множе-

ство целых функций. Свойство (A4) теоремы 3, установленное для каноническо-

го отображения � из множества A (C) в множество дискретных рядов, является

ключевым в дальнейшем изложении. Оно позволяет установить соотношение

между значениями функций {F (ζ), ζ = 0, 1, . . .} и {f(z), z = 0, 1, . . .}.
Теорема 4. Пусть F (ζ) ∈ A (C),

F (ζ) =

∞∑

k=0

akζ
k, f(z) =

∞∑

k=0

akπk(z), z ∈ G+,

— ассоциированный с F (ζ) дискретный ряд. Тогда справедливы следующие
утверждения:

1) имеет место равенство

f(z) = f(x+ iy) =

x+2y∑

s=0

c(x, y, s)F (s), (32)

где

c(x, y, s) =
1

2πi

∮

�

ξx(ξ2 − 2ξ + 2)y

ξs+1
dξ, (33)

a � — контур, содержащий внутри себя 0;
2) f(z) ∈ D(G+).

Доказательство. Рассмотрим тейлоровское разложение для функции

e(ζ, z) = eζx(e2ζ − 2eζ + 2)y по степеням ξ = eζ. Получим равенство

e(ξ, z) = ξx(ξ2 − 2ξ + 2)y =

x+2y∑

s=0

c(x, y, s)ξs, (34)
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где

c(x, y, s) =
1

2πi

∮

�

ξx(ξ2 − 2ξ + 2)y

ξs+1
dξ,

а � — контур, содержащий внутри ξ = 0. По формуле (20) с помощью равенства

(34) получим

πk(z) = ∂k0 e(ζ, z) =

x+2y∑

s=0

c(x, y, s)∂k0 (eζs) =

x+2y∑

s=0

c(x, y, s)sk.

Отсюда

f(z) =

∞∑

k=0

akπk(z) =

∞∑

k=0

ak

x+2y∑

s=0

c(x, y, s)sk

=

x+2y∑

s=0

c(x, y, s)
∞∑

k=0

aks
k =

x+2y∑

s=0

c(x, y, s)F (s).

Этот ряд сходится как конечная сумма сходящихся рядов для любого z ∈ G+,

поскольку F (ζ) — целая функция.

Докажем утверждение 2. Имеем

Lf(z) = −f(z + i) + f(z + 2)− 2f(z + 1) + 2f(z)

= −
∞∑

k=0

akπk(z + i) +

∞∑

k=0

akπk(z + 2)− 2

∞∑

k=0

akπk(z + 1) + 2

∞∑

k=0

akπk(z)

=

∞∑

k=0

ak(−πk(z + i) + πk(z + 2)− 2πk(z + 1) + 2πk(z)) =

∞∑

k=0

akLπk(z) = 0,

поскольку Lπk(z) = 0.

3.3.1. Отметим следующее важное следствие теоремы 4.

Следствие 1. Пусть верны условия теоремы 4. Тогда для всех целых
неотрицательных k верны соотношения

f(k) = F (k). (35)

Доказательство. Поскольку ряд F (ζ) =
∞∑
k=0

akζ
k абсолютно сходится

при любом ζ ∈ C и по замечанию 2 πk(x, 0) = xk, имеем

F (s) =

∞∑

k=0

aks
k = f(s)

для всех s = 0, 1, 2, . . . .

Теорема 4 дает регулярный способ получения функций f(z) ∈ D(G+). Для

этого достаточно взять произвольную функцию

F (ζ) =

∞∑

k=0

akζ
k ∈ A (C)
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и с помощью отображения � получить

f(z) = (�F )(z) =

∞∑

k=0

akπk(z).

Полученный дискретный ряд принадлежит D(G+) по теореме 4.

Возникает вопрос: всякая ли функция f(z) ∈ D(G+) может быть образом

(�F )(z) при некоторой целой функции F (ζ), т. е. является ли отображение

�: A (C)→ D(G+)

сюръективным?

3.4. Сюръективность отображения � : A (C)→ D(G+).

3.4.1. Заметим, что всякая функция f ∈ D(G+) однозначно восстанав-

ливается по своим значениям на множестве z = 0, 1, 2, . . . . Действительно, по

формуле (12), зная f(k), f(k+1), f(k+2), последовательно вычисляем f(k+ i),
k = 0, 1, 2, . . . . Аналогично по значениям f(k + i), f(k + 1 + i), f(k + 2 + i)
вычисляем f(k + 2i), k = 0, 1, 2, . . . , и т. д. Поэтому если f(z) и g(z) ∈ D(G+) и

f(z) = g(z) при z = 0, 1, 2, . . . , получим совпадение f(z) = g(z) при всех z ∈ G+.

Для доказательства утверждения, что отображение �: A (C) → D(G+)

сюръективно, нам понадобится следующая теорема 1 из [30, с. 335]. Анало-

гичный результат есть в [31, с. 202].

Теорема Гельфонда — Шеффера. Для любой последовательности чи-
сел al ∈ C, l = 0, 1, 2, . . . , существует бесконечное множество целых функций
ϕ(ζ) таких, что ϕ(l) = al, l = 0, 1, 2, . . . .

3.4.2. Основные результаты.

Теорема 5. Отображение � : A (C) → D(G+), определенное формулой
(28), сюръективно.

Доказательство. Пусть f(z) ∈ D(G+). Рассмотрим множество значений

{f(0), f(1), f(2), . . .}. По теореме Гельфонда — Шеффера найдется целая функ-

ция F (ζ) =
∞∑
k=0

akζ
k такая, что F (k) = f(k) при k = 0, 1, 2, . . . . По следствию 1

из п. 3.3.1 для функции

f̃(z) = (�F )(z) =

∞∑

k=0

akπk(z)

из (23) получим равенства f̃(k) = F (k) при k = 0, 1, 2, . . . . Функция f̃(z) при-

надлежит D(G+) по теореме 4 и, значит, f(k) = f̃(k) при k = 0, 1, 2, . . . , т. е.

функции f(k) и f̃(k) совпадают при всех z ∈ G+. �

Замечание 6. Пусть

F (ζ) =

∞∑

k=0

akζ
k ∈ A (C), f(z) = (�F )(z) =

∞∑

k=0

akπk(z).

Соотношение (35) и теорема 5 показывают, что f(z) = (�F )(z) ≡ 0 при z ∈ G+

тогда и только тогда, когда F (s) = 0 при s = 0, 1, 2, . . . .

Для линейного отображения � : A (C) → D(G+) дадим полное описание

ядра Ker�. Воспользуемся классической функцией � (ζ) =
+∞∫
0

tζ−1e−t dt. Тогда

функция 1
� (−ζ) целая и имеет простые нули только в точках ζ = 0, 1, 2, . . . .
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Теорема 6. Ядро Ker� отображения � : A (C) → D(G+), определенного
формулой (28), состоит из целых функций F (ζ), имеющих вид

F (ζ) =
H(ζ)

� (−ζ) , (36)

где H(ζ) — произвольная целая функция.

Доказательство. Если F (ζ) =
H(ζ)
� (−ζ) , то очевидно, что F (k) = 0 при k =

0, 1, 2, . . . и по (35) (�F )(k) = 0 при k = 0, 1, 2, . . . , следовательно, (�F )(z) ≡ 0

при z ∈ G+.

Обратно, пусть F (ζ) ∈ A (C) такова, что F (k) = 0, k = 0, 1, 2, . . . . Положим

H(ζ) = F (ζ) · � (−ζ). (37)

В точках ζ = k, k = 0, 1, 2, . . . , функция H(ζ) имеет устранимые особенности.

Положим H(k) = lim
ζ→k

F (ζ) · � (−ζ), k = 0, 1, 2, . . . . Функция H(ζ) принадлежит

A (C) и тем самым F (ζ) =
H(ζ)
� (−ζ) , где H(ζ) ∈ A (C). �

Таким образом, ядро Ker� можно записать в виде

Ker� =
1

� (−ζ) A (C). (38)

3.5. Примеры тейлоровского разложения в D(G+).

3.5.1. Пусть

F (ζ) = sinπζ =

∞∑

k=0

(−1)k
(πζ)2k+1

(2k + 1)!
.

Поскольку sinπk = 0 при k = 0, 1, 2, . . . , то (�(sin πζ))(z) ≡ 0 при z ∈ G+.

Следовательно,

0 ≡ (�F )(z) =

∞∑

k=0

(−1)kπ2k+1

(2k + 1)!
· π2k+1(z). (39)

Формула (39) дает пример функции f(z) ≡ 0, z ∈ G+, имеющей нетривиальное

разложение Тейлора.

3.5.2. Определим f(k) = (−1)k, k = 0, 1, 2, . . . , и построим ее продолжение

на G+ по формуле (12). Тогда

f(k + i) = 5(−1)k, k = 0, 1, 2, . . . , f(k + 2i) = 52(−1)k, k = 0, 1, 2, . . . ,

и аналогично для других слоев.

Для функции F (ζ) = eiπζ , очевидно, F (k) = eiπk = (−1)k, k = 0, 1, 2, . . . .
Поскольку

F (ζ) = eiπζ =

∞∑

k=0

(iπζ)k

k!
=

∞∑

k=0

(iπ)kζk

k!
,

имеем

f(z) = (�F )(z) =

∞∑

k=0

(iπ)k

k!
· πk(z).
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МЕТРИЧЕСКИЕ СВОЙСТВА ОТОБРАЖЕНИЙ,

ЗАДАЮЩИХ ЛИПШИЦЕВЫ ГРАФИКИ

НА ДВУХСТУПЕНЧАТЫХ ГРУППАХ КАРНО

М. Б. Карманова

Аннотация. Выведен явный вид субримановых дифференциалов отображений-
графиков, являющихся липшицевыми во внутреннем смысле, на двухступенчатых
группах Карно, и описаны дифференциальные и метрические свойства отображе-
ний, задающих такие графики.

DOI10.33048/smzh.2025.66.609

Ключевые слова: липшицево отображение, внутренняя метрика, отображение-
график, двухступенчатая группа Карно, субриманов дифференциал.

Статья продолжает исследования [1] о свойствах липшицевых графиков на

двухступенчатых группах Карно. В задачах классического анализа и его обоб-

щений отображения-графики играют существенную роль. Например, классы

минимальных и максимальных поверхностей (см. подробности о таких поверх-

ностях, связанных задачах и применениях в [2–5] и цитируемых источниках)

локально представимы в виде графиков. Кроме того, в начале XXI века бы-

ла найдена связь задач нейробиологии о построении моделей визуализации и

свойств минимальных поверхностей в субримановой геометрии [6–8]. Ряд работ

посвящен исследованию свойств графиков с классическим способом построения

и с согласованным с субримановой структурой (см., например, [9–16] и др.).

Нетрудно проверить, что в силу особенностей строения групп Карно и дру-

гих субримановых структур свойство липшицевости (во внутреннем смысле)

отображения не переносится на его график, и наоборот. В частности, график

липшицевой функции не всегда является таковым даже на модельных случаях

групп Гейзенберга. В связи с этим возникают проблемы при выводе анало-

гов дифференциальных и метрических свойств поверхностей-образов. Автором

предложен новый подход к решению такой проблемы в [17–20] и др. работах.

В [1] (см. также [21], где исследован модельный случай) решается обратный

вопрос: если график некоторого отображения является липшицевым, то какими

свойствами обладает определяющее его отображение? В результате получено

аналитическое описание классов отображений, гарантирующих липшицевость

во внутреннем смысле построенных по ним графиков. С помощью выведенного

в [1] критерия мы в данной работе получаем явный вид субриманова диффе-

ренциала липшицева отображения-графика и формулу для вычисления меры

соответствующей поверхности-образа, а также выводим в явном виде новые

Работа выполнена в рамках государственного задания ИМ СО РАН (проект № FWNF-
2022-0006).

c© 2025 Карманова М. Б.
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дифференциальные свойства определяющего такой график отображения. Кро-

ме того, при некоторых дополнительных предположениях установлена формула

площади для образов таких отображений.

Прежде всего опишем основные объекты исследования и их свойства.

Определение 1 [22]. Двухступенчатая группа Карно — это связная одно-

связная стратифицированная группа Ли G, алгебра Ли V которой представима

в виде V = V1 ⊕ V2, [V1, V1] = V2, [V1, V2] = {0}.
Если базисное поле Xl принадлежит Vk, то его степень degXl равна k,

l = 1, . . . , N , k = 1, 2. Здесь и далееN — топологическая размерность группы G.

Поля, степень которых равна единице, называются горизонтальными.

Подчеркнем, что базисные поля на группе Карно выбираются таким обра-

зом, что каждое из них принадлежит только одному из множеств V1 или V2.

Размерность каждого Vk обозначается символом dimVk, k = 1, 2. Групповая

операция определяется формулой Бейкера — Кэмпбелла — Хаусдорфа. Если

x = exp

(
N∑
j=1

xjXj

)
(0), y = exp

(
N∑
j=1

yjXj

)
(0), где 0 — единица группы G, то

x · y = z = exp

(
N∑

j=1

yjXj

)
(x) = exp

(
N∑

j=1

zjXj

)
(0), (1)

где zj = xj + yj для degXj = 1,

zj = xj + yj +
∑

µ,β:degXµ=degXβ=1

F jµ,βxµyβ (2)

при degXj = 2. Значения
{
F jµ,β

}
j,µ,β

называются структурными константа-

ми и не зависят от точек.

Аналог расстояния на группе Карно вводится следующим образом.

Определение 2 (см., например, [17]). Пусть w = exp

(
N∑
i=1

wiXi

)
(v), v, w ∈

G. Положим

d2(v, w) = max
{( ∑

j:degXj=1

w2
j

) 1
2

,
( ∑

j:degXj=2

w2
j

) 1
4
}
.

Множество {w ∈ G : d2(v, w) < r} называется шаром относительно d2 радиуса

r > 0 с центром в точке v и обозначается символом Box2(v, r).

С помощью формул групповой операции нетрудно показать, что d2 являет-

ся квазиметрикой: она равна нулю тогда и только тогда, когда точки совпадают,

обладает свойством симметричности, и локально для нее выполняется обобщен-

ное неравенство треугольника.

Определение 3. Рассмотрим точку u ∈ G и (v1, . . . , vN ) ∈ RN . Опреде-

лим отображение θu : RN → G следующим образом:

θu(v1, . . . , vN ) = exp

(
N∑

i=1

viXi

)
(u).

Известно, что θu — гладкий диффеоморфизм. Набор {vi}Ni=1 называется нор-

мальными координатами или координатами первого рода (относительно u ∈
G) точки v = θu(v1, . . . , vN ).
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Определение 4. Пусть G, G̃ — группы Карно, E ⊂ G и ϕ : E → G̃.

Будем говорить, что оно липшицево во внутреннем смысле, или липшицево в

субримановом смысле, если существует константа 0 < L <∞ такая, что

d̃2(ϕ(x), ϕ(y)) < Ld2(x, y),

где d̃2 — квазиметрика на G̃, построенная по такому же принципу, как в опре-

делении 2.

Определение 5 ([23]; см. также [24]). Пусть G и G̃ — группы Карно,

� ⊂ G и ϕ : � → G̃. Отображение ϕ является hc-дифференцируемым, или

дифференцируемым в субримановом смысле, в (предельной) точке x ∈ �, если

существует горизонтальный гомоморфизм Lx : G→ G̃ такой, что

d̃2(ϕ(y),Lx〈y〉) = o(1) · d2(x, y), где o(1)→ 0 при � ∋ y → x.

hc-Дифференциал (или субриманов дифференциал) Lx обозначается символом

D̂ϕ(x).

Хаусдорфова размерность G относительно d2 равна
2∑

k=1

k dimVk и обозна-

чается символом ν.

Определение 6. Значение субримановой меры для A ⊂ G равно

H ν(A) =

2∏

k=1

ωdimVk
· lim
δ→0

inf
{∑

i∈N
rνi :

⋃

i∈N
Box2(xi, ri) ⊃ A, xi ∈ A, ri < δ

}
,

где ωm обозначает объем единичного шара в Rm, а точная нижняя грань берется

по всем покрытиям множества A.

Несмотря на нестандартное определение (в определение H ν(A) добавляет-

ся условие xi ∈ A, i ∈ N), функция множества H ν является мерой. В частности,

она обладает свойством счетной аддитивности на сигма-алгебре борелевских

множеств (см., например, [25]).

Обозначение 7. Пусть G̃ — группа Карно. Обозначим ее топологическую

размерность и размерности составляющих алгебру Ли подпространств, отобра-

жение нормальных координат, а также, определенную аналогично d2 квазимет-

рику теми же символами, что и для G, только со знаком .̃

Опишем условия решения задачи.

Предположение 8. Пусть G и G̃ — двухступенчатые группы Карно с

базисными полями {Xi}Ni=1 и {X̃j}Ñj=1 соответственно, которые являются под-

множествами двухступенчатой группы Карно Ĝ топологической размерности

N̂ = N + Ñ со структурными константами
{
F jµ,β

}
j,µ,β

и квазиметрикой d̂2, за-

данной, как в определении 2. Пусть еще базисные векторные поля {X̂i}N̂i=1 на

Ĝ таковы, что, во-первых, dim V̂k = dimVk + dim Ṽk, k = 1, 2, и, во-вторых,

X̂1|G = X1, . . . , X̂dimV1 |G = XdimV1 ,

X̂
dim V̂1+1

|G = XdimV1+1, . . . , X̂dim V̂1+dimV2
|G = XN

и
X̂dimV1+1|G̃ = X̃1, . . . , X̂dim V̂1

|
G̃

= X̃
dim Ṽ1

,
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X̂
dim V̂1+dimV2+1

|
G̃

= X̃
dim Ṽ1+1

, . . . , X̂
N̂
|
G̃

= X̃
Ñ
.

Обозначение 9. Пусть G и G̃ — двухступенчатые группы Карно, ϕ : G→
G̃ и u,w ∈ G. Обозначим координаты элемента ϕ(w) относительно ϕ(u) симво-

лами {ϕku(w)}Ñk=1. Иными словами,

ϕ(w) = exp

(
Ñ∑

k=1

ϕku(w)X̃k

)
(ϕ(u)).

Обозначение 10. Положим

wH = exp

(
dimV1∑

β=1

wβXβ

)
(u) и wT = exp

(
N∑

λ=dimV1+1

wλXλ

)
(u)

для w = exp

(
N∑
j=1

wjXj

)
(u). Положим также

ϕHu (wH) = exp

(
dim Ṽ1∑

k=1

ϕku(wH)X̃k

)
(ϕ(u))

и

ϕTu (wT ) = exp

(
Ñ∑

k=dim Ṽ1+1

ϕku(wT )X̃k

)
(ϕ(u)).

Следующий результат является основой для решения поставленной задачи

о дифференциальных свойствах.

Теорема 11 [1]. Пусть для двухступенчатых групп Карно G, G̃ и Ĝ выпол-

нены условия предположения 8 и ϕ : G → G̃ — некоторое отображение. Тогда

график ϕ� : G→ Ĝ, построенный как

G ∋ w 7→ exp

(
dim V̂1∑

j=dimV1+1

ϕj−dimV1(w)X̂j +

N̂∑

j=dim V̂1+dimV2+1

ϕj−N (w)X̂j

)
(w),

где

ϕ(w) = exp

(
Ñ∑

j=1

ϕj(w)X̃j

)
(0),

является липшицевым относительно d2 и d̂2 тогда и только тогда, когда выпол-
нены следующие условия.

1. Координатные функции ϕj липшицевы во внутреннем смысле, если j ≤
dim Ṽ1.

2. Если k = dim V̂1 + 1, . . . , dim V̂1 + dimV2, то верно

∑

µ:µ∈[dimV1+1,dim V̂1]

F kµ,βϕµ−dimV1(u) = 0 (3)

для всех β = 1, . . . , dimV1 и u ∈ G.
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3. Для k > dim V̂1 + dimV2 и точек u,wH ∈ G таких, что

wH = exp

(
dimV1∑

β=1

wβXβ

)
(u),

функция wH 7→ ϕk−Nu (wH) дифференцируема (в классическом смысле) в u, ее
дифференциал равен

dimV1∑

β=1

( ∑

µ:µ∈[dimV1+1,dim V̂1]

2F kµ,βϕµ−dimV1(u)
)
wβ ,

а величина o(1) из определения дифференцируемости не превосходит

Q ·
√

dimV1∑
β=1

(wβ)2, где константа 0 < Q <∞ не зависит от u.

Если же

wT = exp

(
N∑

λ=dimV1+1

wλXλ

)
(u),

то

∣∣ϕk−Nu (wT )
∣∣ ≤ C ·

√√√√
N∑

λ=dimV1+1

(wλ)2, C <∞.

Перейдем к описанию и доказательству основного результата работы.

Теорема 12. Пусть для двухступенчатых групп Карно G, G̃ и Ĝ выполне-

ны условия предположения 8 и ϕ : G→ G̃ — такое отображение, что его график

ϕ� : G → Ĝ является липшицевым во внутреннем смысле, а u ∈ G — произ-

вольная точка области определения ϕ. Тогда функции {ϕku(w)}Ñk=1 обладают
следующими свойствами.

1. Если k = 1, . . . , dim Ṽ1, то каждая функция w 7→ ϕku(w) является hc-диф-
ференцируемой в точках hc-дифференцируемости ϕ� и значение ее hc-диффе-

ренциала в точке u ∈ G на элементе w совпадает с (D̂ϕ� (u)〈wH〉)k+dimV1 .

2. Если k = dim Ṽ1+1, . . . , Ñ , то каждая функция wH 7→ ϕku(wH) дифферен-
цируема по w1, . . . , wdimV1 дважды, причем значение второго дифференциала
в точке u на элементе wH равно

∑

µ,β:β∈[1,dimV1],

µ∈[dimV1+1,dim V̂1]

F k+Nµ,β (D̂ϕ� (u)〈wH〉)µwβ .

3. Если k = dim Ṽ1 + 1, . . . , Ñ , то функция wT 7→ ϕku(wT ) дифференци-
руема по wdimV1+1, . . . , wN в точках u hc-дифференцируемости отображения-
графика ϕ� . Кроме того, значение дифференциала каждой такой функции в

точке u ∈ G на элементе wT равно (D̂ϕ� (u)〈w〉)k+N = (D̂ϕ� (u)〈wT 〉)k+N .
Кроме того, субриманов дифференциал липшицева отображения-графика

в точках, где он существует, имеет вид


EdimV1 0

DϕHu (u) 0

0 EdimV2

0 DϕTu (u)


 ,
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где El — единичная матрица размера l.

Доказательство. Пусть u,w ∈ G, где w = exp

(
N∑
i=1

wiXi

)
(u). Тогда [1]

ϕ� (w) = exp

(
N̂∑

k=1

skX̂k

)
(ϕ� (u)),

где sk = wk, если k = 1, . . . , dimV1, и sk = ϕk−dim V1(w) − ϕk−dimV1(u) =

ϕk−dimV1
u (w), если k = dimV1 + 1, . . . , dim V̂1. Тогда, так как

sk = (D̂ϕ� (u)〈w〉)k + o(d2(u,w)),

то

ϕk−dimV1
u (w) = (D̂ϕ� (u)〈w〉)k + o(d2(u,w)) = (D̂ϕ� (u)〈wH〉)k + o(d2(u,w)),

где

wH = exp

(
dimV1∑

i=1

wiXi

)
(u), k = dim V1 + 1, . . . , dim V̂1.

Иными словами, каждая функция ϕk−dimV1
u (w) дифференцируема в субримано-

вом смысле в точках субримановой дифференцируемости ϕ� , и значение ее hc-

дифференциала на элементе w равно (D̂ϕ� (u)〈wH〉)k, k = dimV1 +1, . . . , dim V̂1.

Кроме того, полагая w = wH , выводим

ϕk−dimV1
u (wH) = (D̂ϕ� (u)〈wH〉)k + o(d2(u,wH)),

где d2(u,wH) =

√
dimV1∑
i=1

(wi)2. Отсюда следует, что отображение wH 7→ ϕHu (wH)

дифференцируемо в точке u и поэтому первый блок матрицы субриманова диф-

ференциала ϕ� размера dim V̂1 × dim V1 равен
(
EdimV1

DϕHu (u)

)
.

Если же k = dim V̂1 + 1, . . . , dim V̂1 + dimV2, то

sk = w
k−dim Ṽ1

−
∑

µ,β:β∈[1,dimV1],

µ∈[dimV1+1,dim V̂1]

F kµ,β(ϕµ−dimV1(w) − ϕµ−dimV1(u))wβ .

Но так как для этих значений k верно (3), то справедливо и
∑

µ:µ∈[dimV1+1,dim V̂1]

F kµ,βϕµ−dimV1(w) = 0

для всех β = 1, . . . , dimV1, поэтому sk = w
k−dim Ṽ1

для k = dim V̂1+1, . . . , dim V̂1+

dimV2.

Пусть теперь k > dim V̂1 + dimV2. Тогда

sk = ϕk−Nu (w)−
∑

µ,β:β∈[1,dimV1],

µ∈[dimV1+1,dim V̂1]

F kµ,β(ϕµ−dimV1(w)− ϕµ−dimV1(u))wβ

− 2
∑

µ,β:β∈[1,dimV1],

µ∈[dimV1+1,dim V̂1]

F kµ,βϕµ−dimV1(u)wβ . (4)
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Тогда для w и wH в силу (2) верно w = exp

(
N∑

i=dimV1+1

wiXi

)
(wH). Преобразуем

(4) через значения ϕ(wH). Так как

ϕk−Nu (w) = ϕk−Nu (wH) + ϕk−NwH
(w)

+
∑

µ,λ:

µ,λ∈[dimV1+1,dim V̂1]

F kµ,λϕ
µ−dimV1
u (wH)ϕλ−dimV1

wH
(w), (5)

то выводим

sk = ϕk−Nu (wH)+ϕk−NwH
(w)+

∑

µ,λ:

µ,λ∈[dimV1+1,dim V̂1]

F kµ,λϕ
µ−dimV1
u (wH)ϕλ−dimV1

wH
(w)

−
∑

µ,β:β∈[1,dimV1],

µ∈[dimV1+1,dim V̂1]

F kµ,βϕ
µ−dimV1
u (wH)wβ −

∑

µ,β:β∈[1,dimV1],

µ∈[dimV1+1,dim V̂1]

F kµ,βϕ
µ−dimV1
wH

(w)wβ

− 2
∑

µ,β:β∈[1,dimV1],

µ∈[dimV1+1,dim V̂1]

F kµ,βϕµ−dimV1(u)wβ .

Предположим, что u — точка, в которой существует субриманов диффе-

ренциал D̂ϕ� (u). Тогда из определения 5 и из (2) следует, что

|sk − (D̂ϕ� (u)〈w〉)k| = o(d2(u,w)2).

Полагая w = wH , получаем d2(u,wH)2 =
dimV1∑
i=1

(wi)
2, и (D̂ϕ� (u)〈w〉)k = 0 для

всех k > dim V̂1 + dimV2, поэтому

ϕk−Nu (wH)− 2
∑

µ,β:β∈[1,dimV1],

µ∈[dimV1+1,dim V̂1]

F kµ,βϕµ−dimV1(u)wβ

−
∑

µ,β:β∈[1,dimV1],

µ∈[dimV1+1,dim V̂1]

F kµ,βϕ
µ−dimV1
u (wH)wβ = o

(
dimV1∑

i=1

(wi)
2

)
. (6)

Так как ∑

µ,β:β∈[1,dimV1],

µ∈[dimV1+1,dim V̂1]

F kµ,βϕ
µ−dimV1
u (wH)wβ

=
∑

µ,β:β∈[1,dimV1],

µ∈[dimV1+1,dim V̂1]

F kµ,β((D̂ϕ� (u)〈wH〉)µ + o(d2(u,wH)))wβ

=
∑

µ,β:β∈[1,dimV1],

µ∈[dimV1+1,dim V̂1]

F kµ,β(D̂ϕ� (u)〈wH〉)µwβ + o(d2(u,wH)2), (7)

то из (6) выводим усиление теоремы 11, а именно, что каждая функция wH 7→
ϕk−Nu (wH) дифференцируема по w1, . . . , wdimV1 дважды, причем значение вто-

рого дифференциала в точке u на элементе wH равно∑

µ,β:β∈[1,dimV1],

µ∈[dimV1+1,dim V̂1]

F kµ,β(D̂ϕ� (u)〈wH〉)µwβ
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для всех k > dim V̂1 + dimV2.

Далее, имеем

sk = ϕk−NwH
(w) +

∑

µ,λ:

µ,λ∈[dimV1+1,dim V̂1]

F kµ,λϕ
µ−dimV1
u (wH)ϕλ−dimV1

wH
(w)

−
∑

µ,β:β∈[1,dimV1],

µ∈[dimV1+1,dim V̂1]

F kµ,βϕ
µ−dimV1
wH

(w)wβ + o

(
dimV1∑

i=1

(wi)
2

)

= (D̂ϕ� (u)〈w〉)k + o(d2(u,w)2).

В полученном соотношении (D̂ϕ� (u)〈w〉)k не зависит от координат элемента wH .

Поэтому рассмотрим случай, когда все эти координаты равны нулю. Тогда

получим wH = u, w = wT и поэтому

(D̂ϕ� (u)〈w〉)k + o(d2(u,wT )2) = ϕk−Nu (wT ), (8)

где wT = exp

(
N∑

λ=dimV1+1

wλXλ

)
(u) (см. также теорему 11). Так как d2(u,wT )2

=

√
N∑

λ=dimV1+1

(wλ)2, то (8) означает, что функция

wT 7→ ϕk−Nu (wT )

дифференцируема по wdimV1+1, . . . , wN в точках u субримановой дифференци-

руемости отображения-графика ϕ� для всех k > dim V̂1 + dimV2. Кроме того,

значение ее дифференциала в точке u на элементе wT равно (D̂ϕ� (u)〈w〉)k =

(D̂ϕ� (u)〈wT 〉)k, k = dim V̂1 + dimV2, . . . , N̂ .

Отсюда и из (2) следует, что отображение wT 7→ ϕTu (wT ) является диффе-

ренцируемым в точке u, и поэтому второй блок матрицы субриманова диффе-

ренциала ϕ� размера dim V̂2 × dimV2 равен
(
EdimV2

DϕTu (u)

)
.

Таким образом, мы вывели дифференциальные свойства функций {ϕku(w)}Ñk=1,

и получили вид субриманова дифференциала отображения-графикаϕ� в точках

u ∈ G его hc-дифференцируемости:



EdimV1 0

DϕHu (u) 0

0 EdimV2

0 DϕTu (u)


 . (9)

Теорема доказана.

Пример 13. Пусть G, G̃ ⊂ Ĝ таковы, что [X̂i, X̂j ] = 0, если i = 1, . . . ,

dimV1 и j = dimV1 + 1, . . . , dim V̂1, а ϕ : G → G̃ липшицево во внутреннем

смысле. Тогда (6) имеет вид

ϕk−Nu (wH) = o

(
dimV1∑

i=1

(wi)
2

)
.
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Пример 14. Пусть G, G̃ ⊂ Ĝ таковы, что существует ненулевое решение

(tdimV1+1, . . . , tdim V̂1
) у системы уравнений

dim V̂1∑

µ=dimV1+1

F kµ,βtµ = 0, k = dim V̂1 + 1, . . . , dim V̂1 + dimV2, β = 1, . . . , dimV1.

Для µ = dimV1 + 1, . . . , dim V̂1 положим ϕµ−dimV1 ≡ tµ. Если же µ = dim V̂1 +

dimV2 + 1, . . . , N̂ , то для w = exp

(
N∑
i=1

wiXi

)
(0) определим

ϕµ−N (w) =

dimV1∑

β=1

( ∑

λ:λ∈[dimV1+1,dim V̂1]

2Fµλ,βϕλ−dimV1

)
wβ .

для всех k > dim V̂1 + dim V2. Тогда вторые производные ϕµ−N (w) по w1, . . . ,
wdimV1 и первые производные ϕµ−N (w) по wdimV1+1, . . . , wN равны нулю.

Из теоремы 12 в качестве следствия получаем формулу площади для лип-

шицевых отображений-графиков. Обратим внимание, что ее вид является ана-

логичным классическому.

Теорема 15. В условиях теоремы 12 справедлива формула площади для
отображений-графиков

∫

A

J (ϕ� , x) dH
ν(x) = H ν(ϕ� (A)),

где A ⊂ G — измеримое множество, J (ϕ� , x) совпадает со значением

√
det
(
EdimV1 + (DϕHx )∗(x)DϕHx (x)

)
·
(
EdimV2 +

(
DϕTx

)∗
(x)DϕTx (x)

)
,

а H ν на ϕ� (G) задается аналогично определению 6 и является мерой.

Для получения второго основного результата нам потребуется следующее

Определение 16 [26]. Пусть G, G̃ — группы Карно и ξ : G → G̃. Пусть

еще d : ξ(G)→ R+. Будем говорить, что ξ полиномиально субриманово диффе-

ренцируемо, или полиномиально hc-дифференцируемо в x ∈ G, если существует

отображение Lx : G→ G̃ такое, что

1) d(ξ(y),Lx〈y〉) = o(d2(x, y)) при y → x;
2) Lx〈y〉 = θξ(x) ◦ Lx ◦ θ−1

x (y), где Lx — оператор с полиномиальными по

y1, . . . , yN коэффициентами, а y = θx(y1, . . . , yN).

Отображение Lx называется полиномиальным субримановым дифференци-

алом, или полиномиальным hc-дифференциалом, отображения ξ в точке x и

обозначается символом D̂P ξ(x).

Предположим теперь, что отображение-график ϕ� является контактным

отображением класса C1
H и липшицевым, т. е. производные ϕ� вдоль гори-

зонтальных полей существуют и непрерывны и, кроме того, span
{
X1ϕ� , . . . ,

XdimV1ϕ�
}
⊂ V̂1. Такие отображения являются непрерывно hc-дифференцируе-

мыми всюду [24]. В этом случае аналог дифференциальных свойств ϕ можно

описать в явном виде.
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Теорема 17. Пусть выполнены условия теоремы 12 и отображение-график
ϕ� является контактным отображением класса C1

H и липшицевым.
Тогда ϕ является полиномиально субриманово дифференцируемым всюду,

и для u ∈ G и w из окрестности точки u верно

D̂Pϕ(u)〈w〉 = exp

(
Ñ∑

k=1

P ku (w)X̃k

)
(ϕ(u)),

где
P ku (w) = (D̂ϕ� (u)〈w〉)k+dim V1 , если k = 1, . . . , dim Ṽ1,

и

P ku (w) = 2
∑

µ,β:β∈[1,dimV1],

µ∈[1,dim Ṽ1]

F k+Nµ+dimV1,β
ϕµ(u)wβ

+
∑

µ,β:β∈[1,dimV1],

µ∈[dimV1+1,dim V̂1]

F k+Nµ,β (D̂ϕ� (u)〈w〉)µwβ + (D̂ϕ� (u)〈w〉)k+N ,

если k = dim Ṽ1 + 1, . . . , Ñ .

Доказательство. Пусть u,w ∈ G, где w = exp

(
N∑
i=1

wiXi

)
(u). В теоре-

ме 12 установлено, что

ϕku(w) = (D̂ϕ� (u)〈w〉)k+dim V1 + o(d2(u,w)) (10)

для k = 1, . . . , dim Ṽ1. Обозначим

P ku (w) = (D̂ϕ� (u)〈w〉)k+dim V1 . (11)

Заметим, что для всех k = 1, . . . , dim Ṽ1 верно P ku (wH) = P ku (w), где wH =

exp

(
dimV1∑
i=1

wiXi

)
(u).

Пусть теперь k = dim Ṽ1 + 1, . . . , Ñ . Из (6) и (7) следует, что для wH
выполняется

ϕku(wH) = 2
∑

µ,β:β∈[1,dimV1],

µ∈[1,dim Ṽ1]

F k+Nµ+dimV1,β
ϕµ(u)wβ

+
∑

µ,β:β∈[1,dimV1],

µ∈[dimV1+1,dim V̂1]

F k+Nµ,β (D̂ϕ� (u)〈wH〉)µwβ + o

(
dimV1∑

i=1

(wi)
2

)
,

причем D̂ϕ� (u)〈wH〉 = D̂ϕ� (u)〈w〉. Положим

P k,1u (w) = 2
∑

µ,β:β∈[1,dimV1],

µ∈[1,dim Ṽ1]

F k+Nµ+dimV1,β
ϕµ(u)wβ

+
∑

µ,β:β∈[1,dimV1],

µ∈[dimV1+1,dim V̂1]

F k+Nµ,β (D̂ϕ� (u)〈w〉)µwβ . (12)
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Из (5) выводим

ϕku(w) = P k,1u (w) + ϕkwH
(w)

+
∑

µ,λ:

µ,λ∈[1,dim Ṽ1]

F k+Nµ+dimV1,λ+dimV1
Pµu (wH)PλwH

(w) + o(d2(u,w)2).

Так как PλwH
(w) = (D̂ϕ� (wH)〈w〉)λ+dim V1 , то PλwH

(w) = 0. Тогда

ϕku(w) = P k,1u (w) + ϕkwH
(w) + o(d2(u,w)2). (13)

Далее, из (8) следует, что

ϕkwH
(w) = (D̂ϕ� (wH)〈w〉)k+N + o(d2(wH , w)2). (14)

По предположению значения D̂ϕ� (s) непрерывны по s ∈ G, поэтому для вся-

кого элемента v такого, что d2(0, v) = 1, верно (см. обозначение и описание

умножения в (1))

d̃R(D̂ϕ� (s)〈s · v〉, D̂ϕ� (s′)〈s′ · v〉) = o(1),

где d̃R — расстояние, построенное по риманову тензору на G̃, и o(1) → 0 при

s′ → s равномерно на компактных подмножествах G. Следовательно, для wT =

exp

(
N∑

λ=dimV1+1

wλXλ

)
(u) верно

dR(D̂ϕ� (wH)〈w〉, D̂ϕ� (u)〈wT 〉) = o(1) · dR(u,wT ),

где o(1) равномерно на компактных подмножествах G. Так как dR(u,wT ) ≤
K · (d2(u,wT )2) для K <∞ на компактных подмножествах G, то

|(D̂ϕ� (wH)〈w〉)k+N − (D̂ϕ� (u)〈wT 〉)k+N | = o(1) · d2(u,wT )2 (15)

для k = dim Ṽ1 + 1, . . . , Ñ . Из (14) и (15) выводим

ϕkwH
(w) = (D̂ϕ� (u)〈wT 〉)k+N + o(d2(u,w)2) = (D̂ϕ� (u)〈w〉)k+N + o(d2(u,w)2).

Полагая

P k,2u (w) = (D̂ϕ� (u)〈w〉)k+N (16)

и P ku (w) = P k,1u (w) + P k,2u (w), с учетом (13) получаем

ϕku(w) = P ku (w) + o(d2(u,w)2) (17)

для всех k = dim Ṽ1 + 1, . . . , Ñ .

Таким образом, мы получили аппроксимацию функций {ϕku(w)}Ñk=1 для

произвольных u ∈ G и w из окрестности u. Осталось показать, что отобра-

жение w 7→ D̂Pϕ(u)〈w〉, определенное как

G ∋ w 7→ exp

(
Ñ∑

k=1

P ku (w)X̃k

)
(ϕ(u)), (18)

аппроксимирует значение ϕ(w) относительно d̃2, т. е. что

d̃2(ϕ(w), D̂Pϕ(u)〈w〉) = o(d2(u,w)),
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где o(1) → 0 при w → u. Для этого воспользуемся формулами групповой опе-

рации (см. (2)) и применим их к выражениям (11), (12) и (16).

Пусть

ϕ(w) = exp

(
Ñ∑

l=1

δlX̃l

)
(D̂Pϕ(u)〈w〉).

Тогда если l = 1, . . . , dim Ṽ1, то из (10) и (11) следует, что |δl| = o(d2(u,w)).

Пусть теперь l = dim Ṽ1 + 1, . . . , Ñ . Тогда

δl = ϕlu(w) − P lu(w)−
∑

µ,λ:

µ,λ∈[1,dim Ṽ1]

F l+Nµ+dimV1,λ+dimV1
ϕµu(w)Pλu (w).

Из (17) следует, что
∣∣ϕlu(w) − P lu(w)

∣∣ = o(d2(u,w)2). Далее, из (10), (11), анти-

симметричности F jα,β = −F jβ,α всех структурных констант и того, что в силу

теоремы 11

max
{
|ϕµu(w)|, |Pλu (w)|

}
≤ L · d2(u,w)

для всех µ, λ = 1, . . . , dim Ṽ1 и некоторого L <∞, вытекает

∣∣∣
∑

µ,λ:

µ,λ∈[1,dim Ṽ1]

F l+Nµ+dimV1,λ+dimV1
ϕµu(w)Pλu (w)

∣∣∣ = o(d2(u,w)2).

Поэтому и |δl| = o(d2(u,w)2) для l = dim Ṽ1 + 1, . . . , Ñ .

Таким образом, отображение ϕ является полиномиально субриманово диф-

ференцируемым всюду. Явный вид описан в (11), (12), (16), а также в (10), (17)

и (18). Теорема доказана.

Замечание 18. Как видно из доказательства теоремы 17, липшицевость

во внутреннем смысле координатных функций ϕ при горизонтальных полях

существенна для полиномиальной субримановой дифференцируемости.

Из результатов теоремы 17 следует, что для Ñ ≥ N при дополнитель-

ных предположениях гладкости класса C2 по w1, . . . , wdimV1 и класса C1 по

wdimV1+1, . . . , wN функций ϕku(w), k = 1, . . . , dim Ṽ1, а также биективности на

свой образ отображения ϕ, выполняются условия работы [26]. Поэтому для ϕ
применимы результаты об адаптированном базисе и формуле площади.

Определение 19 [26]. Пусть G и G̃ — группы Карно и ξ : G → G̃, x ∈
G. Если координаты {κi}Ñi=1 полиномиального субриманова дифференциала

D̂P ξ(x)〈y〉, рассмотренные относительно ξ(x), в некотором базисе {Yk}Ñk=1 обла-

дают свойством |κi| = O(ρ2(x, y)
degXi), то базис {Yk}Ñk=1 называется внутрен-

ним, или адаптированным, в точке x ∈ G.

Из результатов [26] вытекает

Предложение 20. Пусть выполнены условия теоремы 12 и отображе-
ние-график ϕ� является контактным отображением класса C1

H и липшицевым.

Предположим дополнительно, что Ñ ≥ N , а функции ϕku(w) принадлежат клас-

су C2 по w1, . . . , wdimV1 и классу C1 по wdimV1+1, . . . , wN , k = 1, . . . , dim Ṽ1 для
всех u ∈ G, а ϕ биективно на свой образ. Тогда верны следующие утверждения.
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1. В окрестности образа каждой точки u ∈ G существует такой адаптиро-

ванный базис {X̃u
l }Ñl=1, что полиномиальный субриманов дифференциал отоб-

ражения ϕ имеет вид (
DϕHu (u) 0

0 DϕTu (u)

)

(ср. (9)).
2. Функция множества, определяемая как G ⊃ A 7→ H ν

ϕ (ϕ(A)), является
мерой.

Здесь значение H ν
ϕ (D), D = ϕ(A), равно

ωG lim
δ→0

inf
{∑

i∈N
rνi :

⋃

i∈N
Box

ϕ−1(wi)
2 (wi, ri) ⊃ D, wi ∈ D, ri < δ

}
, (19)

ωG = ωdimV1ωdimV2 , Box
ϕ−1(w)
2 (w, r) = {v ∈ G̃ : d̃

ϕ−1(w)
2 (v, w) < r}, величина

d̃
ϕ−1(w)
2 построена так же, как в определении 2, с заменой исходного базиса

на {X̃ϕ−1(w)
l }Ñl=1, а точная нижняя грань берется по всем покрытиям множе-

ства D = ϕ(A).

Также [26] для ϕ верна формула площади для адаптированной меры, опре-

деленной в (19).

Теорема 21. В условиях предложения 20 справедлива формула площади
∫

A

√
det
((
DϕHx

)∗
(x)DϕHx (x)

)
·
√

det
((
DϕTx

)∗
(x)DϕTx (x)

)
dH ν(x) = H ν

ϕ (ϕ(A)).

Здесь DϕHx (x) и DϕTx (x) такие же, как в (9).
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МНОЖЕСТВЕННОСТЬ АСИМПТОТИЧЕСКИХ

СЕРИЙ СОБСТВЕННЫХ ЧИСЕЛ ТРЕТЬЕЙ

КРАЕВОЙ ЗАДАЧИ С БОЛЬШИМ

ОТРИЦАТЕЛЬНЫМ КОЭФФИЦИЕНТОМ РОБЭНА

С. А. Назаров

Аннотация. Изучается асимптотика собственных чисел и функции спектральной
задачи для оператора Лапласа в плоской области с третьим краевым условием
на границе, причем (переменный) коэффициент Робэна в нем отрицательный и
большой. Приведены известные и новые асимптотические формулы для собствен-
ных чисел, как отрицательных, так и положительных, и для собственных функ-

ций, выявляющие разнообразные способы их локализации. Помимо формального
асимптотического анализа и краткого обзора предшествующих результатов изложе-
на процедура обоснования асимптотики в не изученном ранее случае неизменного
коэффициента Робэна и глобального вырожденного максимума кривизны границы,
реализующегося в нескольких точках.

DOI10.33048/smzh.2025.66.610

Ключевые слова: третья краевая задача, большой отрицательный коэффициент
Робэна, асимптотика собственных чисел, локализация собственных функций, мно-
жественность асимптотических серий.

Посвящаю статью Семёну Самсоновичу Кутателадзе
с благодарностью за подарок1) в виде слова «околовершинная».

1. Постановки задач. Пусть � — область на плоскости, ограниченная

простым замкнутым гладким (класса C∞, см. разд. 10, 1◦) контуром � , в d-
окрестности Vd которого введем систему криволинейных координат (n, s), где

d > 0, s — длина дуги на контуре, измеряемая против часовой стрелки, а n —

ориентированное расстояние до него, причем n < 0 на � ∩ Vd. Собственные

числа краевой задачи

−�uε(x) = λεuε(x), x = (x1, x2) ∈ �, (1)

∂nu
ε(x)− ε−1a(s)uε(x) = 0, x ∈ � = ∂�, (2)

или соответствующего интегрального тождества [1]

(∇uε,∇ψε)� − ε−1(auε, ψε)� = λε(uε, ψε)� ∀ψε ∈ H1(�) (3)

Работа выполнена при финансовой поддержке Министерства науки и высшего образова-
ния Российской Федерации (соглашение № 075-15-2025-344 от 29.04.2025 в Санкт-Петербургс-
ком международном математическом институте имени Леонарда Эйлера, ПОМИ РАН).

1)Семён Самсонович подсказал, как исправить первоначально корявое название статьи
[29].

c© 2025 Назаров С. А.
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образуют монотонную неограниченную последовательность

λε1 < λε2 ≤ λε3 ≤ · · · ≤ λεp ≤ · · · → +∞. (4)

Здесь ε ∈ (0, 1] — малый параметр, ∇ = grad, � — оператор Лапласа, ∂n —

производная вдоль внешней нормали, (·, ·)� и (·, ·)� — скалярные произведе-

ния в пространствах Лебега L2(�) и L2(� ), H1(�) — пространство Соболева, а

a ∈ C∞(� ) — положительный (вообще говоря, переменный) коэффициент, часто

называемый коэффициентом Робэна (после добавления знака минус — на это

далее не обращаем внимания). Собственные функции uεp ∈ C∞(�) сформули-

рованной задачи подчиним условиям ортогональности и нормировки
(
uεp, u

ε
q

)
�

= δp,q, p, q ∈ N, (5)

где δp,q — символ Кронекера, а N = {1, 2, 3, . . .} — натуральный ряд.

Основная цель работы — указать асимптотику собственных пар {число;

функция} задачи (1), (2) при стремлении малого параметра ε > 0 к нулю.

Асимптотическое строение ее собственных чисел из нижнего диапазона спек-

тра давно привлекает внимание математиков и далее при рассмотрении разных

ситуаций будут перечислены публикации с основными результатами в этом на-

правлении, однако пристальное внимание уделяется двум вопросам: во-первых,

обоснованию асимптотических формул в так называемом «вырожденном» слу-

чае (разд. 7–9) и, во-вторых, выявлению множественности серий собственных

чисел с «устойчивыми асимптотиками» (разд. 6). Схема обоснования асимп-

тотики, отличающаяся от опубликованных ранее для задач с большим отрица-

тельным коэффициентом Робэна и легко приспосабливаемая для других рас-

смотренных в работе случаев, — основное техническое нововведение, так как

сами алгоритмы построения асимптотики известны с прошлого века и доста-

точно нетрудоемки.

Сформировать асимптотику положительных членов последовательности (4)

совсем несложно (разд. 5), однако билинейная форма из левой части интеграль-

ного тождества (3) не является положительной, а значит, в спектре имеются и

отрицательные собственные числа — именно им и отвечают собственные функ-

ции, которым характерны различные типы локализации. Приведем предвари-

тельные и краткие пояснения.

Оператор Лапласа в криволинейных координатах принимает вид

� = J (n, s)−1∂nJ (n, s)∂n + J (n, s)−1∂sJ (n, s)−1∂s, (6)

где J (n, s) = 1 + nκ(s) — якобиан, а κ — кривизна контура � , вообще говоря,

знакопеременная, т. е. отрицательная на вогнутых дугах. Именно поведение

функций a и κ определяет асимптотическое строение собственных чисел и раз-

номасшабные эффекты локализации. На множестве �∩Vd вводится растянутая

нормальная координата n 7→ ζ = −ε−1n ≥ 0, придающая дифференциальному

оператору (6) расщепление

� = ε−2∂2
ζ − ε−1κ(s)∂ζ + ∂2

s − ζκ(s)2∂ζ + . . . . (7)

Здесь и далее многоточие заменяет младшие асимптотические члены, которыми

можно пренебречь при формальном асимптотическом анализе. Кроме того,

замена λε 7→ ε−2µ спектрального параметра, «заморозка» коэффициентов в

какой-либо точке s0 ∈ � и переход к ε = 0 преобразуют соотношения (1), (2) в

краевую задачу для обыкновенного дифференциального уравнения

−∂2
ζw(ζ) = µw(ζ), ζ ∈ R+ = (0,+∞), −∂ζw(0) = a(s0)w(0), (8)
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у которой имеется собственная пара

{µ0 = −a(s0)2;w0(ζ) = e−a(s0)ζ} ∈ R− ×H1(R+), (9)

характеризующаяся экспоненциальной скоростью затухания функции при ζ →
+∞ или при удалении от границы вдоль внутренней нормали. Вместе с тем

при вариации точки s0 величина µ0 может изменяться, и это обстоятельство

вынуждает каким-либо способом произвести еще одно растяжение координаты

s 7→ η = ε−θ(s− s0) ∈ R (10)

с сопутствующим выбором показателя θ > 0, обеспечивающим разные темпы

концентрации собственных функций uεk около точки s0 (разд. 4, 5 и 7). При

этом, как окажется, в качестве s0 выступают точки экстремумов коэффициента

Робэна a и кривизны κ, а наличие нескольких таких точек вызывает множе-

ственность асимптотических серий отрицательных собственных чисел {λεmε
k
}k∈N

в последовательности (4) в дополнение к уже упоминавшейся серии положи-

тельных собственных чисел, не провоцирующих эффект локализации.

Величина показателя θ зависит от многих обстоятельств и, в частности, по-

стоянство коэффициента a(s) при s ∈ � вовсе не обеспечивает локализацию соб-

ственных функций около всего контура (разд. 2, 3). Показатель определяется

и качеством экстремума, а в разд. 7–9 подробно исследуется случай вырожден-

ных экстремумов, ранее не рассмотренный в литературе. Наконец, в разд. 10

перечислены легкодоступные обобщения и оставленные открытыми вопросы.

2. Локализация около всей границы. Пусть сначала � — круг и

a(s) = a0, причем, разумеется, κ(s) = κ0 > 0. (11)

Кроме того, n = r и s = Rϕ — полярные координаты и � = {x : |x| = R} —

окружность радиусом R = κ−1
0 > 0. Подставим в задачу (1), (2) расщепление

(7) и асимптотические анзацы

λε = ε−2µ0 + ε−1µ′ + µ′′ + λ̃ ε, (12)

uε(x) = χ�(x)(v(s)(w0(ζ) + εw′(ζ)) + w′′(ζ, s)) + ũ ε(x), (13)

где χ� ∈ C∞c (� ∩ Vd) — срезающая функция, зависящая только от переменной

n,

χ� = 1 при n ≥ −d/2 и χ� = 0 при n ≤ −d. (14)

В результате сбора множителей при одинаковых степенях малого параметра

ε получим задачу (8) для главных асимптотических членов и следующую для

первых поправок:

−∂2
ζw
′(ζ)− µ0w

′(ζ) = µ′w0(ζ) − κ0∂ζw0(ζ), ζ ∈ R+, −∂ζw′(0) = a0w
′(0). (15)

Поскольку решение определено с точностью до слагаемого cw0, можно считать,

что

µ′ = −κ0a0 и w′(ζ) = 0. (16)

Следовательно, задача для вторых поправок выглядит так:

−∂2
ζw
′′(ζ, s) − µ0w

′′(ζ, s)

= f(ζ, s) := µ′′w0(ζ)v(s) + w0(ζ)∂
2
sv(s)− κ2

0ζ∂ζw0(ζ)v(s), ζ ∈ R+,

−∂ζw′′(0) = a0w
′′(0).

(17)
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Условием ее разрешимости (взаимная ортогональность функций f и w0 в про-

странстве L2(R+)) служит простейшее обыкновенное дифференциальное урав-

нение

−∂2
sv(s) = σv(s), s ∈ � ,

которое порождает собственные пары {σp; vp}, p ∈ N, заданные формулами

{0; 2−1/2} при p = 1,

{(2πκ0q)
2; sin(2πκ0s)}, {(2πκ0q)

2; cos(2πκ0s)} при p = 2q, 2q + 1, q ∈ N.
Вторая поправка в представлении (12) собственного числа λεp имеет вид

µ′′p = σp − κ2
0/2 (первые два асимптотических члена не зависят от p; см. пер-

вые равенства в списках (9) и (16)), а анзац (13) для собственной функции uεp
начинается с произведения cpvp(s)w0(ζ), за которым следует нуль и решение

ставшей разрешимой задачи (17).

Алгоритм построения асимптотики мало чем отличается от классического

метода Вишика — Люстерника [2–4]. Обоснование асимптотики также приво-

дится при помощи известных приемов (см., например, [5, 6]), причем благода-

ря симметрии круга � двукратные собственные числа можно расцепить искус-

ственными краевыми условиями на диаметре круга. Собственные функции uεp,

нормированные2) равенством (5), можно зафиксировать так, чтобы выполня-

лись оценки
∣∣λ̃ εp
∣∣ ≤ cpε1/2 и ε

∥∥uεp − uεp0;L2(�)
∥∥+

∥∥uεp − uεp0;L2(�)
∥∥ ≤ Cpε1/2 при ε ∈ (0, εp],

(18)

где εp и cp, Cp — положительные величины, зависящие от номера p ∈ N; кроме

того,

uεp0(x) = (4a0ε)
−1/2κ

1/2
0 χ�(x)vp(s)w0(−ε−1n).

3. Локализация около точки. Первый случай. Пусть теперь

a(s) = a0, κ(s) = κ0−K(s−s0)2+O(|s−s0|3), K > 0 и κ(s) < κ0 при s ∈ � \{s0}.
(19)

Иными словами, коэффициент Робэна постоянен, а кривизна имеет строгий

(т. е. невырожденный) глобальный максимум в одной точке s0 ∈ � . Тогда, как

известно из множества публикаций (см. ссылки ниже, но также далее разд. 7

и, в частности, формулу (42)), следует ввести растянутую координату (10) с

показателем θ = 1/4 и принять такие асимптотические анзацы для собственных

пар задачи (1), (2):

λε = ε−2µ0 + ε−1µ′ + ε−1/2µ′′ + λ̃ ε, (20)

uε(x) = χ�(x)χ� (x)(v(η)(w0(ζ) + εw′(ζ)) + ε3/2w′′(ζ, η)) + ũ ε(x). (21)

Здесь помимо срезки (14) присутствует срезающая функция χ� ∈ C∞(� ), рав-

ная единице в фиксированной окрестности точки s0 и нулю на расстоянии от

нее. Числа µ0, µ
′ и функции w0, w

′ определены прежними формулами (9), (16),

однако при этом из-за переменности кривизны в дифференциальном уравнении

осталась невязка

ε−1a0(κ0 − κ(s))w0(ζ) = ε−1a0(K(s− s0)2 +O(|s− s0|3))
= ε−1/2a0Kη

2 +O(ε−1/4|η|3). (22)

2)В формальных конструкциях на нормировку собственных функций внимание не обра-
щаем и потому не пишем номер собственной пары в асимптотических анзацах.
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Сбор множителей при ε−1/2 в формулах ε3/2∂2
nw
′′(ζ) = ε−1/2∂2

ζw
′′(ζ), ∂2

sv(η) =

ε−1/2∂2
ηv(η) и соотношении (22) приводит к такой задаче для вторых поправоч-

ных членов в анзацах (20) и (21):

−∂2
ζw
′′(ζ, η) − µ0w

′′(ζ, η) = ((µ′′ − a0Kη
2)v(η) + ∂2

ηv(η))w0(ζ), ζ ∈ R+, (23)

−∂ζw′′(0, η) = a0w
′′(0, η).

Условие разрешимости задачи (23) сводится к уравнению гармонического ос-

циллятора [7]

−∂2
ηV (η) +A2η2V (η) = MV (η), η ∈ R, (24)

с дискретным спектром {Mk = A(2k − 1)}k∈N и параметром

A =
√
a0K. (25)

Соответствующие собственные функции Vk, нормированные в L2(R), затухают

на бесконечности как O(|η|k−1e−Aη
2/2), — громоздкие выражения для них не

понадобятся (см., например, [7]).

Итак, вторые поправки в асимптотическом анзаце (20) принимают вид

µ′′k = (2k − 1)
√
a0K, k ∈ N,

а множителями vk в анзаце (21) служат упомянутые собственные функции Vk
обыкновенного дифференциального уравнения (24).

На этом построение формальных асимптотик заканчивается. Зависимость

похожих асимптотических конструкций от кривизны и возникновение уравне-

ния гармонического осциллятора были ранее3) замечены в публикации [8] для

смешанной краевой задачи в тонкой области со скошенной боковой поверхно-

стью. Сама задача (1), (2) изучалась во многих статьях (см. [9–16] и др.), где по-

очередно были получены результаты разного свойства: оценка снизу, главный,

первый и второй поправочные члены для первого собственного числа, оценки

и старшие члены асимптотики всех собственных чисел из низкочастотного диа-

пазона спектра и, наконец, полные асимптотические разложения спектральных

пар. Несколько более общая чем (19) ситуация будет обсуждаться и далее, но

здесь сформируем известный результат именно для нее: при любом p ∈ N най-

дутся такие положительные εp и cp, Cp, что для остатков в асимптотических

анзацах (11) и (12) верны оценки

∣∣λ̃ εp
∣∣ ≤ cpε−1/4,

ε
∥∥∇xuεp −∇xuεp0;L2(�)

∥∥+
∥∥uεp − uεp0;L2(�)

∥∥ ≤ Cpε1/4 при ε ∈ (0, εp],
(26)

где при учете нормировки всех собственных функций главный асимптотический

член приобретает вид

uεp0(x) = ε−5/8(2a0)
−1/2χ� (s)χ�(x)vp(ε

−1/4(s− s0))w0(−ε−1n).

4. Локализация около точки. Второй случай. Пусть теперь кон-

тур и его кривизна любые, но коэффициент a имеет единственный глобальный

строгий максимум в точке s0 ∈ � , т. е.

a(s) = a0 −K(s− s0)2 +O(|s− s0|3), K > 0 и a(s) < a0 при s ∈ � \ {s0}. (27)

3)Оставляем в стороне многочисленные исследования задач акустики и дифракции.
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После замены (10) с показателем θ = 1/2 примем асимптотические анзацы для

собственных пар

λε = ε−2µ0 + ε−1µ′ + λ̃ ε, (28)

uε(x) = χ�(x)χ� (x)(v(η)w0(ζ, s) + εw′(ζ, η))) + ũ ε(x), (29)

где µ0 = −a2
0, но в сравнении с разд. 3 показатель экспоненциальной функции

w0(ζ, s) = e−a(s)ζ (30)

зависит от переменной s. Следовательно,

− ∂2
ζw

0(ζ, s) + a2
0w

0(ζ, s) = e−a(s)ζ
(
a2
0 − a(s)2

)

= e−a(s)ζ(2a0K(s− s0)2 +O(|s− s0|3)) = εe−a(s)ζ(2a0Kη
2 +O(ε1/2|η|3)). (31)

Итак, собираем члены порядка ε−1, возникшие в результате подстановки анза-

цев (28) и (29) в уравнение (1), и выводим похожую на (23) задачу для первых

поправочных членов

−∂2
ζw
′(ζ, η) − µ0w

′(ζ, η) =
(
(µ′ − 2a0Kη

2)v(η) + ∂2
ηv(η)

)
w0(ζ), ζ ∈ R+,

−∂ζw′(0, η) = a0w
′(0, η).

(32)

Условие ее разрешимости превращается в уравнение гармонического осцилля-

тора (24) с отличающимся от (25) параметром

A =
√

2a0K. (33)

В результате основной поправкой в асимптотическом анзаце (28) служит соб-

ственное число

µ′k = (2k − 1)
√

2a0K, k ∈ N,
обыкновенного дифференциального уравнения (24), а множителем vk в анзаце

(29) — соответствующая собственная функция Vk.
Представленная выше формальная асимптотика решений задачи (1), (2) в

ситуации (27) была выписана в статье [17] среди прочих, однако большое ко-

личество работ (см. [18–23] и др.) содержит вполне аналогичные подходы и

относится к родственным задачам Дирихле для оператора Лапласа в тонких

областях переменного сечения. В этих работах, в частности, помимо главных

членов построены полные асимптотические разложения собственных пар и вы-

ведены асимптотически точные оценки погрешностей.

Для остатков в представлениях (28) и (29) выполнены неравенства

∣∣λ̃ εp
∣∣ ≤ cpε−1/4,

ε
∥∥uεp − uεp0;L2(�)

∥∥+
∥∥uεp − uεp0;L2(�)

∥∥ ≤ Cpε1/2 при ε ∈ (0, εp],
(34)

где положительные величины εp и cp, Cp зависят от номера p ∈ N и, кроме того,

uεp0(x) = ε−3/4(2a0)
−1/2χ� (s)χ�(x)vp(ε

−1/2(s− s0))w0(−ε−1n, s).

Отметим, что поправочные слагаемые из анзацев (29) и (21), (13) не вклю-

чены в финальные оценки точности (36) и (26), (18) потому, что они (слагаемые)

не определены полностью: например, остался произвол cw0 в выборе решений

w′ и w′′ обеих задач (15) и (17), который удается устранить лишь путем постро-

ения младших асимптотических членов (см. разд. 10, 3◦). Соответствующие

итерационные процессы известны в полной мере (см. [4, 24, 25] и др.).
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5. Положительные собственные числа. Алгоритм построения асимп-

тотики собственных чисел задачи (1), (2) на положительной полуоси R+ элемен-

тарен, причем единственными препятствиями в интерпретации возмущения как

регулярного (ср. монографию [5]) — малый параметр и «неправильный» знак

(см. статью [3]) при старшей производной в преобразованном краевом условии

(2)

uε(x) = εa(s)−1∂nu
ε(x), x ∈ � . (35)

Приведем краткие пояснения для κℓ-кратного собственного числа βℓ задачи

Дирихле

−�v(x) = βv(x), x ∈ �, v(x) = 0, x ∈ � ;

иными словами, считаем, что βℓ−1 < βℓ = · · · = βℓ+κℓ−1 < βℓ+κℓ
. Соответствую-

щие собственные функции vℓ, . . . , vℓ+κℓ−1 подчиним условиям ортогональности

и нормировки вида (5) в пространстве L2(�).

В качестве асимптотических представлений собственных пар
{
λεNε

p
;uεNε

p

}

задачи (1), (2) в количестве κℓ штук (т. е. p = ℓ, . . . , ℓ + κℓ − 1) возьмем выра-

жения

λεNε
p

= βℓ + εβ′ℓp + λ̃ εNε
p
, (36)

uεNε
p
(x) =

ℓ+κn−1∑

q=ℓ

bpqvq(x) + εv′ℓp(x) + ũ εNε
p
(x). (37)

Здесь bℓp =
(
bℓpℓ , . . . , b

ℓp
ℓ+κℓ−1

)
— ортонормированные в евклидовом пространстве

Rκn столбцы и {β′ℓp; v′ℓp} — пары, подлежащие определению. Причины появле-

ния «странного» индекса Nε
p поясняются в очередном разделе.

Подставив анзацы (36) и (37) в задачу (1), (35), видим, что члены порядка

единицы взаимно уничтожаются, а коэффициенты при ε формируют следую-

щую задачу Дирихле:

−�v′ℓp(x) − βℓv′ℓp(x) = β′ℓp

ℓ+κℓ−1∑

q=ℓ

bpqvq(x), x ∈ �,

v′ℓp(x) =
1

a(s)

ℓ+κℓ−1∑

q=ℓ

bpq
∂vq
∂n

(x), x ∈ � .
(38)

Посредством формулы Грина превратим условия разрешимости задачи (38) в

количестве κℓ штук в систему алгебраических уравнений

M ℓbq = β′ℓpb
q,

где M ℓ — симметричная (κℓ × κℓ)-матрица с элементами

M ℓ
pq =

∫

�

1

a(s)

∂vp
∂n

(x)
∂vq
∂n

(x) ds, p, q = ℓ, . . . , ℓ+ κℓ − 1.

Матрица M ℓ положительно определенная, так как a > 0 и следы нормаль-

ных производных собственных функций не могут стать линейно зависимыми

на контуре � по теореме о единственности продолжения (см., например, [26]).

Собственные числа названной матрицы

β′ℓ+κℓ−1 ≥ · · · ≥ β′ℓ > 0 (39)
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Рис. 1. Эллипс («огурец»), «яйцо» и «боб» (a–c). Глобальные максимумы кри-
визны указаны значком •, а локальные — значком ◦, причем отрицательный —
дополнительной стрелкой. Асимметричное кольцо («номерок в гардеробе») (d) и
перфорированный круг («телефонный диск») (e).

конкретизируют поправочные члены асимптотических анзацев (36), а для фи-

гурирующих в них остатков можно получить оценки
∣∣λ̃ εNε

p

∣∣ ≤ cℓε2. Осложнения

с оправданием асимптотик собственных функций поясняются далее в замеча-

нии 1.

6. О множественности асимптотических серий. В любой из ситуа-

ций (19), (27) или (11) предельный переход ε→ +0 сопровождается насыщени-

ем отрицательной полуоси R− собственными числами (4). При фиксированном

номере k ∈ N член λεk этой последовательности уходит на отрицательную бес-

конечность со скоростью O(ε−2). Таким образом, номера Nε
p обнаруженных

в разд. 4 положительных чисел λεNε
p

неограниченно возрастают при ε → +0.

Вместе с тем при увеличении параметра ε собственные числа согласно фор-

мулам (36) и (39) смещаются вверх от их предельных значений βp, а значит,

никак не могут осуществить упомянутое насыщение, происходящее, как будет

пояснено на примере из разд. 10, 2◦, из-за пересечения начала координат λ = 0

собственными числами, которым отвечают быстроосциллирующие собственные

функции.

Асимптотические конструкции из разд. 3 или 4 приспособлены не толь-

ко к глобальным, но и к локальным максимумам коэффициента Робэна a или

кривизны κ. Если в первом случае максимумы обусловлены графиком положи-

тельной функции � ∋ s 7→ a(s) и потому сами остаются положительными, то

у функции � ∋ s 7→ κ(s) помимо положительных (рис. 1, a и b) могут появить-

ся и отрицательные (локальные) максимумы кривизны на вогнутых участках

границы (рис. 1, c). Каждый из локальных максимумов по прежним формулам

порождает серию
{
λεNε

k
}k∈N собственных чисел с устойчивыми асимптотиками,

причем, как и в разд. 5, их номера Nε
k приобретают рост при ε→ +0.

Разумеется, может случиться, что обе функции a и κ имеют строгие гло-

бальные максимумы на контуре � . Сравнивая анзацы (20) и (28), а также оцен-

ки (26) и (34), видим, что основной (самой нижней) асимптотической серией

собственных чисел задачи (1), (2) всегда служит построенная в разд. 4. Именно

поэтому в требование (19) включено постоянство коэффициента Робэна a.

Задача (1), (2) на круге допускает разделение переменных и поэтому, как и

в разд. 10, 2◦, появляется лишь одна серия отрицательных собственных чисел с

устойчивой асимптотикой. Впрочем, отказ от односвязности области� (рис. 1, d
и e) приводит к образованию нескольких асимптотических серий. Формулы (12)

и (16) показывают, что собственные числа, отвечающие внутренним окружно-

стям, имеющим меньшие радиусы, расположены выше тех, которые построены

в разд. 2, т. е. их номера растут при ε→ +0.

Если глобальный максимум (непостоянных) функций κ или a реализуется



1116 С. А. Назаров

в нескольких точках на контуре � (для эллипса на рис. 1, a, их две), то соб-

ственные числа из нескольких первых серий могут приобрести пару одинако-

вых асимптотических членов и тем самым серии перемешиваются (ср. разд. 7).

Это обстоятельство не сказывается на строении асимптотических формул, так

как носители главных частей собственных функций удалены один от другого (в

противоположность анализу из разд. 5). Вместе с тем кратность собственного

числа несколько влияет на процедуру обоснования асимптотики.

Замечание 1. Асимптотические серии собственных чисел из низкочастот-

ного диапазона спектра, порожденные в рассматриваемых случаях глобальны-

ми максимумами, называются основными, а остальные, расположенные выше

основной, — вторичными. Для основной серии возможно обоснование асимпто-

тик как собственных чисел, так и собственных функций (см. далее теоремы 3

и 4). Для вторичных серий классическая [2] и формулируемая в разд. 9 лем-

ма 2 обнаруживает в малой окрестности построенного асимптотического при-

ближения собственное число исходной задачи, однако идентифицировать все

собственные числа в этой окрестности не удается по причине эпизодического

или даже частого появления членов основной серии, «сторонних» для констру-

ируемой асимптотики, получить приемлемые представления для собственных

функций невозможно, точнее, формулы, гарантируемые леммой 2, оказывают-

ся абсолютно неинформативными.

7. Вырожденный экстремум — формальная асимптотика. Изменим

ограничения, введенные в разд. 3, и допустим, что a(s) = a0, но при j = 1, . . . , J
выполнены соотношения

e|κ(s)− κ0 +Kj(s− sj)2m| ≤ Kj|s− sj |2m+1 с коэффициентами Kj,Kj > 0,

а также κ(s) < κ0 при s ∈ � \ {s1, . . . , sJ}. (40)

При этом m ∈ N и m > 1, однако величина κ0 не зависит от номера j, т. е.

вырожденный глобальный максимум кривизны достигается в (попарно различ-

ных) точках s1, . . . , sJ := s0 ∈ � — обсуждаем именно кратные собственные

числа (см. рис. 2, b). Подберем показатель θ в формуле (10) для растянутых

координат на дуге � . Главные члены асимптотики по-прежнему имеют вид (9)

и (16), однако теперь формулы (40) изменяют невязку (22) следующим образом:

ε−1a0(κ0 − κ(s))w0(ζ) = ε−1a0(Kj(s− sj)2m +O(|s − sj |1+2m))

= ε−1+2mθa0Kjη
2m
j +O(ε−1−(1+2m)θ|ηj |1+2m), (41)

где ηj = ε−θ(s − sj). Сравнение выражения (41) с еще одним соотношением

∂2
sv(ηj) = ε−2θ∂2

ηjv(ηj) требует соблюсти равенство 1− 2mθ = 2θ, а значит,

θ =
1

2(1 +m)

(
отметим, что θ =

1

4
при m = 1; ср. разд. 3

)
. (42)

В итоге примем похожие на (20) и (21) асимптотические анзацы

λε = −ε−2a2
0 − ε−1a0κ0 + ε−1/(1+m)µ′′j + λ̃ ε, (43)

uε(x) = χj(x)v(η)(w0(ζ) + ε2−1/(1+m)w′′(ζ, ηj)) + ũ ε(x) в окрестности точки sj ,
(44)
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где j = 1, . . . , J , коэффициенты при ε−2 и ε−1 взяты из формул (9) и (16), а

χj(s) = χ�(n)χj� (s) — гладкие срезающие функции, χ� — срезка из представле-

ния (21) и χj� ∈ C∞c (R),

χj� (s) = 1 при |s− sj| ≤ d� /2 и χj� (s) = 0 при |s− sj | ≥ d� , (45)

d� = min{sj − sj−1 | j = 1, . . . , J}.
В результате получим для поправочной пары {µ′′j ;w′′j } набор задач (23) с за-

менами a0Kη
2 7→ a0Kjη

2m и индексами j = 1, . . . , J . Условием разрешимости

таких задач служат обыкновенные дифференциальные уравнения аналогичного

(24) строения:

−∂2
ηjVj(ηj)+A2

jη
2m
j Vj(ηj) = MjVj(ηj), ηj ∈ R, с коэффициентом Aj =

√
a0Kj.

(46)

У этих уравнений по-прежнему дискретные спектры ℘j = {Mpj}p∈N, а собствен-

ные функции Vjp можно нормировать в L2(R), так как они затухают на беско-

нечности со степенно-экспоненциальной скоростьюO(|ηj |φpje−Aj |ηj |1+m/(1+m)) —

точная формула далее не понадобится, но ее можно получить при помощи из-

вестных приемов (см. [7, 27] и др.).

Итак, в качестве предельной задачи выступает совокупность (j = 1, . . . , J)

дифференциальных уравнений (46). Подчеркивая это наблюдение, выберем

новую литеру «�» для членов упорядоченной последовательности {�ℓ}ℓ∈N ≃
{Mpj}p,j∈N, т. е. объединения спектров ℘1 ∪ · · · ∪ ℘J .

Очередные разделы статьи посвящены обоснованию асимптотических раз-

ложений (43) и (44), но здесь приведем еще формальный анализ ситуации, в

которой, как и в разд. 4, кривизна безразлична, а коэффициент a в краевом

условии (2) достигает глобальный, но вырожденный максимум в одной точке s0
(обобщение на несколько точек вполне очевидно):

a(s) = a0 −K(s− s0)2m +O(|s − s0|2m+1), K > 0 и a(s) < a0 при s ∈ � \ {s0}.

Показатели степеней малого параметра в поправочных членах из асимптотиче-

ских анзацев

λε = ε−2µ0 + ε−2/(1+m)µ′ + λ̃ ε, (47)

uε(x) = χ0(x)(v(ε
−1/(1+m)(s− s0))w0(ζ, s)

+ ε2m(1+m)w′(ζ, ε−1/(1+m)(s− s0))) + ũ ε(x), (48)

в которых µ0 = −a−2
0 и w0 — экспонента (30), подобраны так, чтобы модифи-

цированная (замена (s − s0)2 7→ (s − s0)2m) выкладка (31) привела к похожей

на (32) задаче для пары {µ′;w′}, условием разрешимости которой (задачи) слу-

жит уравнение (46) с параметром (33). Собственные числа этого уравнения

дают выражения для поправок µ′ в анзаце (47), а соответствующие собствен-

ные функции указывают множители v(ε−1/(1+m)(s− s0)) в анзаце (48). Оценки

асимптотических остатков в принятых анзацах выводятся при помощи упро-

щенной схемы обоснования асимптотики для ситуации (40).

8. Экспоненциальное затухание собственных функций и сходи-

мость атрибутов собственных пар. В соответствии с формулой (42) поло-
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Рис. 2. Левые (le) и правые (ri) искривленные «прямоугольники» �
εle/ri
j и сек-

торы ∢
εle/ri
j , а также верхний (up) «прямоугольник» �εup

j (пропорции нарушены);

стрелки указывают оси координат, участвующих в определении весовой функции
R ε

γ , а исходный «прямоугольник» �ε
j с точкой sj на середине основания тонирован

на рис. (a). На рис. (b) область изменения весовой функции тонирована сильно, а
область, где она экспоненциально велика, — слабо; высветлены участки равенства
ее единице.

жим θ = (2(1 +m))−1 и начнем с рассмотрения простой задачи для обыкновен-

ного дифференциального уравнения

−d
2wε

dζ2
(ζ) +

k

1− ζk
dwε

dζ
(ζ) = µεwε(ζ), ζ ∈ (0, εθh),

−dw
ε

dζ
(0) =

a

ε
wε(0),

dwε

dζ
(ε−θh) = 0

(49)

со спектральным параметром µε и положительными величинами k, a и h.

Лемма 1. Существуют такие положительные c и ε, что первое собственное
число задачи (49) удовлетворяет соотношению

∣∣µε1 + ε−2a2 + ε−1ka
∣∣ ≤ c при ε ∈

(
0, ε
]
. (50)

Доказательство. Для вывода асимптотической формулы достаточны

вычисления из конца разд. 1 и начала разд. 2: основное приближение к соб-

ственной функции wε
1 имеет вид e−aζ/ε, но оставляет невязки — ограниченную

ζk2/(1− ζk) в уравнении и экспоненциально малую −ε−1ae−ahε−θ−1

в (послед-

нем) краевом условии Неймана. Первая и определяет оценку остатка в пред-

ставлении (50), а схема обоснования традиционна (см. [4; 5, гл. 6; 6, гл. 9] и

др.).

Для проверки экспоненциального затухания собственной функции задачи

(1), (2) в условиях из разд. 6, отвечающей собственному числу

λεp ≤ −ε−2a2
0 − ε−1a0κ0 +«pε

−2θ, (51)

определим непрерывную и кусочно-гладкую весовую функцию Rε
γ > 0 в замы-

кании �; здесь «p > 0 — некоторое число (см. далее формулу (84)). С этой

целью около точек sj ∈ � нарисуем искаженные (в криволинейных координа-

тах) «прямоугольники» �εj = {x ⊂ � ∩ Vd : |s − sj | < εθh, n ∈ (−hεθ, 0)}, на

которых положим Rε
γ(x) = 1, а размер h зафиксируем так, чтобы

a0Kjh
2m ≥ «p + 2, j = 1, . . . , J. (52)

На рис. 2, a, к «прямоугольнику» �εj примыкают три «прямоугольника» �
εle/ri
j

и �
εup
j с размерами H × hεθ и 2hεθ ×H соответственно, а также две четверти
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«кругов» ∢
εle/ri
j с центрами в вершинах P

εle/ri
j 6∈ � первого «прямоугольника»

и радиусом H ≤ min{d/2, d�/3} (см. формулы (14) и (45)). Считаем, что на

указанных пяти множествах функция Rε
γ принимает соответственно значения

eγε
−θs

le/ri
j , eγε

−θnup
j и eγε

−θr
le/ri
j (см. рис. 2, a, с продольными s

le/ri
j , попереч-

ной nupj и радиальными r
le/ri
j координатами, отмеренными от границы ∂�εj), а

вне названных фигур и, разумеется, вне «прямоугольников» �εj , j = 1, . . . , J ,

она равна большой постоянной eγε
−θh. Построенная весовая функция кусочно-

гладкая и непрерывная, так как объединения ⋓εj шести фигур, отвечающие каж-

дой из точек s1, . . . , sJ , содержатся в окрестности Vd и не пересекаются одна с

другой (рис. 2, b). Подчеркнем еще раз, что вне множества � \ ⋓ε функция Rε
γ

становится экспоненциально большой. Через ⋓ε и �ε обозначаем объединения

⋓ε1 ∪ · · · ∪ ⋓εJ и �ε1 ∪ · · · ∪�εJ соответственно.

В интегральное тождество (3) для пары {λεp;uεp} подставим пробную функ-

цию ψε = Rε
γu

ε
pγ , где uεpγ = Rε

γu
ε
p, — обе функции принадлежат пространству

H1(�) благодаря свойствам веса Rε
γ . После двукратного его коммутирования с

оператор-градиентом ∇ получим равенство

∥∥∇uεpγ ;L2(�)
∥∥2 − λεp

∥∥uεpγ ;L2(�)
∥∥2 − ε−1a0

∥∥uεpγ ;L2(� )
∥∥2

=
∥∥uεpγ

(
Rε
γ

)−1∇xRε
γ ;L

2(�)
∥∥2
. (53)

Для оценки правой части заметим, что
∣∣∇Rε

γ(x)
∣∣ ≤ γε−θRε

γ(x), но ∇Rε
γ(x) = 0 при x ∈ (� \ ⋓ε) ∪�ε, (54)

и, следовательно,

∥∥uεpγ
(
Rε
γ

)−1∇xRε
γ ;L

2(�)
∥∥2 ≤ γ2ε−2θ

∥∥uεpγ ;L2(⋓ε)
∥∥2
.

Правую часть обработаем при помощи леммы 1, в которой положим a = a0,

k = κ(s), и, обратившись к вариационной постановке задачи (49) при учете

якобиана J (n, s) = 1 + nκ(s), придем к такому неравенству для функции uεpγ ,
записанной в локальных координатах n и s:

0∫

−εθh

(∣∣∂nuεpγ(n, s)
∣∣2 +

(
a2
0

ε2
+
a0

ε
κ(s)

)∣∣uεpγ(n, s)
∣∣2
)

J (n, s) dn− a0

ε

∣∣uεpγ(0, s)
∣∣2

≥ −c

0∫

−εθh

∣∣uεpγ(n, s)
∣∣2J (n, s) dn.

Проинтегрируем его по мелким дугам � εj = {s ∈ � : |s− sj | ≤ εθh} = � ∩ ∂�εj и

продырявленному ими контуру � \ � ε = � \ ∂�ε, где � ε = � ε1 ∪ · · · ∪ � εJ . В силу

формул (40) и (52) на множестве � ε при малом ε выполнено соотношение

ε−1a0(κ0 − κ(s)) ≥ ε−1a0 min{K1, . . . ,KJ}(εθh)2m

−max{K1, . . . ,KJ}εθ(2m+1) ≥ ε−2θ(«p + 2),

а значит, ограничение (51) гарантирует оценку
∫

(V
εθh
∩�)\�ε

(
|∇uεpγ(x)|2 − λεp|uεpγ(x)|2

)
dx − a0

ε

∫

�\� ε

∣∣uεpγ(x)
∣∣2 ds
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≥
(
−λεp −

a2
0

ε2
− a0

ε
κ0 + ε−2θ(«p + 1) + c

) ∫

(V
εθh
∩�)\�ε

∣∣uεpγ(x)
∣∣2 dx

≥ (ε−2θ − c)
∥∥uεpγ ;L2((Vεθh ∩ �) \�ε)

∥∥2
. (55)

Кроме того, на исключенных «прямоугольниках» �εj верны равенства Rε
γ = 1

и uεpγ = uεp, а значит, ввиду нормировки
∥∥uεp;L2(�)

∥∥ = 1 (см. условие (5))

находим, что
∫

�ε
j

(∣∣∇uεpγ(x)
∣∣2 − λεp

∣∣uεpγ(x)
∣∣2) dx− a0

ε

∫

� ε
j

∣∣uεpγ(x)
∣∣2 ds

≥ −
(
λεp +

a2
0

ε2
+
a0

ε
κ0 +Kjh

2mε−2θ + c

)∫

�ε
j

∣∣uεpγ(x)
∣∣2 dx

≥ −Cjε−2θ
∥∥uεpγ ;L2

(
�εj

)∥∥2
= −Cjε−2θ

∥∥uεp;L2
(
�εj

)∥∥2 ≥ −ε−2θCj . (56)

Наконец, вне окрестности Vεθh контура � следующая примитивная формула

очевидна:
∫

�\V
εθh

(∣∣∇uεpγ(x)
∣∣2 − λεp

∣∣uεpγ(x)
∣∣2)

≥
∥∥uεpγ ;H1(� \ Vεθh)

∥∥2
+ caε

−2
∥∥uεpγ ;L2(� \ Vεθh)

∥∥2
, ca > 0.

Собрав полученные оценки, превращаем соотношение (53) в неравенство

∥∥Rε
γu

ε
p;L

2(� \�ε)
∥∥2 ≤ cp, (57)

причем ключевыми оказываются оценки (55) и (56), определяющие левую и

правую части этого неравенства после сокращения множителя ε−2θ ≤ ε−2.

Теорема 1. Если собственное число λεp задачи (1), (2) удовлетворяет огра-
ничению (51), то найдутся такие положительные величины γp и εp, cp, что соот-
ветствующая собственная функция, нормированная в L2(�), подчинена оценке

ε2
∥∥Rε

γp∇u
ε
p;L

2(�)
∥∥2

+
∥∥Rε

γpu
ε
p;L

2(�)
∥∥2 ≤ cp при ε ∈ (0, εp], (58)

где Rε
γ — введенная выше экспоненциальная весовая функция.

Доказательство. Добавив к формуле (57) соотношение
∥∥uεp;L2(�ε)

∥∥2 ≤∥∥uεp;L2(�)
∥∥2

= 1, приходим к нужной оценке для квадрата второй нормы в (58).

Эта оценка, ограничение (51) и известное следовое неравенство [1, гл. 1]

‖v;L2(� )‖2 ≤ C�‖v;H1(�)‖ ‖v;L2(�)‖ (59)

позволяют вывести из равенства (53) оценку
∥∥∇uεpγ ;L2(�)

∥∥2 ≤ Cpε
−2, а затем

вынести вес Rε
γ из-под градиента при помощи формул (54), заканчивая тем

самым доказательство теоремы.

Если выполнено неравенство (51), то найдется положительная бесконечно

малая последовательность {εi}i∈N, вдоль которой имеет место сходимость

ε2θ
(
λεp + ε−2a2

0 + ε−1a0κ0

)
→ µ̂p при ε→ +0 (60)
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(индекс i у малого параметра не пишем для краткости). Соответствующую

собственную функция uεp, нормированную в L2(�) и гладкую вместе со своим

следом � ∋ s 7→ uεp(0, s), умножим на срезки (45) и заметим, что в силу экс-

поненциального ее затухания при удалении от точек s1, . . . , sJ (теорема 1) для

произведений uεpj = χju
ε
p справедливо соотношение

∥∥uεp1;L2(�)
∥∥2

+ · · ·+
∥∥uεpJ ;L2(�)

∥∥2
= 1− . . . . (61)

Здесь и далее многоточие замещает экспоненциально малые при ε → +0 ве-

личины. Запишем функции в криволинейных координатах и на множествах

�j = � ∩ suppχj введем представления

uεpj(x) = χ�(n)uεpj(0, s)e
a0n/ε + uε0pj(n, s). (62)

Пусть еще �j = � ∩ �j . Вычислим левую часть равенства

J∑

j=1

(∥∥∇uεpj ;L2(�j)
∥∥2 − ε−1a0

∥∥uεpj ;L2(�j)
∥∥2 − λεp

∥∥uεpj ;L2(�j)
∥∥2)

= . . . ,

обеспеченного интегральным тождеством (3), при помощи простых формул

0∫

−∞

∣∣∣∣
d

dn
ea0n/ε

∣∣∣∣
2

dn =
a2
0

ε2

0∫

−∞

e2a0n/ε dn =
a0

2ε
,

0∫

−∞

n

∣∣∣∣
d

dn
ea0n/ε

∣∣∣∣
2

dn =
a2
0

ε2

0∫

−∞

ne2a0n/ε dn = −1

4
,

2

0∫

−∞

∂uε0pj
∂n

(n, s)
d

dn
ea0n/ε dn = −2

a2
0

ε2

0∫

−∞

uε0pj(n, s)e
a0n/ε dn (так как uε0pj(0, s) = 0),

0∫

−∞

ea0n/ε

(
nκ(s)∂nu

ε0
pj(n, s) +

(
nκ(s)

a2
0

ε2
+
a0κ0

ε

)
uε0pj(n, s)

)
dn

=
a0

ε

0∫

−∞

(κ0 − κ(s))ea0n/εuε0pj(n, s) dn.

При учете якобиана J (n, s) = 1 + nκ(s) и формулы (51) обнаруживаем, что

J∑

j=1

(
1

2

∥∥(κ0 − κ)1/2uεpj(0, ·);L2(�j)
∥∥2

+
∥∥∂nuε0pj;L2(�j)

∥∥2

+
1

2

(
a2
0

ε2
+
a0κ0

ε

)∥∥uε0pj;L2(�j)
∥∥2

+
∥∥J −1∂su

ε
pj ;L

2(�j)
∥∥2
)

≤ ε−2θ«p +

J∑

j=1

(
Iεpj +

a0

ε

∫

�j

|n|κ(s)

1 + nκ(s)
e2a0n/ε|uεpj(0, s)|2 dx

)
+ cpe

−γpε−θ

, (63)
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где γp — некоторый положительный показатель (см. теорему 1) и

Iεpj ≤
a0

ε

(
2

∣∣∣∣
∫

�j

κ0 − κ(s)

1 + nκ(s)
uεpj(0, s)e

a0n/εuε0pj(n, s) dx

∣∣∣∣

+ κ0

∣∣∣∣
∫

�j

nκ(s)

1 + nκ(s)
uεpj(0, s)e

a0n/εuε0pj(n, s) dx

∣∣∣∣
)

≤ Cκ
(
ε−1/2

∥∥(κ0 − κ)1/2uεpj(0, ·);L2(�j)
∥∥+ ε1/2

∥∥uεpj(0, ·);L2(�j)
∥∥)∥∥uε0pj ;L2(�j)

∥∥.

Благодаря ограничению (51), условию нормировки (5), исходному интегрально-

му тождеству (3) и следовому неравенству (59) верны соотношения

∥∥∇uεp;L2(�)
∥∥2 ≤ Cpε−2

∥∥uεp;L2(�)
∥∥2

= Cp,
∥∥uεp;L2(� )

∥∥2 ≤ cp� ε−1.

Таким образом, во-первых,

Iεpj ≤ Cκ
(∥∥(κ0 − κ)1/2uεpj(0, ·);L2(�j)

∥∥+ cp�
)
ε−1/2

∥∥uε0pj ;L2(�j)
∥∥

и, во-вторых, последний интеграл в формуле (63) (без множителя a0/ε) оцени-

вается сверху величиной cp�κε
2
∥∥uεpj ;L2(�j)

∥∥2
. В итоге видим, что при малом

ε > 0 левая часть неравенства (63) не превосходит cpε
−θ — далее ссылаемся на

обсуждаемую оценку именно с такой мажорантой.

В силу формул (61) и (63) имеем

∣∣∣∣∣
ε

2a0

J∑

j=1

∥∥uεpj(0, s);L2(�j)
∥∥2 − 1

∣∣∣∣∣ ≤ cε. (64)

Определим еще функции uε⊥pj (n, s) = uεp(n, s)− r
−1/2
ε uεpj(s)e

a0n/ε и

uεpj(s) =
1√
rε

0∫

−ε

ea0n/εuεp(n, s) dn, где rε =

0∫

−ε

e2a0n/ε dn =
ε

2a0
(1 − e−2a0) > 0.

(65)

Заметим, что согласно оценке (63) для L2(�j)-нормы функции uε0pj (ее появление

отмечено фигурной скобкой снизу) выполнено соотношение

cκ
∥∥(κ0 − κ)1/2

(
uεpj −

√
rεu

ε
pj(0, ·)

)
;L2(�j)

∥∥2 ≤
∥∥uεpj −

√
rεu

ε
pj(0, ·);L2(�j)

∥∥2

=

∫

�j


 1√

rε

0∫

−ε

ea0n/εuεp(n, s) dn−
√
rεu

ε
pj(0, s)




2

ds

=
1

rε

∫

�j




0∫

−ε

ea0n/ε
(
uεp(n, s)− ea0n/εuεpj(0, s)︸ ︷︷ ︸

)
dn




2

ds

≤ cJ

rε

∥∥uε0pj ;L2(�j)
∥∥2 ≤ cjε1−θ (66)

с положительным множителем cκ. Кроме того, вытекающая из определений
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(65) ортогональность

∫

�j

0∫

−ε

ea0n/εuεpj(s)u
ε⊥
pj (n, s) dnds

=

∫

�j

uεpj(s)




0∫

−ε

ea0n/εuεpj(n, s) dn− uεpj(s)
1√
rε

0∫

−ε

e2a0n/ε dn


 ds = 0

конечно же сохраняется для производных функций uεpj и uε⊥pj по переменной s,
а значит,

(1− εκ0)
∥∥J −1∂su

ε
pj ;L

2(�j)
∥∥2

≥
∫

�j

0∫

−ε

(
r−1/2
ε ∂su

ε
pj(s)e

a0n/ε + ∂su
ε⊥
pj (n, s)

)2
dnds

=

∫

�j

0∫

−ε

(∣∣∂suεpj(s)
∣∣2 +

0∫

−ε

∣∣∂suε⊥pj (n, s)
∣∣2 dn

)
ds ≥

∥∥∂suεpj ;L2(�j)
∥∥2
. (67)

Теперь введем функции vεpj «быстрых» переменных ε−θ(s− sj) = ηj ∈ R,

vεpj(ηj) = εθ/2uεpj(sj + εθηj), (68)

продолжив uεpj нулем на всю вещественную ось. Формулы (64) и (66) влекут за

собой соотношение ∣∣∣∣∣
J∑

j=1

∥∥vεpj ;L2(R)
∥∥2 − 1

∣∣∣∣∣ ≤ cpε
1−θ. (69)

Кроме того, оценки (66) и (67) показывают, что

∥∥vεpj ; W 1
m(R)

∥∥2
:=
∥∥∂ηjvεpj ;L2(R)

∥∥2
+
∥∥ηmj vεpj ;L2(R)

∥∥2

≤ cjpj
(
ε2θ−θεθ

∥∥J −1∂su
ε
pj ;L

2(�j)
∥∥2

+ ε−2mθεθrε
∥∥(s− sj)muεpj ;L2(�j)

∥∥2)
.

Поскольку rε = O(ε), оба суммарных показателя степеней малого параметра

равны 2θ (см. формулы (65) и (42)). Следовательно, оценка (63) гарантирует

равномерную ограниченность сумм W 1
m(R)-норм функций (68), а понятная ком-

пактность вложения (гильбертова) весового пространства Соболева в простран-

ство Лебега L2(R) означает, что вдоль бесконечно малой положительной под-

последовательности {εi}i∈N (сохранили обозначение) имеет место сходимость

vεipj → v̂pj слабо в W 1
m(R), но сильно в L2(R), причем

J∑

j=1

‖v̂pj ;L2(R)‖2 = 1.

(70)

Важное последнее равенство, гарантирующее нетривиальность вектор-функции

(v̂p1, . . . , v̂pJ ), обеспечено оценкой (69) и проверенной сильной сходимостью (70).

Для произвольного набора функций �1, . . . , �J ∈ C∞c (R) введем в формулу

(
uεp, (�+ λεp)ψ

ε
)
�

=
(
uεp, (∂n − ε−1a0)ψ

ε
)
�
, (71)
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происходящую от интегрального тождества (3), пробную функцию

ψε(x) = χ1(x)w0(−ε−1n)�1(ε
−θ(s− sj)) + · · ·+ χJ(x)w0(−ε−1n)�J(ε−θ(s− sj)),

имитирующую асимптотический анзац (44). По определению функций χj и w0

правая часть формулы (71) обращается в нуль, а проведенные выше выкладки

приводят к соотношению

J∑

j=1

((
χjw0u

ε
p,
(
∂2
s − ε−1Kj(s− sj)2m

)
�j
)
�j

+

(
λεp +

a2
0

ε2
+
a0κ0

ε

)(
χjw0u

ε
p, �j

)
�j

+
(
χju

ε
p, R

ε
j(�j)

)
�j

)
= 0,

где для «остаточного» выражения Rεj(�j), которое включает сомножителями

экспоненту e−a0n/ε и линейную комбинацию функций �j ∂s�j с коэффициента-

ми O(1 + ε−1|n|), верна оценка
∥∥Rεj(�j);L2(�j)

∥∥ ≤ c�ε−θ+1/2. Теперь, умножив

последнее равенство на r
−1/2
ε ε2θ, перейдем к пределу при ε → +0 в согласии

со сходимостями (60), (70) и связями (62), (65), (68). В итоге ввиду взаимной

независимости функций �1, . . . , �J получаем совокупность (j = 1, . . . , J) инте-

гральных тождеств

(
v̂pj , ∂

2
ηj�j

)
R

+Kj

(
v̂pj , η

2m
j �j

)
R

= µ̂p(v̂pj , �j)R ∀�j ∈ C∞c (R),

которые как раз и означают, что пары
{
µ̂p; v̂pj

}
удовлетворяют предельным

дифференциальным уравнениям (46). Приняв во внимание последнее равенство

из списка (70), формулируем полученный результат.

Теорема 2. При ограничении (40) и постоянном коэффициенте Робэна
a0 > 0 предельные переходы (60) и (68) дают пары {µ̂p; v̂pj} ∈ R+ × W 1

m(R),
j = 1, . . . , J , среди которых хотя бы одна является собственной для предельного
дифференциального уравнения (40).

Замечание 2. Установленная локализация собственных функций задачи

(1), (2), а также полученные оценки, в частности, приведшие к формуле (69),

показывают, что условия ортогональности и нормировки (5) порождают соот-

ношения (v̂p1, v̂p1)R + · · ·+ (v̂pJ , v̂pJ)R = δp,q.

9. Асимптотика собственных пар в случае вырожденных макси-

мумов кривизны. Следовое неравенство (59) позволяет выбрать коэффици-

ент b > 0 так, чтобы билинейная форма

〈uε, ψε〉ε = (∇xuε,∇xψε)� + bε−2(uε, ψε)� − ε−1a0(u
ε, ψε)� (72)

стала скалярным произведением в гильбертовом пространстве H ε = H1(�),

причем

‖uε; H ε‖2 ≥ c�(‖∇xuε;L2(�)‖2 + ε−2‖uε;L2(�)‖2 + ε−1‖uε;L2(� )‖2), c� > 0.
(73)

Введем еще компактный положительный, непрерывный и симметричный, а зна-

чит, самосопряженный оператор T ε, заданный при помощи тождества

〈T εuε, ψε〉ε = (uε, ψε)� ∀uε, ψε ∈H ε.
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В силу теорем 10.1.5 и 10.2.2 из [28] его существенный спектр состоит из од-

ной точки τ = 0, а дискретный образует бесконечно малую положительную

монотонную последовательность нормальных собственных чисел

τε1 ≥ τε2 ≥ τε3 ≥ · · · ≥ τεk ≥ · · · → +0. (74)

Неравенство (73) показывает, что τε1 ≤ c−1
� ε2. Интегральное тождество

(3) эквивалентно абстрактному уравнению T εuε = τεuε в пространстве H ε с

новым спектральным параметром

τε = ε2(b + ε2λε)−1. (75)

Последовательности (4) и (74) связаны именно формулой (75).

Следующее утверждение, известное как лемма о «почти собственных» чис-

лах и векторах (первоисточник [2]), вытекает из спектрального разложения ре-

зольвенты (см., например, [28; гл. 6]).

Лемма 2. Пусть uε ∈H ε и τ ε ∈ R+ таковы, что

‖uε; H ε‖ = 1, ‖T εuε − τ εuε; H ε‖ =: δε ∈ (0, T ε).

Тогда имеется собственное число τεn(ε) оператора T ε, подчиненное неравенству∣∣τ ε − τεn(ε)

∣∣ ≤ δε. Более того, для любого δε∗ ∈
(
δε, τ ε

)
найдутся коэффициенты

C ε
Nε , . . . ,C ε

Nε+Xε−1, при которых верны формулы
∥∥∥∥∥u

ε −
N

ε+X
ε−1∑

i=Nε

C ε
i U ε

i ; H ε

∥∥∥∥∥ ≤ 2
δε

δε∗
,

N
ε+X

ε−1∑

i=Nε

∣∣C ε
i

∣∣2 = 1, (76)

где τε
Nε , . . . , τεNε+Xε−1 — набор всех собственных чисел оператора T ε из (за-

мкнутого) сегмента [τ ε − δε∗, τ ε + δε∗], а соответствующие собственные векторы
U ε

Nε , . . . ,U ε
Nε+Xε−1 подчинены условиям ортогональности и нормировки〈

U ε
p ,U

ε
q

〉
ε

= δp,q.

Пусть {�ℓ}ℓ∈N — упорядоченная последовательность, полученная объедине-

нием последовательностей {Mjp}p∈N собственных чисел предельных уравнений

(46), j = 1, . . . , J , а �ℓ — κℓ-кратный ее член, т. е.

�ℓ−1 < �ℓ = �ℓ+κℓ−1 < �ℓ+κℓ
. (77)

В качестве «почти собственных» пар оператора T ε возьмем
{
τ εk = ε2

(
b− a2

0 − εa0κ0 + ε2−θ�ℓ
)−1

;uεk = ‖vεk; H ε‖−1vεk
}
, k = ℓ, . . . , ℓ+ κℓ − 1,

(78)

причем для �k = Mjkpk положим vεj = 0 при j 6= k и

vεk(x) = χjk(x)w0(−ε−1n)Vjkpk(ε−θ(s− sjk)), (79)

где w0 — экспонента из формулы (9), {Mjkpk ;Vjkpk} — собственная пара уравне-

ния (46), χj ∈ C∞c (R2) — произведение срезающих функций (14) и (45). Удобно

считать, что ∂nχj = 0 на � .

Оценим величину δεk из леммы 2, найденную по собственной паре (78). Име-

ем

δεk =
∥∥(T ε − τ εk

)
uεk; H

ε
∥∥ = sup

∣∣〈(T ε − τ εk )uεk, ψ
ε
〉
ε

∣∣

= τ εk
∥∥vεk; H ε

∥∥−1
sup
∣∣(∇vεk,∇ψε

)
�
− ε−1a0

(
vεk, ψ

ε
)
�

+
(
ε−2a2

0 + ε−1a0κ0 − ε−2θ�k
)(
vεk, ψ

ε
)
�

∣∣. (80)
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Здесь супремум вычисляется по единичной сфере в пространстве H ε, т. е.

‖ψε; H ε‖ = 1, и для пробной функции ψε ∈ H1(�) правая часть неравенства

(73) равномерно по ε ∈ (0, ε0] ограничена. Преобразуем выражение Iεk(ψ
ε) меж-

ду последними знаками модуля в цепочке (80), считая, что �k = Mjp. Используя

формулу интегрирования по частям, выводим равенство

Iεk(ψ
ε) =

(
�vεk −

(
ε−2a2

0 + ε−1a0κ0 − ε−2θMjp)v
ε
k, ψ

ε
)
�
−
(
∂nv

ε
k − ε−1a0v

ε
k, ψ

ε
)
�
.

Последнее скалярное произведение обращается в нуль согласно определениям

функции (79) и срезки χj , для которой по построению ∂nχj = 0 на � . Кро-

ме того, благодаря экспоненциальному затуханию собственных функций w0 и

Vjp коммутирование срезки с оператором � привносит экспоненциально малую

погрешность, обозначаемую по обыкновению многоточием. Итак,

Iεk(ψ
ε) = (�(w0Vjp), χjψ

ε)� −
((
ε−2a2

0 + ε−1a0κ0 − ε−2θMjp

)
w0Vjp, χjψ

ε
)
�

+ . . . .
(81)

Используя представление (6) оператора Лапласа, приходим к формуле

�(w0Vjp)(x) = ea0n/ε

(
a2
0

ε2
Vjp(ηj) +

a0κ(s)Vjp(ηj)

ε(1 + nκ(s))

+
ε−2θ∂2

ηjVjp(ηj)

(1 + nκ(s))2
− n∂sκ(s)ε−θ∂ηjVjp(ηj)

(1 + nκ(s))3

)
.

Обозначим выражения из правой части через I ε
0 , . . . ,I

ε
3 . Первое из них при-

сутствует в обоих скалярных произведениях из суммы (81) и потому исчезает

из нее. Для последнего получаем, что
∣∣(I ε

3 , ψ
ε)�
∣∣

≤ c3




0∫

−2dχ

n2e2a0n/ε dn




1/2

ε−θ




2dχ∫

−2dχ

∣∣∣∣
dVjp
dηj

(ηj)

∣∣∣∣
2

ds




1/2

‖ψε;L2(�)‖

≤ C3ε
3/2ε−θεθ/2ε = C3ε

(5−θ)/2.

Здесь помимо непосредственных вычислений норм применена вытекающая из

неравенства (73) оценка для множителя ‖ψε;L2(�)‖.
В выражении I ε

2 воспользуемся уравнением (46) и преобразуем следующую

сумму:

I ε
4 (n, s) := I ε

1 (n, s) + I ε
2 (n, s)− (ε−1a0κ0 − ε−2θMjp)w0(ζ)Vjp(ηj)

=
a0(κ(s)− κ0 +Kj(s− sj)2m)

ε(1 + nκ(s))
w0(ζ)Vjp(ηj)

+
nκ(s)

1 + nκ(s)

(
a0Kj(s− sj)2m
ε(1 + nκ(s))

− a0κ0

ε
− ε−2θMjp(2 + nκ(s))

)
w0(ζ)Vjp(ηj).

Таким образом, согласно представлению (40) имеем

∣∣(I ε
4 , ψ

ε
)
�

∣∣ ≤ c4






0∫

−2dχ

e2a0n/ε dn




1/2

× 1

ε


ε2θ(2m+1)

2dχ∫

−2dχ

η
2(2m+1)
j

∣∣Vjp(ηj)
∣∣2 ds




1/2

+




0∫

−2dχ

n2e2a0n/ε dn




1/2
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×




2dχ∫

−2dχ

(ε−2(s− sj)4m + ε−4θ)|Vjp(ηj)|2 ds




1/2
‖ψε;L2(�)‖

≤ C4(ε
1/2ε−θ/2 + ε3/2(ε−1+θ/2 + ε−3θ/2))ε ≤ 3C4ε

(3−θ)/2.

Кроме того, посредством вычислений, более простых, чем приведенные, пока-

зываем, что в силу определений (72) и (79) выполнена следующая оценка снизу:

∥∥vεk; H ε
∥∥2 ≥ c0(ε−2εεθ + ε−1εθ + ε−2εεθ) = 3c0ε

θ−1, c0 > 0.

В итоге, собрав полученные неравенства, видим, что величина (80) не пре-

восходит

ckε
2ε(1−θ)/2ε3/2 = ckε

4−θ/2,

a значит, лемма 2 предоставляет собственные числа τεNε
k

и λεNε
k

соответственно

оператора T ε и задачи (1), (2), для которых (чисел) верны соотношения

∣∣τεNε
k
− τ εk

∣∣ ≤ ckε
4−θ/2 ⇔

∣∣λεNε
k

+ ε−2a2
0 + ε−1a0κ0 − ε−θ�k

∣∣

≤ ckε
−θ/2(b+ ε2λεNε

k

)(
b− a2

0 − εa0κ0 + ε2−θ�k
)
. (82)

Отсюда сначала выводим, что

1

2

(
b+ε2λεNε

k

)
≤ b−a2

0−εa0κ0 +ε2−θ�k при ckε
2−θ/2(b−a2

0−εa0κ0+ε2−θ�k
)
≤ 1

2
,

а затем, подобрав подходящие εk > 0 и Ck > 0, получаем окончательную оценку

∣∣λεNε
k

+ ε−2a2
0 + ε−1a0κ0 − ε−θ�k

∣∣ ≤ Ckε
−θ/2 при ε ∈ (0, εk]. (83)

Несмотря на то, что мажоранта неограниченно возрастает при ε → +0,

формула (83) оправдывает асимптотику какого-то члена последовательности

(4), поскольку все показатели степеней малого параметра в левой части строго

меньше −θ/2. Ближайшая цель — убедиться в том, что в асимптотической

формуле (83) фигурирует именно собственное число λεk.

Теорема 3. При ограничениях (40) и a(s) = a0 для любого k ∈ N найдутся
такие положительные εk и Ck, что для члена λεk последовательности (4) соб-
ственных чисел задачи (1), (2) выполнено неравенство (83), в которомNε

k = k, а
{�ℓ}ℓ∈N — упорядоченная объединенная последовательность собственных чисел
Mjp предельных уравнений (46), j = 1, . . . , J .

Доказательство. Сначала рассмотрим кратное собственное число �ℓ из

формулы (77) и, воспользовавшись второй частью леммы 2, убедимся в том,

что построенное отображение k 7→ Nε
k можно сделать инъекцией. Положим

δε = ε−θ/2 max{Cℓ, . . . ,Cℓ+κℓ−1} и δε∗ = t−1δε, а параметр t ∈ (0, 1) зафик-

сируем далее. Обозначим через C ε
(ℓ), . . . ,C

ε
(ℓ+κℓ−1) ∈ RX

ε

столбцы, а через

S ε
(ℓ), . . . ,S

ε
(ℓ+κℓ−1) ∈ H1(�) — линейные комбинации собственных векторов опе-

ратора T ε, возникшие в формуле (76) (при необходимости выравниваем высоты

столбцов добавлением нулевых элементов). Благодаря условиям ортогонально-

сти и нормировки собственных векторов имеем
∣∣C ε

(q) · C ε
(p) − δp,q

∣∣ =
∣∣〈S ε

(p),S
ε
(q)

〉
ε
− δp,q

∣∣ ≤
∣∣〈S ε

(p),S
ε
(p) − uεq

〉
ε

∣∣

+
∣∣〈S ε

(p) − uεp,u
ε
q

〉
ε

∣∣+
∣∣〈uεp,uεq

〉
ε
− δp,q

∣∣ ≤ 2t+ 2t+ 0 = 4t.
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Здесь учтены обе оценки (76) и определение величины δε∗, а также дизъюнкт-

ность носителей функций uεp и uεq при p 6= q вместе с равенством
∥∥uεk; H ε

∥∥ = 1.

Следовательно, при малом t столбцы C ε
(ℓ), . . . ,C

ε
(ℓ+κℓ−1) «почти ортонормирова-

ны» в пространстве RX
ε

, что возможно только в случае Xε ≥ κℓ. Именно в этом

и нужно было убедиться, так как после фиксации подходящего t > 0 не менее κℓ
собственных чисел τεNε

ℓ
, . . . , τεNε

+κℓ−1 попадают на сегмент
[
τ εℓ −t−1δε, τ εℓ +t−1δε

]
,

а некоторое увеличение его длины по существу не сказывается на финальной

оценке (83).

Итак, каждому члену �p последовательности {�p}p∈N поставлено в соот-

ветствие свое собственное число λεNε
p
, а значит,

λεp ≤ λεNε
p
≤ −ε−2a2

0 − ε−1a0κ0 + ε−θ�p + Cpε
−θ/2. (84)

Таким образом, во-первых, p ≤ Nε
p и, во-вторых,

λεp ≤ −ε−2a2
0 − ε−1a0κ0 + ε−θ�k + Ckε

−θ/2,

т. е. выполнено неравенство (51) с мажорантой «p = �p + Cp. Возьмем

p = ℓ+κℓ−1 из формулы (77) и предположим, что N
εpi
p > p для некоторой поло-

жительной бесконечно малой последовательности {εpi }i∈N. Тогда найдутся удо-

влетворяющие неравенству (51) собственные числа λ
εpi
ℵ задачи (1), (2), для ко-

торых собственные функции u
εpi
ℵ ортогональны в пространстве L2(�) другим и,

что важно, разным собственным функциям uεq1 , . . . , u
ε
qℓ+κℓ−1

той же задачи, от-

вечающие собственным числам из сегмента
[
0,−ε−2a2

0− ε−1a0κ0 + ε−θ«ℓ+κℓ−1

]
.

Для всех них справедлива теорема 2, а значит, ввиду установленной силь-

ной сходимости (70) атрибут vℵ ∈ H1(R)J , найденный согласно формуле (68)

по последовательности {uε
p
i

ℵ }i∈N, ортогонален не менее ℓ + κℓ − 1 собствен-

ным функциям Vjp уравнений (46) при j = 1, . . . , J и Mjp ≤ �p (замеча-

ние 2). В то же время предельное собственное число µ̃ℵ также не превосходит

�p = �ℓ = · · · = �ℓ+κℓ−1. Эти наблюдения противоречат способу образования

последовательности {�q}q∈N. Следовательно, p = Nε
p и доказательство теоре-

мы 3 закончено.

Займемся асимптотикой собственных функций. Если собственное число

�ℓ простое (например, точка глобального максимума кривизны единственна),

то применение с этой целью второй части леммы 2 элементарно. Рассмот-

рим κℓ-кратное собственное число �ℓ из формулы (77). По доказанному в

теореме 3 найдется такой множитель ̺ℓ > 0, что в ̺ℓε
4−θ-окрестности точки

τ εℓ (ср. формулу (82)) располагаются собственные числа τεℓ , . . . , τ
ε
ℓ+κℓ−1 опе-

ратора T ε и только они. Следовательно, найдутся нормированные столбцы

C ε
(ℓ), . . . ,C

ε
(ℓ+κℓ−1) ∈ Rκℓ , для которых

∥∥∥∥∥u
ε
k −

ℓ+κℓ−1∑

i=ℓ

C ε
(k)iU

ε
i ; H ε

∥∥∥∥∥ ≤ 2
ckε

4−θ/2

̺ℓε4−θ
= 2

ck

̺ℓ
εθ/2.

Поскольку по построению
〈
uεp,u

ε
q

〉
ε

= δp,q, условия ортогональности и норми-

ровки для собственных векторов оператора T ε означают, что (κℓ×κℓ)-матрица

C ε :=
(
C ε

(ℓ), . . . ,C
ε
(ℓ+κℓ−1)

)
ортогональная (вещественная унитарная). После ее

обращения Bε := (C ε)−1 (т. е. транспонирования) остается принять во вни-

мание различие нормировок собственных векторов и функций в пространствах

H ε и H1(�) (см. неравенство (73)) и сформулировать полученный результат.
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Теорема 4. В условиях теоремы 3 для ортонормированных в пространстве
L2(�) собственных функций задачи (1), (2), отвечающих ее собственным числам
λεℓ , . . . , λ

ε
ℓ+κℓ−1 (см. формулу (77)) найдутся такие ортогональная (κℓ × κℓ)-

матрица Bε =
(
Bε
pq

)
и величины εℓ > 0, cℓ > 0, что при ε ∈ (0, εℓ] выполнены

оценки

ε2
∥∥∇uεq −∇Sεq;L

2(�)
∥∥2

+
∥∥uεq − Sεq;L

2(�)
∥∥2 ≤ cℓε

θ/2,

где q = ℓ, . . . , ℓ+ κℓ − 1 и

Sεq(x) =
2a0

ε1+θ

ℓ+κℓ−1∑

p=ℓ

Bε
pqχjp(x)w0

(
− n

ε

)
Vjpkp

(
s− sjp
εθ

)
в случае �p = Mjpkp ,

а w0 — экспонента (9), Vjpkp — собственная функция уравнения (46) и θ =
1

2(1+m) .

10. Разное. 1◦. Гладкость границы и коэффициента Робэна. Требо-

вания a ∈ C∞(� ) и � ∈ C∞, разумеется, излишни — при выводе и обосновании

асимптотических разложений принимали участие примитивные формулы Тей-

лора, и поэтому в разд. 3, 4 и 7 достаточно предположить принадлежность

коэффициента Робэна и кривизны контура классам Гёльдера C3,δ. В разд. 5

при нахождении первых поправочных асимптотических членов достаточна дву-

кратная непрерывная дифференцируемость границы.

Если a — непрерывная кусочно-гладкая положительная функция с глобаль-

ным максимумом в точке s0 ∈ � , причем

a(s) = a0 −K|s− s0|+O
(
(s− s0)2

)
, K > 0,

то алгоритм построения асимптотик в целом сохраняется, однако в растяжении

(10) возникает показатель θ = 1/3, а предельным уравнением вместо (24) стано-

вится уравнение Эйри на оси R ∋ η с дифференциальным оператором−∂2
η+K|η|

(см., например, [28]). Схожие процедуры можно найти в публикациях [29, 30],

посвященных задачам Дирихле в тонких многогранниках и многоугольниках

(треугольнике).

В случае кусочно-гладкой границы спектр задачи Робэна для оператора

Лапласа приобретает разнообразные особенности строения, например, в обла-

стях с пикообразными заострениями могут появиться непустые существенный

и остаточный спектры (см. [31–34] и др.). Не останавливаясь на подробно-

стях, упомянем статьи [11, 35, 36], посвященные названной задаче в областях

с угловыми и коническими точками. Приведенные списки ссылок конечно же

неполные.

2◦. Простой пример. В прямоугольнике � = (0, H)× (0, 2π) рассмотрим

дифференциальное уравнение (1) с краевыми условиями и условиями перио-

дичности

−∂u
ε

∂x1
(0, x2) =

1

ε
uε(0, x2), uε(H,x2) = 0, x2 ∈ (0, 2π),

uε(x1, 0) = uε(x1, 2π),
∂uε

∂x2
(x1, 0) =

∂uε

∂x2
(x1, 2π), x1 ∈ (0, H).

(85)

Разделив переменные и построив асимптотику собственных чисел обыкновенно-

го дифференциального уравнения на отрезке (0, H), обнаруживаем следующие

серии собственных чисел задачи (1), (85) с устойчивыми асимптотиками:

{k2 − ε−2 +O(e−1/ε)}k∈N2
0

и {k2 + 4H−2π2(1 + ε+O(ε2))}k∈N2
0
, j ∈ N, (86)
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Здесь N2
0 = {0, 1, 1, 2, 2, 3, 3, . . .}. Первая серия содержит отрицательные члены,

которые при ε → +0 уходят на отрицательную бесконечность, но при больших

индексах k ∈ N2
0 также и положительные собственные числа, перемешивающи-

еся с членами остальных (j ∈ N) серий (86). Тот факт, что последние члены

остаются положительными при всех малых ε > 0, т. е. не проникают в отрица-

тельную полуось, согласуется с асимптотическими формулами из разд. 5.

3◦. Полные асимптотические разложения. При условиях гладкости

из разд. 1 благодаря проверенной локализации собственных функций для от-

рицательной части спектра задачи (1), (2) и простоте собственных чисел инди-

видуальных предельных задач продолжение итерационных процессов, начатых

в разд. 3, 4, 7, и построение полных асимптотических разложений собственных

пар производится при помощи давно известных процедур (см. статьи [2, 4], мо-

нографии [25, 26, 37] и многие другие публикации). То же, разумеется, можно

сказать и о ситуации из разд. 2. Следует подчеркнуть, что построение бес-

конечных рядов в сингулярно возмущенных спектральных задачах зачастую

малополезное занятие, поскольку, как показано в [38, гл. 7] (см. также [39, 40]),

привлечение в асимптотические формулы вида (83) даже всего двух-трех по-

правочных асимптотических членов обычно провоцирует несоразмерные уве-

личение коэффициента Ck в мажоранте и уменьшение грани εk допустимого

изменения параметра. Лишь для некоторых весьма специфических способов

возмущения границы установлена [41, 42] аналитическая зависимость простых

собственных чисел от малых параметров. Вместе с тем построение младших

членов асимптотики позволяет вывести точные оценки остатков в разложениях

собственных пар — это относится и к теоремам 3 и 4, в которых таким путем

мажоранты могут быть уменьшены до C•ℓ и c•ℓε
θ соответственно, впрочем при

неконтролируемом уменьшении величины εk.

Разложения в бесконечные асимптотические ряды доступны не только для

основной, но и вторичных, в частности, положительной, серий собственных чи-

сел. Автору известна лишь одна работа [43] с подобным, вполне неожиданным,

результатом для разных диапазонов спектра.

Рис. 3. Шар (a), «сплющенный» (b) и тонкий (c) эллипсоиды — зоны локализации:
соответственно поверхность, линия и две точки. «Песочные часы» (d).

4◦. Многомерные области. Исследование собственных пар спектраль-

ных краевых задач с большим отрицательным коэффициентом Робэна прово-

дилось преимущественно в плоских областях. По поводу асимптотик в мно-

гомерных областях упомянем содержательную работу [44] и прокомментируем

формальный анализ лишь при удобной — эллипсоидальной — геометрии обла-

сти, предоставляющей различные типы локализации собственных функций, но

в общем случае разнообразие асимптотических анзацев разрастается неимовер-

но. Пусть коэффициент Робэна a = a0 постоянен и

� =
{
x = (x1, x2, x3) : α−2

1 x2
1 + α−2

2 x2
2 + α−2

3 x2
3 = 1

}
, αj > 0, j = 1, 2, 3.
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Если αj = 1 и � — единичный шар (рис. 3, a), то метод Вишика — Люстерника

[2–4] без труда дает асимптотику собственных пар задачи (1), (2) и, в частно-

сти, устанавливает локализацию собственных функций около всей сферической

поверхности. Асимптотический анализ из разд. 3 и 2 (см. также [8]) подска-

зывает, что при 1 = α1 ≥ α2 > α3, т. е. в случае «сплющенного» эллипсоида

(рис. 3, b), наблюдается концентрация собственных функций около длинного эк-

ватора. Наконец, при α1, α2 < α3 = 1, т. е. для сигарообразного эллипсоида

нетрудно предсказать эффект локализации около точек x = (0, 0,±1) (рис. 3, c)
и появление в качестве предельного уравнения двумерного аналога уравнения

гармонического осциллятора (24)

−�V (η)−
(
A2

1η
2
1 +A2

2η
2
2

)
V (η) = MV (η), η = (η1, η2) ∈ R2,

собственные функции которого по-прежнему обладают экспоненциальным за-

туханием на бесконечности (см., например, [21, 29]).

Для сложно устроенной геометрии тела и при отсутствии ярко выражен-

ных точек максимумов кривизн поверхности (ср. [44]), в частности, в случае

«седловин» (рис. 3, d) асимптотика даже первых собственных пар задачи (1), (2)

с постоянным коэффициентом Робэна остается неизученной.

Как и в плоской ситуации, наличие изолированных точек глобального мак-

симума переменного коэффициента Робэна a существенно упрощает асимпто-

тические конструкции (ср. разд. 4 и разд. 3, а также см. уже упоминавшиеся

статьи [18–22], относящиеся к другим задач задачам, но использующие похо-

жие приемы анализа). Впрочем, если глобальный максимум реализуется на

разомкнутой дуге, построение асимптотики встречает серьезные, пока не пре-

одоленные трудности (см. обсуждение в публикации [29]).
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Светлой памяти Семёна Самсоновича Кутателадзе

Уже больше трех десятилетий активно развивается анализ на разнообраз-

ных метрических структурах, в том числе и в наиболее общей ситуации — непо-

средственно на метрических пространствах. Наряду с привычным определени-

ем, основанным на существовании обобщенных производных, соболевские про-

странства функций с первыми производными в регулярных областях G ⊂ Rn

допускают альтернативные описания, формулируемые в терминах метрики и

меры Лебега и не использующие в явном виде линейной структуры евклидова

пространства и дифференцирования. Это позволяет на метрических простран-

ствах с мерой помимо классов суммируемых функций определить различные

классы функций с «обобщенной гладкостью», которые можно считать функ-

циональными пространствами соболевского типа, поскольку в евклидовом слу-

чае они совпадают с пространствами Соболева W 1
p (G). При таком подходе к

определению пространств соболевского типа они наследуют в метрическом слу-

чае некоторые свойства классических пространств Соболева W 1
p (G). Получены

метрические аналоги различных евклидовых результатов, в том числе аналоги

соболевских теорем вложения.

Цель изучения на метрических пространствах с мерой различных функци-

ональных классов соболевского типа и связанных с ними отображений метриче-

ских пространств заключается в получении весьма универсальных метрических

результатов и в разработке новых методов доказательств, не использующих ли-

нейную структуру в области определения. Метрические результаты применимы

в различных ситуациях, поскольку не связаны с конкретными метрическими

пространствами и, как правило, определяются соотношением меры и метрики.

К примеру, введенные Хайлашем [1] функциональные пространства соболев-

ского типа M1
p (X, d, µ) использовались при изучении пространств Соболева в

Работа выполнена в рамках государственного задания ИМ СО РАН (проект FWNF-2022-
0005).

c© 2025 Романов А. С.
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евклидовых областях с нерегулярными границами [2] и при описании следов

соболевских функций на фракталах [3].

В работе [4] имеется краткий обзор по данной тематике, в котором можно

найти ссылки на статьи, содержащие более полную библиографию. Основными

объектами изучения в [4] были функциональные пространства M1
p (X, d, µ) и

связанные с ними отображения класса M1
p (X,Y ), действующиe из метрического

пространства (X, d) в метрическое пространство (Y, ρ).
В этой работе мы продолжаем изучение различных вопросов, связанных с

пространствами соболевского типа M1
p (X, d, µ).

В первом параграфе работы содержатся необходимые сведения о свойствах

функций из пространств соболевского типа M1
p (X, d, µ). Во втором параграфе

рассматриваются отображения класса M1
p (X,Y ), формулируются известные и

доказываются новые свойства таких отображений, в частности, доказывает-

ся полнота пространства M1
p (X,Y ). В третьем параграфе изучаются свойства

отображений метрических пространств ϕ : (X, d) → (Y, ρ), индуцирующих по

правилу ϕ∗u = u ◦ϕ ограниченные операторы композиции в шкале пространств

соболевского типа

ϕ∗ : S1
p(Y, ρ, ν)→ Sαq (X, d, µ).

§ 1. Функциональные пространства

соболевского типа M1

p
(X,d, µ)

В этом параграфе приведем для удобства формулировки основных опреде-

лений и известных результатов, которые потребуются в дальнейшем.

Далее будем предполагать, что полное метрическое пространство (X, d)
имеет конечный диаметр, а конечная регулярная борелевская мера µ имеет но-

ситель в множестве X.
Функцию g : X → [0,∞) будем называть допустимой для µ-измеримой

функции u : X → R, если существует такое множество E ⊂ X, что µ(E) = 0 и

неравенство

|u(x)− u(y)| ≤ d(x, y)(g(x) + g(y)) (1.1)

выполняется для всех точек x, y ∈ X \ E.
Для функции u : X → R при p ≥ 1 символом Dp(u) обозначим множество

всех допустимых функций, принадлежащих пространству Лебега Lp(X,µ).
Определим два функциональных пространства следующим образом:

S1
p(X, d, µ) = {u : X → R | Dp(u) 6= ∅};

M1
p (X, d, µ) =

{
u ∈ Lp(X,µ) | u ∈ S1

p(X, d, µ)
}
.

Полунорма в пространстве S1
p(X, d, µ) и норма в пространстве M1

p (X, d, µ)

определяются равенствами

∥∥u | S1
p(X, d, µ)

∥∥ = inf
g∈Dp(u)

‖g | Lp(X,µ)‖,

∥∥u |M1
p (X, d, µ)

∥∥ = ‖u | Lp(X,µ)‖+
∥∥u | S1

p(X, d, µ)
∥∥.

В работе [1] показано, что пространство M1
p (X, d, µ) банахово. Отметим,

что в силу конечности диаметра метрического пространства и конечности ме-

ры следствием неравенства (1.1) является совпадение пространств S1
p(X, d, µ) и

M1
p (X, d, µ) как множеств функций.
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В евклидовых областях G ⊂ Rn с липшицевой границей пространство

M1
p (G, | · |,mn), рассматриваемое относительно стандартной евклидовой мет-

рики и меры Лебега, и классическое пространство Соболева W 1
p (G) совпадают

как множества функций, а их нормы эквивалентны [1]. Это свойство позволяет

считать пространство M1
p (G, | · |,mn) естественным метрическим аналогом про-

странства Соболева W 1
p (G) и называть его пространством соболевского типа.

Различные свойства пространств M1
p (X, d, µ) и их взаимосвязь с другими

классами функций изучались многими авторами. Отметим некоторые нужные

нам результаты.

Для пространств M1
p (X, d, µ) содержательную теорию, включающую в себя

различные варианты теорем вложения, удается получить в случае, когда мера

µ удовлетворяет простому геометрическому «условию удвоения»

µ(B(x, 2r)) ≤ Cdµ(B(x, r)), (1.2)

т. е. мера шара удвоенного радиуса допускает оценку сверху через меру исход-

ного шара.

Условие удвоения обеспечивает выполнение леммы Витали о покрытии и

связанных с ней свойств локально суммируемых функций.

Следствием условия удвоения является оценка снизу меры произвольного

шара B(x, r) при r ≤ diam(X):

µ(B(x, r)) ≥ Crs. (1.3)

В различных теоремах вложения показатель s ≤ log2 Cd, называемый показа-

телем регулярности меры µ, играет в некотором смысле роль «размерности»

метрического пространства (X, d) относительно меры µ.
Далее мы будем предполагать, что мера µ удовлетворяет условию удвоения

и имеет показатель регулярности s > 1.
Символом uE будем обозначать среднее значение функции u на множестве

E:

uE = —

∫

E

u dµ =
1

µ(E)

∫

E

u dµ.

Следующее утверждение было доказано в теореме 6 работы [1].

Лемма 1.1 [1]. Пусть мера µ удовлетворяет условию удвоения, является
s-регулярной и u ∈M1

p (X, d, µ). Тогда
1) при 1 < p < s функция u принадлежит Lq(X,µ), где 1 ≤ q ≤ ps

s−p , и

‖u | Lq(X,µ)‖ ≤ C
∥∥u |M1

p (X, d, µ)
∥∥;

2) если p = s, то функция u принадлежит Lq(X,µ) при всех q ∈ [1,∞);

3) при p > s функция u принадлежит L∞(X,µ) и

‖u− uX | L∞(X,µ)‖ ≤ Cµ(X)1/s−1/p
∥∥u | S1

p(X, d, µ)
∥∥. (1.4)

Нам будет удобнее вместо п. 3 использовать довольно простое следствие

оценки (1.4).

Лемма 1.2 [4]. Пусть мера µ удовлетворяет условию удвоения и s-регуляр-
на, s < p < ∞. Тогда для всякой функции u ∈ M1

p (X, d, µ) существует эквива-
лентная ей непрерывная функция ũ, для которой при всех x, y ∈ X выполняется
неравенство

|ũ(x)− ũ(y)| ≤ C[d(x, y)]1−s/p
∥∥u | S1

p(X, d, µ)
∥∥. (1.5)
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Пусть α ∈ (0, 1). Заменяя в определении пространствM1
p (X, d, µ) и S1

p(X, d, µ)

неравенство (1.1) на

|u(x)− u(y)| ≤ [d(x, y)]α(g(x) + g(y)),

получим функциональные пространства Mα
p (X, d, µ) и Sαp (X, d, µ).

Функциональные пространстваMα
p (X, d, µ), быть может, не совсем привыч-

ны, но, с одной стороны, они имеют простое определение и полученные для них

результаты являются весьма универсальными, с другой стороны, они близки к

пространствам Бесова Bαp,p(X, d, µ). Как показано в работе [5], для любого ε > 0

Bαp,p(X, d, µ) ⊂Mα
p (X, d, µ) ⊂ Bα−εp,p (X, d, µ).

Рассмотрим на множестве X новую гёльдерову метрику dα, полагая

dα(x, y) = [d(x, y)]α.

Для шара в метрике dα будем использовать обозначение Bα(x, r). Поскольку

µ(Bα(x, r)) = µ(B(x, r1/α)) ≥ Crs/α,
относительно метрики dα мера µ является s/α-регулярной.

Далее будем использовать термин «гёльдеровы классы», имея в виду про-

странства соболевского типа Mα
p , связанные с соответствующей гёльдеровой

метрикой. Вполне очевидно, что Mα
p (X, d, µ) = M1

p (X, dα, µ) и Sαp (X, d, µ) =

S1
p(X, dα, µ). Таким образом, гёльдеровы классы относительно исходной метри-

ки являются пространствами функций, имеющих «гладкость», равную единице

относительно гёльдеровой метрики. Это означает, что при получении, к приме-

ру, теорем вложения для функциональных пространств Mα
p (X, d, µ) достаточно

в утверждениях для пространствM1
p (X, d, µ) заменить показатель регулярности

s на s/α.
Приведем лишь нужные нам следствия лемм 1.1 и 1.2.

Лемма 1.3. Пусть мера µ удовлетворяет условию удвоения и s-регулярна.
Тогда

1) при 1 < αp < s пространство Mα
p (X, d, µ) непрерывно вложено в про-

странство Лебега Lq(X,µ), где 1 ≤ q ≤ ps
s−αp ;

2) при s < αp <∞ для всякой функции u ∈Mα
p (X, d, µ) существует эквива-

лентная ей непрерывная функция ũ, для которой при всех x, y ∈ X выполняется
неравенство

|ũ(x) − ũ(y)| ≤ C[d(x, y)]α−s/p
∥∥u | Sαp (X, d, µ)

∥∥.
Отметим существование в шкале пространств Mα

p (X, d, µ) внутренней тео-

ремы вложения.

Лемма 1.4 [2]. Пусть мера µ удовлетворяет условию удвоения и s-регуляр-
на, 1 < p < ∞, α ∈ (0, 1). Тогда пространство M1

p (X, d, µ) непрерывно вложено
в пространство Mα

q (X, d, µ), где
1) 1 ≤ q ≤ sp

s−(1−α)p при (1− α)p < s;

2) 1 ≤ q <∞ при (1 − α)p = s;
3) 1 ≤ q ≤ ∞ при (1 − α)p > s.

При учете равенства Mα
p (X, d, µ) = M1

p (X, dα, µ) соответствующее вложе-

ние пространства Mα
p (X, d, µ) в пространство Mβ

q (X, d, µ) при β < α является

простым следствием леммы 1.4.
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§ 2. Отображения метрических

пространств класса M1

p
(X,Y )

Определим интересующие нас классы отображений, действующих из мет-

рического пространства (X, d) в метрическое пространство (Y, ρ). В некоторых

работах авторы используют изометрическое вложение метрического простран-

ства (Y, ρ) в пространство ограниченных функций и изучают далее отображения

со значениями в банаховом пространстве. При таком подходе возникает опре-

деленная зависимость от выбранного способа вложения. Будем рассматривать

отображения с областью значений непосредственно в метрическом простран-

стве.

Рассмотрим полное сепарабельное метрическое пространств (Y, ρ) и, следуя

работе Ю. Г. Решетняка [6], при p ≥ 1 определим принадлежность отображе-

ния ϕ : (X, d) → (Y, ρ) лебеговскому классу Lp(X,Y ) условием: вещественные

функции ϕy(x) = ρ(ϕ(x), y) принадлежат пространству Лебега Lp(X,µ) при

всех y ∈ Y.
Замечание. Первоначально такое условие использовалось в работе Коре-

ваара и Шоэна [7] для функций, определенных в областях риманова простран-

ства. В [6] областью определения является произвольное пространство с мерой

(M,S, µ), где M — произвольное множество, S — σ-алгебра подмножеств M и

µ : S → R — неотрицательная мера.

Элементом класса Lp(X,Y ) будем считать совокупность отображений, сов-

падающих µ-почти всюду в X.
Из неравенства

|ϕy1(x) − ϕy2(x)| ≤ ρ(y1, y2)
и конечности меры µ следует, что отображение ϕ принадлежит классу Lp(X,Y ),
если хотя бы для одного y ∈ Y функция ϕy принадлежит Lp(X,µ). Пусть ϕ и

ψ — произвольные отображения класса Lp(X,Y ). Поскольку

ρ(ϕ(x), ψ(x)) ≤ ρ(ϕ(x), y) + ρ(ψ(x), y) = ϕy(x) + ψy(x),

функция Hϕ,ψ(x) = ρ(ϕ(x), ψ(x)) принадлежит пространству Лебега Lp(X,µ).
Несложно проверить, что функция

ρp(ϕ, ψ) =

(∫

X

[ρ(ϕ(x), ψ(x))]p dµ

)1/p

= ‖Hϕ,ψ | Lp(X,µ)‖

является метрикой на множестве отображений класса Lp(X,Y ). При этом мет-

рическое пространство (Lp(X,Y ), ρp) полное [6, 7].

Впоследствии нам будет удобнее использовать другую метрику ηp, согласо-

ванную с определением класса Lp(X,Y ).
Если ϕ, ψ ∈ Lp(X,Y ), то для функции

ηp(ϕ, ψ) = sup
z∈Y
‖ϕz − ψz | Lp(X,µ)‖

симметричность, неравенство треугольника и равенство ηp(ϕ,ϕ) = 0 вполне

очевидны.

Совпадение почти всюду отображений ϕ и ψ в случае ηp(ϕ, ψ) = 0 прове-

ряется довольно просто. Из свойств нормы пространства Lp(X,µ) и равенства
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ηp(ϕ, ψ) = 0 следует, что при всяком z ∈ Y равенство ϕz(x) − ψz(x) = 0 выпол-

няется при почти всех x ∈ X. Положим

Ez = {x ∈ X | ϕz(x)− ψz(x) 6= 0}.
Пусть P — счетное всюду плотное подмножество в Y и

E =
⋃

z∈P
Ez .

Отметим, что µ(E) = 0 и при всех x ∈ X \ E и всех z ∈ P
ρ(ϕ(x), z)− ρ(ψ(x), z) = 0.

Если x ∈ X \ E и ψ(x) ∈ P, то, полагая z = ψ(x), получаем ρ(ϕ(x), ψ(x)) = 0.
Если ψ(x) /∈ P, то существует такая последовательность {zk}, что zk ∈ P и

zk → ψ(x) в Y. В силу непрерывности метрики

ρ(ϕ(x), ψ(x)) = lim
k→∞

ρ(ϕ(x), zk) = 0.

Поэтому

ηp(ϕ, ψ) = 0⇐⇒ ϕ(x) = ψ(x) при x ∈ X \ E.
Отображения ϕ и ψ совпадают почти всюду. Таким образом, функция ηp явля-

ется метрикой на множестве отображений класса Lp(X,Y ).
Метрическое пространство (Y, ρ) будем называть регулярным, если оно яв-

ляется полным, сепарабельным и всякий замкнутый шар B ⊂ Y является ком-

пактным множеством.

Если метрическое пространство (Y, ρ) регулярно, то с точки зрения сходи-

мости метрики ηp и ρp эквивалентны.

Поскольку

|ϕz(x) − ψz(x)| = |ρ(ϕ(x), z)− ρ(ψ(x), z)| ≤ ρ(ϕ(x), ψ(x)),

то ηp(ϕ, ψ) ≤ ρp(ϕ, ψ).
С другой стороны, если последовательность отображений {ϕk} класса

Lp(X,Y ) фундаментальна относительно метрики ηp, то при всяком z ∈ Y после-

довательность вещественных функций {[ϕk]z} сходится в полном пространстве

Lp(X,µ). Остается воспользоваться леммой 2.3 работы [6], согласно которой

последовательность отображений {ϕk} сходится по метрике ρp к некоторому

отображению ϕ ∈ Lp(X,Y ).
В работе Кореваара и Шоэна [7] рассматриваются отображения соболевско-

го типа с областью определения в римановом пространстве и областью значений

в метрическом пространстве (X, d). Авторы используют довольно сложную кон-

струкцию: для отображения u ∈ Lp(�,X) определяют специального вида функ-

ционал энергии Ep(u) и полагают по определению, что отображение u принад-

лежит классу KSp(�,X), если Ep(u) <∞. В работах [6, 8] доказано, что всякая

вещественная функция класса KSp(�,R) принадлежит пространству Соболева

W 1
p (�).

Нам удобнее при определении классов отображений соболевского типа ис-

пользовать подход, предложенный Ю. Г. Решетняком [6]. С одной стороны,

определение работы [6] весьма универсально, условия легко формулируются и

с ними легче работать, с другой стороны Ю. Г. Решетняк показал [8], что опре-

деление работы [6] приводит к тому же классу отображений, что и определение

работы [7].
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Модифицируя схему Ю. Г. Решетняка, определим связанные с простран-

ствами M1
p (X, d, µ) классы отображений соболевского типа, действующих из

метрического пространства (X, d) в метрическое пространство (Y, ρ).

Определение класса M 1
p (X,Y ). Будем говорить, что определенное почти

всюду в X отображение ϕ : (X, d)→ (Y, ρ) принадлежит классу M 1
p (X,Y ), если

1) для всякого y ∈ Y функция ϕy(x) = ρ(ϕ(x), y) принадлежит функцио-

нальному пространству M1
p (X, d, µ);

2) существует такая функция ω ∈ Lp(X,µ), что при всех y ∈ Y функция ω
является допустимой для функции ϕy .

Заметим, что из п. 1 следует принадлежность отображения ϕ классу Lp(X,Y ).

Лемма 2.1. Пусть отображение ϕ : (X, d)→ (Y, ρ) удовлетворяет следую-
щим условиям:

1) ϕ ∈ Lp(X,Y );

2) существуют такое множество E ⊂ X и такая неотрицательная функция
g ∈ Lp(X,µ), что µ(E) = 0 и неравенство

ρ(ϕ(x1), ϕ(x2)) ≤ d(x1, x2)(g(x1) + g(x2)) (2.1)

выполняется для всех точек x1, x2 ∈ X \ E.
Тогда ϕ ∈ M 1

p (X,Y ). Если метрическое пространство (Y, ρ) сепарабельно,

то для принадлежности отображения ϕ классу M 1
p (X,Y ) выполнение условий 1

и 2 является необходимым.

Это утверждение в несколько иной формулировке доказано в лемме 2.1

работы [4].

В случае, когда множество X является липшицевой областью G ⊂ Rn, а

Y = R, получаем класс вещественных функций M 1
p (G,R), для которого соглас-

но лемме 2.1 и отмеченному ранее результату работы [1] выполняются соотно-

шения

M 1
p (G,R) = M1

p (G, | · |,mn) = W 1
p (G).

В некоторых случаях использование неравенства (2.1) позволяет получить

простые доказательства утверждений, касающихся отображений класса M 1
p (X,Y ).

Говорят, что отображение метрических пространств ψ : (Y, ρ)→ (Z, δ) удо-

влетворяет условию Липшица, если существует постоянная K <∞ такая, что

для любых y1, y2 ∈ Y
δ[ψ(y1), ψ(y2)] ≤ Kρ(y1, y2).

Если ϕ ∈M 1
p (X,Y ), а ψ : (Y, ρ)→ (Z, δ) удовлетворяет условию Липшица,

то, используя лемму 2.1, легко показать, что отображение � = ψ ◦ ϕ принадле-

жит классу M 1
p (X,Z) [4].

Рассмотрим еще один класс отображений.

Определение класса M1
p(X,Y ). Будем говорить, что определенное почти

всюду в X отображение ϕ : (X, d)→ (Y, ρ) принадлежит классуM1
p(X,Y ), если

1) для всякого y ∈ Y функция ϕy(x) = ρ(ϕ(x), y) принадлежит функцио-

нальному пространству M1
p (X, d, µ);

2) при всех y ∈ Y нормы всех функций ϕy равномерно ограничены, т. е.

∥∥ϕy | S1
p(X, d, µ)

∥∥ ≤ C0 <∞.
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Введем обозначение

〈ϕ〉p = sup
y∈Y

∥∥ϕy | S1
p(X, d, µ)

∥∥.

Принадлежность отображения ϕ классу M1
p(X,Y ) эквивалентна выполне-

нию условий ϕ ∈ Lp(X,Y ) и 〈ϕ〉p <∞.
На множестве отображений M1

p(X,Y ) можно определить метрику, полагая

для отображений ϕ, ψ ∈M1
p(X,Y )

η1,p(ϕ, ψ) = sup
y∈Y

∥∥ϕy − ψy |M1
p (X, d, µ)

∥∥.

Выполнение аксиом метрики в данном случае вполне очевидно.

Лемма 2.2. Если пространство (Y, ρ) регулярно, то множество отобра-
жений M1

p(X,Y ) с метрикой η1,p(·, ·) является полным метрическим простран-
ством.

Доказательство. Если {ϕn} — фундаментальная относительно метрики

η1,p(·, ·) последовательность отображений классаM1
p(X,Y ), то при фиксирован-

ном y ∈ Y последовательность функций [ϕn]y фундаментальна в полном про-

странстве M1
p (X, d, µ) и сходится к некоторой функции hy ∈ M1

p (X, d, µ). При

этом

‖[ϕn]y − hy | Lp(X,µ)‖ → 0 при n→∞.
Вполне очевидно, что последовательность {ϕn} является фундаментальной

и относительно метрики ηp(·, ·), сходимость по которой эквивалентна сходимо-

сти по метрике ρp(·, ·). Поэтому последовательность {ϕn} сходится в полном

метрическом пространстве Lp(X,Y ) к некоторому отображению ϕ ∈ Lp(X,Y ).
Поскольку

|[ϕn]y(x) − ϕy(x)| ≤ ρ(ϕn(x), ϕ(x)),

то

‖[ϕn]y − ϕy | Lp(X,µ)‖ ≤
(∫

X

[ρ(ϕn(x), ϕ(x))]p dµ

)1/p

= ρp(ϕn, ϕ)→ 0 при n→∞.
Следовательно, ϕy = hy почти всюду и поэтому ϕy ∈M1

p (X, d, µ).
Cогласно определению метрики η1,p(·, ·)

sup
y∈Y

∥∥[ϕn]y − hy |M1
p (X, d, µ)

∥∥→ 0 при n→∞. (2.2)

Из свойства (2.2) следует существование такого номера n0, что при произволь-

ном y ∈ Y выполняется неравенство
∥∥[ϕn0 ]y − ϕy | M1

p (X, d, µ)
∥∥ < 1. Поэтому

при всех y ∈ Y
∥∥ϕy | S1

p(X, d, µ)
∥∥ ≤

∥∥ϕy |M1
p (X, d, µ)

∥∥ ≤ 1 +
∥∥[ϕn0 ]y |M1

p (X, d, µ)
∥∥ <∞.

Это означает, что предельное отображение ϕ принадлежит классу M1
p(X,Y ) и

согласно свойству (2.2) η1,p(ϕn, ϕ)→ 0. �

Вполне очевидно, что M 1
p (X,Y ) ⊂ M1

p(X,Y ). С одной стороны, прове-

рить принадлежность отображения классу M1
p(X,Y ) проще, чем принадлеж-

ность классу M 1
p (X,Y ), с другой стороны, многие результаты, к примеру, тео-

ремы вложения, получаемые для класса M1
p(X,Y ), не только верны для класса

M 1
p (X,Y ), но и точны.
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Согласно определениям соответствующих классов отображений принадлеж-

ность отображения ϕ класса M1
p(X,Y ) лебеговскому классу Lq(X,Y ) является

непосредственным следствием принадлежности вещественной функции ϕy про-

странству M1
p (X, d, µ), непрерывно вложенному в пространство Лебега Lq(X,µ)

(лемма 1.1).

Лемма 2.3 [4]. Пусть мера µ удовлетворяет условию удвоения и s-регу-
лярна. Тогда

1) если 1 < p < s, то включение

M1
p(X,Y ) ⊂ Lq(X,Y )

имеет место при всех 1 ≤ q ≤ ps
s−p , при этом для всякого отображения ϕ ∈

M1
p(X,Y ) и для произвольной точки y ∈ Y выполняется оценка

‖ϕy | Lq(X,µ)‖ ≤ C
∥∥ϕy |M1

p (X, d, µ)
∥∥;

2) если p = s, то M1
p(X,Y ) ⊂ Lq(X,Y ) при всех q ∈ [1,∞);

3) если p > s, то M1
p(X,Y ) ⊂ L∞(X,Y ) и для всякого отображения ϕ ∈

M1
p(X,Y ) и произвольной точки y ∈ Y выполняется оценка

‖ϕy − [ϕy]X | L∞(X,µ)‖ ≤ Cµ(X)1/s−1/p
∥∥ϕy | S1

p(X, d, µ)
∥∥.

Несколько сложнее доказывается утверждение, уточняющее результат п. 3.

Лемма 2.4 [4]. Пусть мера µ удовлетворяет условию удвоения и s-регуляр-
на, s < p <∞, а метрическое пространство (Y, ρ) регулярно. Тогда для всякого
отображения ϕ ∈ M1

p(X,Y ) существует эквивалентное ему непрерывное отобра-
жение ψ, для которого при всех x1, x2 ∈ X выполняется неравенство

ρ(ψ(x1), ψ(x2)) ≤ C[d(x1, x2)]
1−s/p〈ϕ〉p. (2.3)

Замечание. Поскольку M 1
p (X,Y ) ⊂M1

p(X,Y ), то для отображений клас-

са M 1
p (X,Y ) верны утверждения лемм 2.3 и 2.4. С другой стороны, на евкли-

довом шаре B ⊂ Rn согласно лемме 2.1 M 1
p (B,R) = M1

p (B, | · |,mn) = W 1
p (B).

Следовательно, показатели в леммах 2.3 и 2.4 точные, так как на шаре B они

совпадают с показателями классических соболевских теорем вложения.

Естественным образом определяются гёльдеровы классы отображений:

определенное почти всюду в X отображение ϕ : (X, d) → (Y, ρ) принадлежит

классу Mα
p (X,Y ), если

1) для всякого y ∈ Y функция ϕy(x) = ρ(ϕ(x), y) принадлежит функцио-

нальному пространству Mα
p (X, d, µ);

2) при всех y ∈ Y нормы всех функций ϕy ограничены, т. е.

∥∥ϕy | Sαp (X, d, µ)
∥∥ ≤ C0 <∞.

Как и в леммах 2.3 и 2.4, формальная переформулировка утверждений

для пространств функций M1
p (X, d, µ) в леммах 1.3 и 1.4 позволяет получить

теоремы вложения для отображений, принадлежащих гёльдеровым классам

Mα
p (X,Y ).
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Лемма 2.5 [4]. Пусть мера µ удовлетворяет условию удвоения и s-регуляр-
на, а метрическое пространство (Y, ρ) регулярно. Тогда

1) если 1 < αp < s, то включение

Mα
p (X,Y ) ⊂ Lq(X,Y )

имеет место при всех 1 ≤ q ≤ ps
s−αp ;

2) если s < αp <∞, то для всякого отображения ϕ ∈ Mα
p (X,Y ) существует

эквивалентное ему непрерывное отображение ψ, для которого при всех x1, x2 ∈
X выполняется неравенство

ρ(ψ(x1), ψ(x2)) ≤ C[d(x1, x2)]
α− s

p .

§ 3. Операторы композиции

Задача об описании классов отображений, сохраняющих при замене пере-

менной пространства Соболева L1
p(G), G ⊂ Rn, была сформулирована Ю. Г. Ре-

шетняком в 1968 г. Первые результаты, полученные С. К. Водопьяновым и

В. М. Гольдштейном [9, 10], способствовали дополнительному интересу к этой

задаче, поскольку оказалось, что соответствующие замены переменной связаны

с классами квазиконформных и квазиизометрических отображений.

Впоследствии менялись постановки задач, изучались классы отображений,

индуцирующих при замене переменной ограниченные операторы в весовых про-

странствах Соболева, в пространствах Бесова и в других классах функций,

определенных в областях евклидова пространства Rn. С. К. Водопьянов и его

ученики активно изучали замены переменной в пространствах Соболева на

группах Карно. В настоящее время тематика активно развивается и остается

актуальной. Работа С. К. Водопьянова и Н. А. Евсеева [11] содержит небольшой

обзор результатов, связанных с инвариантностью функциональных классов при

замене переменной.

Далее рассматриваются полные метрические пространства (X, d), (Y, ρ),
имеющие конечный диаметр, и конечные борелевские меры — µ с носителем

в множестве X и ν с носителем в множестве Y.
Нас интересуют свойства отображений метрических пространств ϕ : (X, d)

→ (Y, ρ), индуцирующих при замене переменной ограниченные операторы ком-

позиции в пространствах соболевского типа, т. е. операторы

ϕ∗ : S1
p(Y, ρ, ν)→ S1

q (X, d, µ),

действующие по правилу ϕ∗u = u ◦ ϕ.
Учитывая, с одной стороны, разнообразие возникающих в метрическом слу-

чае ситуаций, с другой стороны, ограниченность доступных в этом случае ме-

тодов доказательств и технических приемов, решение сформулированной зада-

чи в полном объеме в данный момент не представляется возможным. Даже

в евклидовом случае окончательное решение поставленной Ю. Г. Решетняком

проблемы было получено С. К. Водопьяновым спустя три десятилетия после

начала исследований по данной тематике [12].

Мы лишь рассмотрим различные постановки задачи и некоторые резуль-

таты, касающиеся операторов композиции в пространствах соболевского типа

M1
p .
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Из содержания § 1 следует, что структура функционального пространства

соболевского типа M1
p зависит от взаимосвязи метрики и меры. Поэтому и свой-

ства операторов композиции естественным образом зависят от свойств соответ-

ствующих метрик и мер. Мы не предполагаем изначально явной взаимосвязи

между метриками d и ρ, а также между мерами µ и ν, но нам понадобятся

некоторые соотношения, связывающие меру µ с метрикой d, а меру ν — с мет-

рикой ρ.
Кроме использованного ранее условия удвоения нам потребуется двусто-

ронняя оценка меры шара.

Метрическое пространство (X, d) будем называть s-однородным (s > 1),
если существует такая мера µ, что при 0 < r < diam(X) для всех шаров

B(x, r) ⊂ X выполняется оценка

L1r
s ≤ µ(B(x, r)) ≤ L2r

s, 0 < L1, L2 <∞. (3.1)

Поскольку

B(x, r) ⊂ B(x, r) ⊂ B(x, r + ε),

оценка (3.1) выполняется и для замкнутых шаров. Из неравенства (3.1) следует,

что мера µ удовлетворяет условию удвоения и является s-регулярной.

Далее, рассматривая s-однородное метрическое пространство, будем пред-

полагать, что для заданной на нем меры выполняется оценка (3.1). Для меры

в пространстве (X, d) будем использовать обозначение µ, а меру в пространстве

(Y, ρ) обозначим символом ν.
Взаимно однозначное отображение ϕ : (X, d) → (Y, ρ) будем называть ква-

зиизометрическим (квазиизометрией), если для всех x1, x2 ∈ X выполняется

неравенство

C1 d(x1, x2) ≤ ρ(ϕ(x1), ϕ(x2)) ≤ C2 d(x1, x2), 0 < C1, C2 <∞.
В работе [4] показано, что квазиизометрия ϕ полных s-однородных метриче-

ских пространств (X, d) и (Y, ρ) индуцирует по правилу ϕ∗u = u◦ϕ изоморфизм

пространств соболевского типа

ϕ∗ : S1
p(Y, ρ, ν)→ S1

p(X, d, µ)

при всех показателях p ∈ [1,∞).
При показателях суммируемости p, бо́льших «размерности» метрического

пространства, выполняется и обратное свойство: если s-однородные метриче-

ские пространства (X, d) и (Y, ρ) регулярны, p > s и отображение ϕ : (X, d) →
(Y, ρ) индуцирует при замене переменной изоморфизм пространств соболевско-

го типа

ϕ∗ : S1
p(Y, ρ, ν)→ S1

p(X, d, µ), ‖ϕ∗‖ <∞,
то существует такое квазиизометрическое отображение ψ, что ψ = ϕ почти

всюду [4].

Заметим, что s-однородное пространство относительно метрики d при α ∈
(0, 1] является s/α-однородным относительно метрики dα, а условия квазиизо-

метричности относительно метрик d, ρ и метрик dα, ρα с точностью до пересчета

констант эквивалентны. Поэтому условие квазиизометричности отображения ϕ
является достаточным для изоморфности оператора композиции

ϕ∗ : Sαp (Y, ρ, ν)→ Sαp (X, d, µ),

при всех p ∈ [1,∞), а при αp > s является необходимым [4].

Следующее утверждение является простым обобщением соответствующе-

го результата работы [4], в котором предполагалась изоморфность оператора

композиции.
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Лемма 3.1. Если отображение ϕ : X → Y индуцирует при замене пере-
менной ограниченный оператор

ϕ∗ : S1
p(Y, ρ, ν)→ S1

q (X, d, µ) (1 ≤ q ≤ p),

то отображение ϕ принадлежат классу M1
q(X,Y ).

Доказательство. Рассмотрим произвольную точку y ∈ Y, функцию fy(t)

= ρ(t, y) и функцию g(t) ≡ 1/2, ‖g | Lp(Y, ν)‖ = 2−1[ν(Y )]1/p = C0 < ∞. По-

скольку

|fy(t1)− fy(t2)| = |ρ(t1, y)− ρ(t2, y)| ≤ ρ(t1, t2) = ρ(t1, t2)(g(t1) + g(t2)),

то fy ∈ S1
p(Y, ρ, ν) и

∥∥fy | S1
p(X, d, µ)

∥∥ ≤ C0.
Поскольку оператор ϕ∗ ограничен, то функция ϕ∗fy принадлежит про-

странству S1
q (X, d, µ) и

∥∥ϕ∗fy | S1
q (X, d, µ)

∥∥ <∞. При этом

ϕy(x) = ρ(ϕ(x), y) = ϕ∗fy(x) ∈ S1
q (X, d, µ).

Имеем ϕy(x) ≤ diam(Y ) < ∞ и мера µ конечна. Поэтому ϕy ∈ Lq(X,µ) ∩
S1
q (X, d, µ), следовательно, ϕy ∈M1

q (X, d, µ). При этом

∥∥ϕy | S1
q (X, d, µ)

∥∥ ≤ ‖ϕ∗‖
∥∥fy | S1

p(X, d, µ)
∥∥ ≤ C0‖ϕ∗‖ <∞.

В силу произвольности выбора y это и означает, что отображение ϕ при-

надлежит классу M1
q(X,Y ). �

Пусть s-однородные метрические пространства (X, d) и (Y, ρ) регулярны и

s < q ≤ p <∞. Чтобы выяснить степень искажения метрики отображением ϕ :

(X, d)→ (Y, ρ), индуцирующим при замене переменной ограниченный оператор

ϕ∗ : S1
p(Y, ρ, ν)→ S1

q (X, d, µ),

нам понадобятся две оценки.

1. Пусть a ∈ Y , 0 < r < diam(Y ). Рассмотрим пробную функцию

ha,r(y) =

{ r−ρ(a,y)
r , если ρ(a, y) ≤ r,

0, если ρ(a, y) > r.

По построению ha,r(a) = 1 и ha,r(y) ≡ 0 вне шара B(a, r).
Покажем, что функция

ga,r(y) =

{ 1
r , если ρ(a, y) ≤ r,
0, если ρ(a, y) > r,

является допустимой для функции ha,r.

Пусть y1, y2 ∈ B(a, r), тогда

|ha,r(y1)− ha,r(y2)| =
1

r
|ρ(a, y1)− ρ(a, y2)|

≤ 1

r
ρ(y1, y2) ≤ ρ(y1, y2)(ga,r(y1)) + ga,r(y2)).

Если ρ(a, y1) ≤ r и ρ(a, y2) > r, то

|ha,r(y1)− ha,r(y2)| =
1

r
|r − ρ(a, y1)| ≤

1

r
ρ(y1, y2) ≤ ρ(y1, y2)(ga,r(y1)) + ga,r(y2)).
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Если ρ(a, y1) > r и ρ(a, y2) > r, то

|ha,r(y1)− ha,r(y2)| = 0.

Учитывая s-однородность пространства (Y, ρ), получаем

∥∥ha,r | S1
p(Y, ρ, ν)

∥∥ ≤ ‖ga,r | Lp(Y, ν)‖ =
1

r
[ν(B(a, r))]1/p ≤ C1r

s/p−1. (3.2)

2. Если q > s, непрерывная функция u принадлежит S1
q (X, d, µ) и |u(x1)−

u(x2)| ≥ 1, то согласно лемме 1.2
∥∥u | S1

q (X, d, µ)
∥∥ ≥ C2[d(x1, x2)]

s/q−1. (3.3)

Лемма 3.2. Пусть s-однородные метрические пространства (X, d) и (Y, ρ)
регулярны. Если s < q ≤ p < ∞ и отображение ϕ : (X, d) → (Y, ρ) индуцирует
при замене переменной ограниченный оператор композиции

ϕ∗ : S1
p(Y, ρ, ν)→ S1

q (X, d, µ), ‖ϕ∗‖ <∞,
то существует совпадающее почти всюду с ϕ такое гёльдерово отображение ψ,
что

ρ(ψ(x1), ψ(x2)) ≤ C0[d(x1, x2)]
γ , где γ =

p(q − s)
q(p− s) ≤ 1. (3.4)

Доказательство. Согласно лемме 3.1 отображение ϕ принадлежит

M1
q(X,Y ) и по лемме 2.4 существует непрерывное отображение ψ, совпадающее

с отображением ϕ почти всюду. Поскольку для всякой функции u ∈ S1
p(Y, ρ, ν)

функции u ◦ϕ и u ◦ψ совпадают почти всюду, т. е. принадлежат одному классу

эквивалентности, то отображение ψ по правилу ψ∗u = u ◦ ψ индуцирует огра-

ниченный оператор композиции ψ∗ = ϕ∗. При этом для всякой непрерывной

функции u ∈ S1
p(Y, ρ, ν) функция ψ∗u непрерывна.

Пусть x1, x2 ∈ X , ψ(x1) = a, ψ(x2) = b и ρ(a, b) = r > 0. Рассмотрим

функцию v = ha,r, принадлежащую пространству S1
p(Y, ρ, ν). Функция u = ψ∗v

принадлежит S1
q (X, d, µ) и непрерывна, при этом

u(x1) = v(ψ(x1)) = ha,r(a) = 1, u(x2) = v(ψ(x2)) = ha,r(b) = 0.

Используя оценки (3.2) и (3.3), получаем

C2[d(x1, x2)]
s/q−1 ≤

∥∥u | S1
q (X, d, µ)

∥∥ ≤ ‖ψ∗‖
∥∥ha,r | S1

p(Y, ρ, ν)
∥∥

≤ ‖ψ∗‖C1r
s/p−1 ≤ K2‖ψ∗‖[ρ(ψ(x1), ψ(x2)]

s/p−1.

Поскольку s/p− 1 < 0 и s/q − 1 < 0, для отображения ψ выполняется оценка

ρ(ψ(x1), ψ(x2) ≤ C0[d(x1, x2)]
γ . �

Следствие 3.3. Рассмотрим регулярные s-однородные метрические про-
странства (X, d) и (Y, ρ). Если s < p < ∞ и отображение ϕ : (X, d) → (Y, ρ)
индуцирует при замене переменной ограниченный оператор композиции

ϕ∗ : S1
p(Y, ρ, ν)→ S1

p(X, d, µ),

то существует совпадающее почти всюду с ϕ липшицево отображение ψ, обла-
дающее N -свойством Лузина.

Доказательство. Существование отображения ψ и его липшицевость яв-

ляются следствием леммы 3.2 при q = p.
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Поскольку метрические пространства s-однородны, меры шаров одинако-

вого радиуса B(x,R) ⊂ X и B(y,R) ⊂ Y сравнимы, в частности,

ν(B(y,R)) ≤ C1µ(B(x,R)), µ(B(x,Kr)) ≤ C2K
sµ(B(x, r)).

Рассмотрим произвольное открытое множество U ⊂ X. Для каждой точки

x ∈ U существует замкнутый шар Bx = B(x, rx) ⊂ U. Семейство таких шаров

B = {Bx} образует покрытие множества U и согласно лемме Витали о покрытии

существует такой счетный набор непересекающихся шаров B(xk, rk) ∈ B, что

U ⊂
⋃

k

B(xk, 5rk).

Пусть yk = ψ(xk). Для отображения ψ выполняется неравенство

ρ(ψ(x1), ψ(x2) ≤ C0[d(x1, x2)],

поэтому множество ψ(B(xk, 5rk)) принадлежит замкнутому шару B(yk, Rk), где

Rk = C05rk. Следовательно,

ν(ψ(U)) ≤ ν
(⋃

k

B(yk, Rk)
)
≤
∑

k

ν(B(yk, Rk)) ≤ C1

∑

k

µ(B(xk, Rk))

≤ C1C25
sCs0

∑

k

µ(B(xk, rk)) ≤ C3µ(U).

В силу регулярности меры µ для всякого множества нулевой меры E ⊂ X
и произвольного ε > 0 существует такое открытое множество U, что E ⊂ U
и µ(U) < ε. Очевидным следствием оценки искажения меры открытых мно-

жеств является равенство ν(ψ(E)) = 0, что и означает выполнение N -свойства

Лузина. �

Для отображений, индуцирующих ограниченные операторы композиции в

пространствах M1
p при показателях суммируемости, меньших «размерности»

метрического пространства, удается получить оценку меры прообраза шара.

Нам потребуется оценка нормы еще одной пробной функции Пусть a ∈ Y,
0 < 2r < diam(Y ). Рассмотрим функцию

Ha,r(y) =





1, если ρ(a, y) ≤ r,
2r−ρ(a,y)

r , если r ≤ ρ(a, y) ≤ 2r,

0, если ρ(a, y) > 2r.

Легко проверить, что функция

Ga,r(y) =

{ 1
r , если ρ(a, y) ≤ 2r,

0, если ρ(a, y) > 2r,

является допустимой для функции Ha,r.
Учитывая s-однородность пространства (Y, ρ), получаем

∥∥Ha,r |M1
p (Y, ρ, ν)

∥∥ ≤ ‖Ha,r | Lp(Y, ν)‖ + ‖Ga,r | Lp(Y, ν)‖

≤ [ν(B(a, 2r))]1/p +
1

r
[ν(B(a, 2r))]1/p ≤ C1[ν(B(a, r))]1/p−1/s. (3.5)
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Лемма 3.4. Пусть s-однородные метрические пространства (X, d) с мерой
µ и (Y, ρ) с мерой ν регулярны. Если 1 < q ≤ p < s и гомеоморфизм ϕ : (X, d)→
(Y, ρ) индуцирует при замене переменной ограниченный оператор композиции

ϕ∗ : M1
p (Y, ρ, ν)→M1

q (X, d, µ), ‖ϕ∗‖ <∞,

то при 2r < diamY для всякого шара B(a, r) ⊂ Y выполняется оценка

µ(ϕ−1(B(a, r))) ≤ K0[ν(B(a, r))]σ , где σ =
q(s− p)
p(s− q) < 1. (3.6)

Доказательство. Пусть 2r < diamY. Рассмотрим шар B(a, r) ⊂ Y и со-

ответствующую пробную функцию Ha,r. Поскольку отображение ϕ является го-

меоморфизмом, то v(x) = ϕ∗Ha,r(x) = Ha,r(ϕ(x)) = 1 на множестве ϕ−1(B(a, r)).
Согласно лемме 1.1 при 1 < q < s пространство M1

q (X, d, µ) непрерывно

вложено в пространство Лебега Lω(X,µ), где 1/ω = 1/q−1/s. Учитывая оценку

(3.5), получаем

[µ(ϕ−1(B(a, r)))]1/ω ≤ ‖v | Lω(X,µ)‖1/ω ≤ C2

∥∥ϕ∗Ha,r |M1
q (X, d, µ)

∥∥1/q

≤ C2‖ϕ∗‖
∥∥Ha,r |M1

p (Y, ρ, ν)
∥∥1/p ≤ C3[ν(B(a, r))]1/p−1/s.

Простой пересчет показателей приводит к оценке (3.6). �

Замечание. Поскольку диаметры множеств X и Y конечны, µ(X) < ∞
и ν(Y ) < ∞, то оценки лемм 3.2 и 3.4 представляют интерес для малых зна-

чений d(x1, x2) и малых шаров, так как при больших размерах они очевидно

выполняются.

Чтобы получить достаточные условия для оператора композиции, действу-

ющего из пространства S1
p(Y, ρ, ν) в пространство S1

q (X, d, µ), нам потребуются

некоторые простые конструкции из теории меры.

Рассмотрим полные метрические пространства (X, d) с мерой µ, (Y, ρ) с

мерой ν и отображение ϕ : (X, d) → (Y, ρ). Предположим, что отображение ϕ
является гомеоморфизмом и обладает N -свойством Лузина (если µ(E) = 0, то

ν(ϕ(E)) = 0). В этом случае мера ω, определяемая равенством ω(E) = ν(ϕ(E)),
абсолютно непрерывна относительно меры µ. Согласно теореме Радона — Ни-

кодима существует такая суммируемая по µ функция J, что
∫

E

J(x) dµ = ω(E) = ν(ϕ(E))

для всякого измеримого множества E ⊂ X.
Докажем подходящую для наших целей формулу замены переменной в ин-

теграле Лебега. Пусть неотрицательная функция u принадлежит L1(Y, ν). Для

измеримой функции h(x) = u(ϕ(x)) воспользуемся разложением по характери-

стическим функциям измеримых множеств — теорема 7 в п. 1.1.2 из [13]:

h(x) =

∞∑

k=1

1

k
χEk

(x).

Если y = ϕ(x), то y ∈ ϕ(Ek) тогда и только тогда, когда x ∈ Ek. Поэтому

∞∑

k=1

1

k
χϕ(Ek)(y) =

∞∑

k=1

1

k
χEk

(x) = h(x) = u(ϕ(x)) = u(y).
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Согласно теореме о монотонной сходимости

∫

X

u(ϕ(x))J(x) dµ =

∫

X

h(x)J(x) dµ =

∞∑

k=1

1

k

∫

X

χEk
(x)J(x) dµ

=

∞∑

k=1

1

k

∫

Ek

J(x) dµ =

∞∑

k=1

1

k
ν(ϕ(Ek)) =

∫

Y

∞∑

k=1

1

k
χϕ(Ek)(y) dν =

∫

Y

u(y) dν. (3.7)

С отображением ϕ свяжем две функции, характеризующие искажение мет-

рики и меры,

�(x) = sup
z∈X

ρ(ϕ(x), ϕ(z))

d(x, z)
, H(x) =

�(x)

(J(x))1/p
.

Теорема 3.5. Рассмотрим полные метрические пространства (X, d) с ме-
рой µ, (Y, ρ) с мерой ν и отображение ϕ : (X, d) → (Y, ρ). Если выполнены
следующие условия:

1) отображение ϕ является гомеоморфизмом и обладает N -свойством Лу-
зина;

2) функция H принадлежит Lσ(X,µ), где 1
σ = 1

q − 1
p ,

то при 1 ≤ q ≤ p отображение ϕ индуцирует по правилу ϕ∗u = u ◦ϕ ограничен-
ный оператор композиции

ϕ∗ : S1
p(Y, ρ, ν)→ S1

q (X, d, µ).

Доказательство. Если x, z ∈ X и x 6= z, то в силу гомеоморфности отоб-

ражения ϕ

�(x) ≥ ρ(ϕ(x), ϕ(z))

diamX
> 0.

Поэтому из второго условия следует, что J(x) > 0 почти всюду в X. Если A ⊂ X
и µ(A) > 0, то

ν(ϕ(A)) =

∫

A

J(x) dµ > 0.

Следовательно, гомеоморфизм ϕ обладает N−1-свойством Лузина (если ν(B) =

0, то µ(ϕ−1(B)) = 0).

Пусть u ∈ S1
p(Y, ρ, ν). Тогда существуют такое множество D ⊂ Y и такая

допустимая функция g ∈ Lp(Y, ν), что ν(D) = 0 и

|u(y1)− u(y2)| ≤ ρ(y1, y2)(g(y1) + g(y2))

для всех y1, y2 ∈ Y \D.
Пусть v(x) = (ϕ∗u)(x) = u(ϕ(x)), h(x) = g(ϕ(x)), E = ϕ−1(D), x1 = ϕ−1(y1),

x2 = ϕ−1(y2).
Поскольку отображение ϕ обладает N−1-свойством Лузина, то µ(E) = 0 и

для точек x1, x2 ∈ X \ E выполняется оценка

|v(x1)− v(x2)| = |u(ϕ(x1))− u(ϕ(x2))| ≤ ρ(ϕ(x1), ϕ(x2))[g(ϕ(x1)) + g(ϕ(x2))]

= d(x1, x2)
ρ(ϕ(x1), ϕ(x2))

d(x1, x2)
(h(x1)+h(x2)) ≤ d(x1, x2)(�(x1)h(x1)+�(x2)h(x2)).
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Таким образом, функция �(x)h(x) является допустимой для функции v(x). При

1 ≤ q < p, используя неравенство Гёльдера и формулу замены переменной (3.7),

оценим норму допустимой функции в пространстве Лебега Lq(X,µ):

∫

X

[�(x)h(x)]q dµ =

∫

X

[g(ϕ(x))J1/p(x)]q
(

�(x)

J1/p(x)

)q
dµ

≤
(∫

X

[g(ϕ(x))]pJ(x) dµ

)q/p (∫

X

Hσ(x) dµ

)(p−q)/p
≤ C0

(∫

Y

gp(y) dν

)q/p
<∞.

Это означает, что функция �(x)h(x) принадлежит Lq(X,µ), а функция

v = v ◦ u = ϕ∗u принадлежит пространству S1
q (X, d, µ) и ‖ϕ∗‖ ≤ C1/q

0 .
При q = p оценка получается еще проще, без использования неравенства

Гёльдера. �

Замечание. Простые достаточные условия в теореме 3.5 похожи на усло-

вия, использованные С. К. Водопьяновым и его учениками при изучении опера-

торов композиции в пространствах Соболева на группах Карно, к примеру, см.

[14, 15]. Основное отличие заключается в замене нормы дифференциала отобра-

жения на функцию �(x), что связано со спецификой определения допустимой

функции в пространствах M1
p (X, d, µ).

Поскольку ∫

X

J(x) dµ = ν(Y ) <∞,

то J(x) < ∞ почти всюду, а из принадлежности функции H пространству

Lσ(X,µ) следует, что и �(x) <∞ почти всюду.

Пусть при ε > 0 множество Eε состоит из всех точек x ∈ X, для которых

найдется такая точка z ∈ X, что d(x, z) ≥ ε и 2ρ(ϕ(x), ϕ(z)) ≥ d(x, z)�(x). При

x ∈ Eε
�(x) ≤ 2 diam(Y )

ε
<∞,

поэтому при любом фиксированном ε > 0 значения функции �(x) на множестве

Eε не влияют на сходимость соответствующего интеграла. Вопрос о сходимости

интеграла во втором условии зависит от локальных свойств отображения ϕ в

сколь угодно малой окрестности множества нулевой меры, на котором функция

�(x) может быть равна бесконечности.

Согласно следствию 3.3 на s-однородных пространствах при q = p > s
можно изначально предполагать, что отображение ϕ липшицево и обладает N -

свойством Лузина, а функция �(x) ограничена.

Наличие шкалы пространств Sαp позволяет рассматривать операторы ком-

позиции со значениями в гёльдеровых классах, т. е. операторы

ϕ∗ : S1
p(Y, ρ, ν)→ Sαq (X, d, µ). (3.8)

Практически дословно повторяя доказательство леммы 3.1, легко показать,

что отображение ϕ : X → Y, индуцирующее при замене переменной ограничен-

ный оператор (3.8), принадлежат классу Mα
q (X,Y ).

С точки зрения выполнения соответствующих теорем вложения оператор

композиции не может улучшить свойства сразу всего класса функций. Это

накладывает определенные ограничения на выбор показателей α и q. Пусть
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α ∈ (0, 1) и 1/τ = 1/p− (1 − α)/s. Согласно лемме 1.4 при q ≤ τ пространство

M1
p (X, d, µ) вложено в пространство Mα

q (X, d, µ). Заметим, что при p > s будет

τ > s/α, поэтому существуют такие значения q, что s/α < q ≤ τ.
Доказательство следующего утверждения вполне аналогично доказатель-

ству леммы 3.2.

Лемма 3.6. Пусть s-однородные метрические пространства (X, d) и (Y, ρ)
регулярны. Если s < p < ∞, s/α < q ≤ τ и отображение ϕ : (X, d) → (Y, ρ)
индуцирует при замене переменной ограниченный оператор композиции

ϕ∗ : S1
p(Y, ρ, ν)→ Sαq (X, d, µ), ‖ϕ∗‖ <∞,

то существует совпадающее почти всюду с ϕ такое гёльдерово отображение ψ,
что

ρ(ψ(x1), ψ(x2)) ≤ C0[d(x1, x2)]
λ, где λ =

p(αq − s)
q(p− s) ≤ 1. (3.9)

Доказательство. Поскольку ϕ принадлежит классу Mα
q (X,Y ) и αq > s,

согласно лемме 2.5 существует эквивалентное ϕ непрерывное отображение ψ.
При этом оператор композиции ψ∗ = ϕ∗.

Пусть x1, x2 ∈ X,ψ(x1) = a, ψ(x2) = b и ρ(a, b) = r > 0. Рассмотрим функ-

цию v = ha,r, принадлежащую пространству S1
p(Y, ρ, ν). Функция u = ψ∗v при-

надлежит S1
q (X, d, µ) и непрерывна, при этом

u(x1) = v(ψ(x1)) = ha,r(a) = 1, u(x2) = v(ψ(x2)) = ha,r(b) = 0.

Поскольку αq > s, непрерывная функция u принадлежит Sαq (X, d, µ) и

|u(x1)− u(x2)| ≥ 1, то согласно лемме 1.3

∥∥u | Sαq (X, d, µ)
∥∥ ≥ C2[d(x1, x2)]

s/q−α. (3.10)

Используя оценки (3.2) и (3.10), получаем

C2[d(x1, x2)]
s/q−α ≤

∥∥u | Sαq (X, d, µ)
∥∥ ≤ ‖ψ∗‖

∥∥ha,r | S1
p(Y, ρ, ν)

∥∥

≤ ‖ψ∗‖C1r
s/p−1 ≤ K2‖ψ∗‖[ρ(ψ(x1), ψ(x2)]

s/p−1.

Поскольку s/p−1 < 0 и s/q−α < 0, то для отображения ψ выполняется оценка

ρ(ψ(x1), ψ(x2) ≤ C0[d(x1, x2)]
λ.

Учитывая неравенство q ≤ τ легко проверить, что λ ≤ 1. �

Заметим, что при q = τ будет λ = 1, т. е. отображение ϕ липшицево.

Если отображение ϕ : (X, d) → (Y, ρ) индуцирует ограниченный оператор

композиции

ϕ∗ : S1
p(Y, ρ, ν)→ S1

ω(X, d, µ), s < ω ≤ p,

то по лемме 3.2 показатель гёльдеровости γ равен
p(ω−s)
ω(p−s) .

Согласно лемме 1.4 пространство M1
ω(X, d, µ) вложено в Mα

q (X, d, µ), если

1/q = 1/ω − (1 − α)/s. Следовательно, можно рассматривать оператор ϕ∗ как

оператор композиции, действующий из пространства S1
p(Y, ρ, ν) в пространство

Sαq (X, d, µ).
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Выражая ω через q и подставляя в равенство для показателя γ, получаем

то же самое значение, что и в лемме 3.6:

γ =
p(αq − s)
q(p− s) .

В работе установлены лишь некоторые свойства отображений, индуцирую-

щих операторы композиции в пространствах соболевского типа. Помимо рас-

смотренных постановок задачи на метрических пространствах возможны и дру-

гие ситуации, к примеру, случай, когда меры, определенные в пространствах

(X, d) и (Y, ρ), имеют различные порядки регулярности. Для более полного

рассмотрения вопроса требуются дополнительные исследования и новые подхо-

ды к изучению свойств функций и отображений, определенных на метрических

пространствах с мерой.
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ОБРАТНАЯ ЗАДАЧА ДЛЯ УРАВНЕНИЙ

ЭЛЕКТРОДИНАМИКИ С ПАМЯТЬЮ

В. Г. Романов

Аннотация. Рассматриваются уравнения электродинамики, в которых диэлектри-
ческая проницаемость и проводимость среды обладают «памятью». Благодаря
этому решение уравнений зависит от всей предыстории процесса распространения
волн. Предполагается, что ядра интегральных операторов, моделирующие свой-
ство памяти, зависят от пространственных и временной переменных, причем эти
ядра допускают представление в виде произведения двух функций, одна из кото-
рых зависит от пространственных переменных, а вторая — от временной. Функции,
зависящие от временной переменной, считаются заданными, а зависящие от про-
странственных переменных неизвестными и подлежат отысканию. Принимается,
что эти функции p(x) и q(x), отвечающие ядрам, описывающим свойства памяти

диэлектрической проницаемости и проводимости, соответственно являются финит-
ными функциями, их носитель содержится внутри некоторого шара B конечного
радиуса. Для решения обратной задачи рассматривается прямая задача с полно-
стью известными ядрами и ее специальное решение для однородной среды, соот-
ветствующее бегущей дельта-образной волне, распространяющейся в направлении
ν. Эта волна падает на неоднородность, сосредоточенную в B, и на границе этого
шара измеряется амплитуда сингулярной части решения и амплитуда первой про-
изводной по времени его регулярной части на фронте волны. Соответствующая
информация, зафиксированная для различных направлений ν, и является исход-
ной для решения обратной задачи. В работе показано, что задачи об определении
функций p(x) и q(x) сводятся к последовательному решению хорошо известной
задачи рентгеновской томографии. Следовательно, решение рассматриваемой об-
ратной задачи единственно и может быть эффективно найдено как аналитически,
так и численно.

DOI10.33048/smzh.2025.66.612

Ключевые слова: уравнения электродинамики с памятью, обратная задача, струк-
тура решения, томография, единственность.

Памяти Семёна Самсоновича Кутателадзе

1. Введение

Рассмотрим систему уравнений

∂

∂t


εE(x, t) +

t∫

−∞

ε̂(x, t− s)E(x, s) ds




+ σ(x)E(x, t) +

t∫

−∞

σ̂(x, t− s)E(x, s) ds− rotH(x, t) = 0, (1)

"Работа выполнена в рамках государственного задания ИМ СО РАН (проект FWNF-
2022-0009).

c© 2025 Романов В. Г.
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∂

∂t
H(x, t) + µrotE(x, t) = 0; (x, t) ∈ R4.

В уравнениях (1) E = (E1, E2, E3) и H = (H1, H2, H3) — векторы электрической

и магнитной напряженностей поля, ε и µ — некоторые положительные числа,

σ(x) ≥ 0 — проводимость среды. Эти уравнения описывают распространение

электромагнитных волн в неоднородной среде с памятью, определяемой функ-

циями ε̂(x, t) и σ̂(x, t).
Пусть B = {x ∈ R3 | |x| < R} — шар радиуса R и S — его граница. Примем,

что

σ(x) = 0, x ∈ (R3 \B); ε̂(x, t) = 0, σ̂(x, t) = 0, (x, t) ∈ (R3 \B)× R. (2)

В дальнейшем будем рассматривать для уравнений (1) задачу Коши с на-

чальными данными

E(x, t) = ℓ δ(t− τ(x, ν)), H(x, t) = ε1/2µ−1/2(ν × ℓ)δ(t− τ(x, ν)), t < 0, (3)

в которых ν и ℓ — единичные векторы, ортогональные друг другу, ν · ℓ = 0,

функция τ(x, ν) определена формулой

τ(x, ν) = (εµ)1/2(x · ν +R),

δ(t) — дельта-функция Дирака.

Формулы (3) описывают дельта-образную плоскую электромагнитную вол-

ну, распространяющуюся в направлении ν и поляризованную в направлении ℓ.
В момент времени t = 0 эта волна касается границы S шара B в точке x = −Rν
и далее распространяется уже в неоднородной среде. Ее фронт t = τ(x, ν) оста-

ется плоским, но амплитуда его меняется.

Решение задачи (1), (3) зависит от параметров ν и ℓ. Поэтому оно будет

обозначаться через E(x, t.ν, ℓ),H(x, t.ν, ℓ), но иногда для сокращения записи за-

висимость от параметров ν и ℓ будет опускаться.

Задачу (1), (3) назовем прямой задачей. Основной задачей, которую будем

изучать, является обратная задача, заключающаяся в отыскании функций ε̂ и

σ̂, характеризующих память среды. При этом принимаем, что эти функции

представимы в виде

ε̂(x, t) = p(x)K1(t), K1(0) = 1, σ̂(x, t) = q(x)K2(t), K2(0) = 1, (4)

в котором K1(t) и K2(t) — известные гладкие функции для t ≥ 0, а носите-

ли функций p(x) и q(x) содержатся в B. В дальнейшем будем предполагать,

что p(x) и q(x) являются гладкими функциями в R3. Под термином гладкая

функция подразумевается функция бесконечно дифференцируемая в соответ-

ствующей области.

Определим плоскость

P (ψ) = {x · χ(ψ) = 0}, χ(ψ) = (− sinψ, cosψ, 0), ψ ∈ [0, π),

и векторы

ℓ(ϕ, ψ) = (sinϕ cosψ, sinϕ sinψ, cosϕ),

ν(ϕ, ψ) = (cosϕ cosψ, cosϕ sinψ,− sinϕ), (ϕ, ψ) ∈ [0, 2π)× [0, π).

Заметим, что единичные векторы χ, ν и ℓ попарно ортогональны. Следователь-

но, векторы ν и ℓ расположены в плоскости P (ψ). Обозначим S+(ν) = {x ∈ S |
x · ν > 0}.
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Обратная задача. Пусть положительные числа ε и µ и неотрицательная
функция σ(x) известны. Требуется найти функции p(x) и q(x) по следующей
информации о решениях прямой задачи: заданы функции

F1(x, ϕ, ψ) = lim
t→τ(x,ν)+0

t∫

−∞

(E(x, s, ν(ϕ, ψ), ℓ(ϕ, ψ)) · ℓ(ϕ, ψ)) ds,

F2(x, ϕ, ψ) = lim
t→τ(x,ν)+0

(E(x, t, ν(ϕ, ψ), ℓ(ϕ, ψ)) · ℓ(ϕ, ψ))

(5)

для всех x ∈ (P (ψ) ∩ S+(ν(ϕ, ψ))), ψ ∈ [0, π), и всех ℓ(ϕ, ψ) и ν(ϕ, ψ), (ϕ, ψ) ∈
[0, 2π)× [0, π).

Заметим, что F1(x, ϕ, ψ) и F2(x, ϕ, ψ) являются функциями трех скалярных

переменных, так как x принадлежит полуокружности (P (ψ)∩S+(ν(ϕ, ψ))) при

фиксированных ϕ и ψ. Поэтому обратная задача не является переопределенной:

для отыскания двух функций трех переменных используется информация той

же самой размерности.

Обратные задачи для интегро-дифференциальных уравнений математиче-

ской физики, в которых изучаются свойства ядер некоторых интегральных опе-

раторов, описывающих предысторию процесса распространения волн, начали

изучаться сравнительно давно. По-видимому, первая из работ принадлежит

Лоренци и Синестрари и относится к 1988 г. (см. [1]). В ней авторы изучают

ядра памяти, связанные с упругими материалами. Затем в 1994 г. появилась

работа Д. К. Дурдиева [2] для волнового уравнения с ядром, зависящим только

от времени. Задачам определения ядер памяти в уравнениях вязкоупругости

посвящены работы [3–9]. В них изучены различные варианты постановок об-

ратных задач, использующие разнообразную информацию о решениях прямых

задач для этих уравнений. В работах [10, 11] рассматриваются проблемы изуче-

ния ядер интегро-дифференциальных операторов для уравнений электродина-

мики. В [12] изучена задача определения ядра памяти в нелинейном волновом

уравнении. Отметим также книгу [13], в которой приведен большой круг задач

об определении ядер памяти для различных уравнений математической физики

и собрана обширная библиография по таким задачам.

В настоящей работе изучается сформулированная выше обратная задача.

Она существенно отличается по постановке и методам исследования от работ

[10, 11]. Полученные результаты являются новыми. В следующем разделе изу-

чается прямая задача, выписывается структура решения в окрестности фрон-

та волны, выводятся амплитудные формулы для сингулярной части решения

и его регулярной части на фронте волны. В разд. 3 проводится анализ за-

дач об определении функций p(x) и q(x). Показывается, что задание функции

F1(x, ϕ, ψ) определяет интегралы от p(x) по всевозможным прямым, пересека-

ющим область B. Тем самым задача о построении p(x) приводится к задаче

рентгеновской томографии. Это позволяет однозначно ее найти. После этого

оказывается возможным найти по функции F2(x, ϕ, ψ) интегралы от q(x) так-

же по всевозможным прямым, пересекающим область B. Это обстоятельство

сводит проблему построения q(x) к полностью аналогичной задаче томографии.

2. Представление решения прямой задачи

Найдем формулы для амплитуды сингулярной части электрической напря-

женности поля и значения ее регулярной части на фронте волны. Чтобы это
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сделать, удобно использовать для функции E(x, t) интегро-дифференциальное

уравнение второго порядка. Выведем его следующим образом. Вначале про-

дифференцируем оба уравнения (1) по переменной t, а затем исключим из пер-

вого уравнения rotHt. Тогда получим уравнение

εEtt + (p(x) + σ(x))Et + p(x)

t∫

−∞

K ′1(t− s)E(x, s) ds

+ q(x)E + q(x)

t∫

−∞

K ′2(t− s)E(x, s) ds+
1

µ
rot rotE = 0. (6)

Воспользуемся равенством rot rotE = −�E +∇ div E. В результате из (6) по-

лучаем уравнение

εµEtt + µ(p(x) + σ(x))Et + µp(x)

t∫

−∞

K ′1(t− s)E(x, s) ds

+ µq(x)E + µq(x)

t∫

−∞

K ′2(t− s)E(x, s) ds = �E−∇divE. (7)

Вычислим div E с помощью первого равенства (1). В результате вычислений

получаем соотношение

ε


 ∂

∂t
div E(x, t) +

t∫

−∞

K ′1(t− s) div[p(x)E(x, s)] ds




+ div[(p(x) + σ(x))E(x, t)] +

t∫

−∞

K2(t− s) div[q(x)E(x, s)] ds = 0.

Из него следует формула

div E(x, t) = −1

ε





t∫

−∞

(t− s)K ′1(t− s) div[p(x)E(x, s)] ds

+

t∫

−∞

div[(p(x) + σ(x))E(x, s)] ds +

t∫

−∞

(t− s)K2(t− s) div[q(x)E(x, s)] ds



. (8)

Из равенств (7) и (8) получаем уравнение

εµEtt + µ(p(x) + σ(x))Et −�E + µp(x)

t∫

−∞

K ′1(t− s)E(x, s) ds

+ µq(x)E + µq(x)

t∫

−∞

K ′2(t− s)E(x, s) ds

− 1

ε





t∫

−∞

(t− s)K ′1(t− s)∇ div[p(x)E(x, s)] ds+

t∫

−∞

∇ div
[(
p(x) + σ(x)

)
E(x, s)

]
ds
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+

t∫

−∞

(t− s)K2(t− s)∇ div[q(x)E(x, s)] ds



 = 0. (9)

Представим решение уравнения (9), удовлетворяющее первому условию (3),

в виде асимптотического разложения в окрестности фронта t = τ(x, ν):

E(x, t, ν, ℓ) = α(x, ν, ℓ)δ(t− τ(x, ν)) + θ0(t− τ(x, ν))[β(x, ν, ℓ)

+ γ(x, ν, ℓ)(t− τ(x, ν)) + . . . ], (10)

в котором θ0(t) — функция Хевисайда: θ0(t) = 1 для t ≥ 0 и θ0(t) = 0 для

t < 0, а многоточием обозначены члены более высокого порядка малости, чем

(t− τ(x, ν)).

Теорема 1. Пусть

R3
−(ν) = {x ∈ R3 | x · ν +R ≤ 0}, R3

+(ν) = {x ∈ R3 | x · ν +R > 0}.

Для функций α(x, ν, ℓ) и β(x, ν, ℓ) имеют место равенства

α(x, ν, ℓ) = ℓ, β(x, ν, ℓ) = 0, x ∈ R3
−, (11)

α(x, ν, ℓ) = A(x, ν)ℓ, A(x, ν) = exp

(
− µ1/2

2ε1/2

∫

L(x,ν)

[
p(ξ) + σ(ξ)

]
ds

)
, x ∈ R3

+,

(12)

β(x, ν, ℓ) = B(x, ν)ℓ, B(x, ν) = − A(x, ν)

2(εµ)1/2

∫

L(x,ν)

[
µq(ξ)− �ξA(ξ, ν)

A(ξ, ν)

]
ds, x ∈ R3

+,

(13)

в которых L(x, ν) — луч, выходящий из точки x в направлении −ν, ξ = x− sν
— промежуточная точка интегрирования на L(x, ν), s > 0. В качестве положи-
тельного направления на L(x, ν) принимается направление возрастания пара-
метра s.

Доказательство. Непосредственные вычисления приводят к формулам

Ett(x, t, ν, ℓ) = α(x, ν, ℓ)δ′′(t− τ(x, ν)) + β(x, ν, ℓ)δ′(t− τ(x, ν))
+ γ(x, ν, ℓ)δ(t− τ(x, ν)) + . . . , (14)

�E(x, t, ν, ℓ) = α(x, ν, ℓ)|∇τ(x, ν)|2δ′′(t− τ(x, ν))
− [2(∇τ(x, ν) · ∇)α(x, ν, ℓ) +α(x, ν, ℓ)�τ(x, ν)− β(x, ν, ℓ)|∇τ(x, ν)|2 ]δ′(t− τ(x, ν))

− [2(∇τ(x, ν) · ∇)β(x, ν, ℓ) + β(x, ν, ℓ)�τ(x, ν) − γ(x, ν, ℓ)|∇τ(x, ν)|2

−�α(x, ν, ℓ)]δ(t − τ(x, ν)) + . . . , (15)

в которых выписаны только сингулярные составляющие, а многоточием обозна-

чены регулярные члены.

Подставим выражения для Ett и �E из формул (14), (15) в уравнение (9).

Используем при этом очевидные равенства

|∇τ(x, ν)|2 = εµ, �τ(x, ν) = 0.
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В вычислениях член с сингулярностью δ′′(t − τ(x, ν)) исчезнет. Приравняем к

нулю члены при сингулярностях δ′(t − τ(x, ν)) и δ(t − τ(x, ν)). Тогда получим

уравнения

2(∇τ(x, ν) · ∇)α(x, ν, ℓ) + µ(p(x) + σ(x))α(x, ν, ℓ) = 0, (16)

2(∇τ(x, ν) · ∇)β(x, ν, ℓ) + µ(p(x) + σ(x))β(x, ν, ℓ) + µq(x)α(x, ν, ℓ)

+ (p(x) + σ(x))(∇τ(x, ν) · α(x, ν, ℓ))−�α(x, ν, ℓ) = 0. (17)

Заметим, что коэффициент γ(x, ν, ℓ) в этих формулах не участвует. Уравнение

для него можно было бы найти, а затем и вычислить сам коэффициент, если

выписать разложение (10) со следующим членом γ1(x, ν, ℓ)(t− τ(x, ν))2, сосчи-

тать возникающие коэффициент при θ0(t − τ(x, ν)) и приравнять его к нулю.

Однако для исследования обратной задачи нам этот коэффициент γ(x, ν, ℓ) не

нужен, поэтому вычислять его не будем.

Введем в рассмотрение плоскость �(ν) = {x ∈ R3 | x · ν+R = 0}, касающу-

юся в точке x = −Rν сферы S и являющуюся общей границей полупространств

R3
−(ν) и R3

+(ν). Из начальных условий (3) следует формула (11). Таким обра-

зом, чтобы найти α(x, ν, ℓ) и β(x, ν, ℓ) нужно их продолжить в полупространство

R3
+(ν) с помощью уравнений (16), (17). При этом целесообразно использовать

начальные условия на �(ν), вытекающие из равенств (11):

α(x, ν, ℓ) = ℓ, β(x, ν, ℓ) = 0 для x ∈ �(ν). (18)

Опишем процедуру построения функций α(x, ν, ℓ) и β(x, ν, ℓ) в полупро-

странстве R3
+(ν). Пусть x0 — произвольная точка плоскости �(ν). Выпустим

из нее луч x = x0 + sν, s ≥ 0. Вдоль этого луча имеет место равенство

(∇τ(x, ν) · ∇)α(x, ν, ℓ) = (εµ)1/2(ν · ∇)α(x, ν, ℓ) = (εµ)1/2
d

ds
α(x, ν, ℓ).

Поэтому уравнение (16) и начальные данные для него можно записать в виде

2(εµ)1/2
d

ds
α(x, ν, ℓ) + µ(p(x) + σ(x))α(x, ν, ℓ) = 0, α|s=0 = ℓ.

Интегрируя это уравнение, находим, что

α(x0 + sν, ν, ℓ) = ℓ exp


− µ1/2

2ε1/2

s∫

0

[
p(x0 + s′ν) + σ(x0 + s′ν)

]
ds′


 , s > 0. (19)

Из формулы (19) видно, что вектор α(x, ν, ℓ) имеет в неоднородной среде то

же направление ℓ, что и в однородной. В связи с этим первый член второй

строки в уравнении (17) равен нулю. Само уравнение можно записать в виде

обыкновенного дифференциального уравнения вдоль прямой x = x0 + sν:

2(εµ)1/2
d

ds
β(x, ν, ℓ)+µ(p(x)+σ(x))β(x, ν, ℓ)+µq(x)α(x, ν, ℓ)−�α(x, ν, ℓ) = 0 (20)

с начальными данными

β|s=0 = 0. (21)

Интегрируя линейное уравнение (20) с учетом начальных данных (21), получаем

формулу

β(x0 + sν, ν, ℓ) = − 1

2(εµ)1/2
exp


− µ1/2

2ε1/2

s∫

0

[p(x0 + s′ν) + σ(x0 + s′ν)] ds′



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×
s∫

0

[µq(x0 + s′ν)α(x0 + s′ν, ν, ℓ)−�x0α(x0 + s′ν, ν, ℓ)]

× exp


 µ1/2

2ε1/2

s′∫

0

[p(x0 + s′′ν) + σ(x0 + s′′ν)] ds′′


 ds′, s > 0. (22)

Равенства (19) и (22) удобно переписать в виде (12) и (13). Пусть x ∈ R3
+. Тогда

расстояние от точки x до ее проекции x0 на плоскость �(ν) равно s(x, ν) =

x · ν + R, а произвольная точка ξ на отрезке прямой, соединяющей x и x0,

может быть представлена в виде ξ = x− sν, s ∈ [0, s(x, ν)]. С учетом того, что

функции p(x), σ(x) и q(x) равны нулю вне B, можно интегрирование по отрезку,

соединяющему точки x и x0, заменить интегрированием по лучу L(x, ν) = {ξ =

x− sν, s ≥ 0}. Тогда равенства (19) и (22) преобразуются в (12) и (13).

3. Исследование обратной задачи

Из данных (5) обратной задачи, представления (10) и формул (12), (13)

следуют равенства

F1(x, ϕ, ψ) = A(x, ν(ϕ, ψ)), F2(x, ϕ, ψ) = B(x, ν(ϕ, ψ)) (23)

для всех x ∈ (P (ψ)∩S+(ν(ϕ, ψ))), ψ ∈ [0, π), и всех ν(ϕ, ψ), (ϕ, ψ) ∈ [0, 2π)×[0, π).

Таким образом, функции A(x, ν(ϕ, ψ)) и B(x, ν(ϕ, ψ)) в обратной задаче

известны для указанных выше значений их аргументов. Рассмотрим первое

равенство (23). В этом случае, используя формулу (12), находим интегралы
∫

L(x,ν(ϕ,ψ))

p(ξ) ds = h1(x, ϕ, ψ) (24)

∀x ∈ (P (ψ) ∩ S+(ν(ϕ, ψ))), ψ ∈ [0, π); ∀ ν(ϕ, ψ), (ϕ, ψ) ∈ [0, 2π)× [0, π),

в которых функция h1(x, ϕ, ψ) определена равенством

h1(x, ϕ, ψ) = −2ε1/2µ−1/2 lnA(x, ν(ϕ, ψ)) −
∫

L(x,ν(ϕ,ψ))

σ(ξ) ds.

Для любого фиксированного значения ψ ∈ (0, π) множество P (ψ)∩B представ-

ляет собой круг радиуса R. Объединение этих кругов для всех ψ ∈ [0, π) обра-

зует шар B. Формула (24) при фиксированном ψ ∈ [0, π) задает интегралы по

всевозможным прямым, пересекающим круг P (ψ)∩B. Действительно, если за-

фиксировать еще и угол ϕ, то формула (24) определяет интегралы вдоль пучка

параллельных лучей, выходящих из точек полуокружности (P (ψ)∩S+(ν(ϕ, ψ)))

в направлении −ν(ϕ, ψ). При изменении угла ϕ от 0 до 2π это семейство лучей

делает полный оборот в плоскости P (ψ). Говоря об интегралах вдоль прямых и

лучей, мы, конечно, имеем в виду финитность подынтегральных функций p(x)

и σ(x). Из сказанного выше следует, что задача решения интегрального уравне-

ния (24), т. е. отыскания подынтегральной функции p(x), представляет собой

хорошо известную задачу рентгеновской томографии. Решение ее единствен-

но и устойчиво в соответствующих пространствах. Кроме того, существуют

аналитические формулы обращения и большое число численных алгоритмов,

решающих эту задачу.
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Примем теперь, что p(x) найдена. Тогда функция A(x, ν) может быть вы-

числена для любых x ∈ (B ∪ S) и любых ν ∈ S2. В этом случае, используя

формулу (13), можно найти интегралы

∫

L(x,ν(ϕ,ψ))

q(ξ) ds = h2(x, ϕ, ψ) (25)

∀x ∈ (P (ψ) ∩ S+(ν(ϕ, ψ))), ψ ∈ [0, π); ∀ ν(ϕ, ψ), (ϕ, ψ) ∈ [0, 2π)× [0, π),

в которых функция h2(x, ϕ, ψ) определена равенством

h2(x, ϕ, ψ) = −2ε1/2B(x, ν(ϕ, ψ))

µ1/2A(x, ν(ϕ, ψ))
+

∫

L(x,ν(ϕ,ψ))

�ξA(ξ, ν(ϕ, ψ))

µA(ξ, ν(ϕ, ψ))
ds.

Задача об отыскании функции q(x) по интегралам (25) представляет собой в

точности такую же задачу томографии, как и предыдущая.

Резюмируя результат исследования обратной задачи, приходим к следую-

щему утверждению.

Теорема 2. Обратная задача редуцируется к двум последовательно реша-
емым задачам рентгеновской томографии (24) и (25).
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2

Го В. см. Го Ц., Го В., Маслова Н. В., Ревин Д. О.

Го Ц., Го В.,
Маслова Н. В.,
Ревин Д. О.

Новые примеры непронормальных подгрупп нечет-
ных индексов в конечных простых линейных и уни-
тарных группах

4

Голубков А. А. Асимптотика решений уравнения Штурма — Ли-
увилля вдоль произвольной кривой в окрестности
симметричной особой точки

4

Гуськов Н. В.,
Дудкин Ф. А.

Хопфовость вершинно-транзитивных обобщенных
групп Баумслага — Солитера

4

Гутман А. Е.,
Емельяненков И. А.

Два примера квазиплотных векторных подпрост-
ранств RN

6

Гутман А. Е.,
Коптев А. В.

Латеральная сходимость и гомоморфизмы банахо-
вых расслоений

2

Данилов О. А. см. Лу С., Данилов О. А., Медных А. Д.

Дурнев В. Г. см. Зеткина А. И., Дурнев В. Г.

Демиденко Г. В., Ма C. Об одном классе псевдогиперболических операторов
с переменными коэффициентами

6

Дубинин В. Н. Шварциан и критические значения полинома с ве-
щественными критическими точками

6

Дудкин Ф. А. см. Гуськов Н. В., Дудкин Ф. А.

Егоров А. А. см. Веснин А. Ю., Егоров А. А.

Емельяненков И. А. см. Гутман А. Е., Емельяненков И. А.



1164 Указатель

Ефременко Ю. Д. О числе Лосика — Черна слоений коразмерности 2 5

Жуковский Е. С. см. Арутюнов А. В., Жуковский Е. С., Жуков-
ский С. Е.

Жуковский С. Е. см. Арутюнов А. В., Жуковский Е. С., Жуков-
ский С. Е.

Журтов А. Х.,
Лыткина Д. В.,
Мазуров В. Д.

Строение конечных групп, изоспектральных группе
автоморфизмов второй спорадической группы Янко

1

Зеткина А. И.,
Дурнев В. Г.

Неразрешимые фрагменты позитивных теорий сво-
бодных полугрупп

5

Иванов А. В. Дополнение к теореме Понтрягина — Шнирельмана 1

Иванова A. O. см. Бородин О. В., Иванова A. O.

Йи С., Ченг Б.,
Бородич Р. В.,
Каморников С. Ф.

Об одном свойстве нормальных холловых подгрупп
конечных групп

2

Казакова А. Д.,
Плотников М. Г.

О лакунарности и единственности для p-ичных ана-
логов хаоса Радемахера

5

Калмурзаев Б. С. см. Алиш Д. Б., Баженов Н. А., Калмурзаев Б. С.

Каменский М. И. см. Обуховский В. В., Каменский М. И., Петро-
сян Г. Г., Ульвачева Т. А., Цзэн Ш.

Каморников С. Ф.,
Тютянов В. Н.

σ-Проблема Кегеля — Виландта: редукция к про-
стым группам

1

Каморников С. Ф. см. Йи С., Ченг Б., Бородич Р. В., Каморников С. Ф.

Карманова М. Б. Метрические свойства отображений, задающих лип-
шицевы графики на двухступенчатых группах Кар-
но

6

Карманова М. Б. Неконтактные отображения общих групп Карно
и формула коплощади

4

Карманова М. Б. О липшицевых графиках на классах двухступенча-
тых групп Карно

5

Касымканулы Б. см. Баженов Н. А., Касымканулы Б., Морозов А. С.

Касымов Н. Х. Об одном вопросе теории нумерованных групп 2

Качуровский А. Г.,
Подвигин И. В.,
Тодиков В. Э.

Скорости сходимости в эргодической теореме для уни-
тарных действий абелевых групп компактного про-
исхождения

3

Когабаев Н. Т. NP-полнота проблемы совместности систем диофан-
товых уравнений над конечными конфигурациями

3

Коптев А. В. см. Гутман А. Е., Коптев А. В.

Копылов Я. А. Трансляционно инвариантные линейные функцио-
налы в пространствах Орлича на локально компакт-
ных группах

5

Косов А. А.,
Семенов Э. И.

Система уравнений с оператором Монжа — Ампера
и ее многомерные точные решения

4

Крстич М. см. Арсенович М., Богачев В. И., Крстич М.

Кыров В. А. Поверхности на группах гельмгольцева типа 5



Указатель 1165

Кытманов А. А.,
Осипов Н. Н.,
Тихомиров С. А.

Серии компонент пространства модулей полуста-
бильных рефлексивных пучков ранга 2 на P3

1

Кытманов А. М. Об аналогах рекуррентных формул Ньютона для си-
стем трансцендентных уравнений

1

Ланских И. Ю.,
Тихомиров А. С.

Модули полустабильных пучков ранга три с особен-
ностями смешанной размерности на проективном
пространстве P3

1

Лу С., Данилов О. А.,
Медных А. Д.

Дискретные параболические функции и ряды Тей-
лора

6

Лыткина Д. В. см. Журтов А. Х., Лыткина Д. В., Мазуров В. Д.

Лыткина Д. В. см. Мао Ю. М., Ма С. Ц., Лыткина Д. В., Мазу-
ров В. Д.

Ма C. см. Демиденко Г. В., Ма C.

Ма С. Ц. см. Мао Ю. М., Ма С. Ц., Лыткина Д. В., Мазу-
ров В. Д.

Магарил-Ильяев Г. Г. см. Аваков Е. Р., Магарил-Ильяев Г. Г.

Мазуров В. Д. см. Журтов А. Х., Лыткина Д. В., Мазуров В. Д.

Мазуров В. Д. см. Мао Ю. М., Ма С. Ц., Лыткина Д. В., Мазу-
ров В. Д.

Мао Ю. М., Ма С. Ц.,
Лыткина Д. В.,
Мазуров В. Д.

О периодических группах с узким классом сопря-
женных инволюций

5

Маслова Н. В. см. Го Ц., Го В., Маслова Н. В., Ревин Д. О.

Матвеев Д. А. Конечномерные 2-порожденные алгебры Ли диффе-
ренцирований на T-многообразиях

3

Медных А. Д. см. Лу С., Данилов О. А., Медных А. Д.

Монахов В. С. О нильпотентных корадикалах силовских нормали-
заторов конечной группы

4

Морозов А. С. см. Баженов Н. А., Касымканулы Б., Морозов А. С.

Мустафа А. см. Берестовский В. Н., Мустафа А.

Назаров С. А. Деформация тонкой упругой зажатой по краю пла-
стины с прикрепленными стержнями. 1. Статиче-
ская задача

3

Назаров С. А. Деформация тонкой упругой зажатой по краю пла-
стины с прикрепленными стержнями. 2. Спектраль-
ная задача

4

Назаров С. А. Множественность асимптотических серий собствен-
ных чисел третьей краевой задачи с большим отри-
цательным коэффициентом Робэна

6

Нещадим М. В. Обобщенные поля Бельтрами. Точные решения 5

Нещадим М. В. см. Бородин А. Н., Нещадим М. В., Симонов А. А.

Обуховский В. В.,
Каменский М. И.,
Петросян Г. Г.,
Ульвачева Т. А.,
Цзэн Ш.

О системах дифференциальных включений дробно-
го порядка в банаховых пространствах

2



1166 Указатель

Осипов Н. Н. см. Кытманов А. А., Осипов Н. Н., Тихомиров С. А.

Павлов А. Л. О задаче Коши для некоторого класса уравнений
соболевского типа в классе обобщенных функций
медленного роста

4

Павлов С. В. см. Водопьянов С. К., Павлов С. В.

Пальчунов Д. Е.,
Трофимов А. В.

Суператомная булева алгебра с выделенной подал-
геброй, теория которой не имеет простой модели

3

Петросян Г. Г. см. Обуховский В. В., Каменский М. И., Петро-
сян Г. Г., Ульвачева Т. А., Цзэн Ш.

Плотников М. Г. см. Казакова А. Д., Плотников М. Г.

Подвигин И. В. см. Качуровский А. Г., Подвигин И. В., Тодиков В. Э.

Пожидаев А. П. О смешанных тождествах эндоморфов, бимодулях
и ω-алгебрах

4

Пожидаев А. П. Об изоморфизмах эндоморфов и дублей Витта 5

Прохоров Д. В. Об интерполяции функциональных пространств Че-
заро со степенным весом

2

Пчелинцев С. В. О классификации правоальтернативных сингуляр-
ных 10-мерных супералгебр диагонального типа

1

Ревин Д. О. см. Го Ц., Го В., Маслова Н. В., Ревин Д. О.

Романов А. С. Отображения соболевского типа между метрически-
ми пространствами с мерой. Операторы композиции

6

Романов В. Г. Обратная задача для полулинейного волнового урав-
нения с нелинейным интегральным оператором

2

Романов В. Г. Обратная задача для уравнений электродинамики с
памятью

6

Сбоев Д. А. Емкостные граничные элементы на римановых мно-
гообразиях и обобщенные границы

3

Сбоев Д. А. Операторы композиции пространств Соболева на мет-
рических пространствах с мерой. I

5

Семенов Е. М. см. Асташкин С. В., Семенов Е. М., Усачев А. С.

Семенов Э. И. см. Косов А. А., Семенов Э. И.

Симонов А. А. см. Бородин А. Н., Нещадим М. В., Симонов А. А.

Соколов Е. В. см. Баранов Д. Р., Соколов Е. В.

Соловьев Д. В. см. Агапов С. В., Соловьев Д. В.

Сорин Б. В. Топологическая версия олигоморфности групп 3

Степанов В. Д.,
Шамбилова Г. Э.

Об итерационных интегральных операторах на ко-
нусе монотонных функций

2

Тихомиров А. С. см. Ланских И. Ю., Тихомиров А. С.

Тихомиров С. А. см. Кытманов А. А., Осипов Н. Н., Тихомиров С. А.

Тодиков В. Э. см. Качуровский А. Г., Подвигин И. В., Тодиков В. Э.

Толстоногов А. А. Релаксация в задаче оптимального управления, опи-
сываемой связанной системой с максимально моно-
тонными операторами

2



Указатель 1167

Трофимов А. В. см. Пальчунов Д. Е., Трофимов А. В.

Тютянов В. Н. см. Каморников С. Ф., Тютянов В. Н.

Ульвачева Т. А. см. Обуховский В. В., Каменский М. И., Петро-
сян Г. Г., Ульвачева Т. А., Цзэн Ш.

Умаров Х. Г. Разрушение решения и глобальная разрешимость
задачи Коши для уравнения, моделирующего рас-
пространение продольных волн деформации в нели-
нейно-упругом стержне

2

Усачев А. С. см. Асташкин С. В., Семенов Е. М., Усачев А. С.

Файзрахманов М. Х. Один подход к классификации минимальных нуме-
раций семейств арифметических множеств

2

Хабиров С. В. К групповой классификации релаксирующей газо-
вой динамики методом оптимальной системы подал-
гебр

1

Цзэн Ш. см. Обуховский В. В., Каменский М. И., Петро-
сян Г. Г., Ульвачева Т. А., Цзэн Ш.

Ченг Б. см. Йи С., Ченг Б., Бородич Р. В., Каморников С. Ф.

Шамбилова Г. Э. см. Степанов В. Д., Шамбилова Г. Э.

Шеметкова О. Л. Конечные минимальные не σ-сверхразрешимые
группы

4

Шепелев В. Д. Сильная π-теорема Силова для простых групп лие-
ва типа ранга 1

4



Зав. редакцией В. Н. Дятлов

Журнал подготовлен с использованием макропакета AMS-TEX,

разработанного Американским математическим обществом.

This publication was typeset using AMS-TEX,

the American Mathematical Society’s TEX macro system.

Журнал зарегистрирован в Федеральной службе по надзору
в сфере связи, информационных технологий и массовых коммуникаций.
Свидетельство о регистрации ЭЛ № ФС77-86519 от 29 декабря 2023 г.

Размещение в сети Интернет math-smz.ru.

Подписано к опубликованию 30.10.2025. Уч.-изд. л. 14. Формат 70 × 1081/16.
Дата размещения в сети Интернет 20.11.2025. Объем файла 2.38 Мб.

Издательство Института математики,
пр. Академика Коптюга, 4, 630090 Новосибирск, Россия.


	cov2506
	secp2506
	1-169
	dat2506

