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ОБРАТНАЯ ЗАДАЧА ДЛЯ УРАВНЕНИЙ

ЭЛЕКТРОДИНАМИКИ С ПАМЯТЬЮ

В. Г. Романов

Аннотация. Рассматриваются уравнения электродинамики, в которых диэлектри-
ческая проницаемость и проводимость среды обладают «памятью». Благодаря
этому решение уравнений зависит от всей предыстории процесса распространения
волн. Предполагается, что ядра интегральных операторов, моделирующие свой-
ство памяти, зависят от пространственных и временной переменных, причем эти
ядра допускают представление в виде произведения двух функций, одна из кото-
рых зависит от пространственных переменных, а вторая — от временной. Функции,
зависящие от временной переменной, считаются заданными, а зависящие от про-
странственных переменных неизвестными и подлежат отысканию. Принимается,
что эти функции p(x) и q(x), отвечающие ядрам, описывающим свойства памяти

диэлектрической проницаемости и проводимости, соответственно являются финит-
ными функциями, их носитель содержится внутри некоторого шара B конечного
радиуса. Для решения обратной задачи рассматривается прямая задача с полно-
стью известными ядрами и ее специальное решение для однородной среды, соот-
ветствующее бегущей дельта-образной волне, распространяющейся в направлении
ν. Эта волна падает на неоднородность, сосредоточенную в B, и на границе этого
шара измеряется амплитуда сингулярной части решения и амплитуда первой про-
изводной по времени его регулярной части на фронте волны. Соответствующая
информация, зафиксированная для различных направлений ν, и является исход-
ной для решения обратной задачи. В работе показано, что задачи об определении
функций p(x) и q(x) сводятся к последовательному решению хорошо известной
задачи рентгеновской томографии. Следовательно, решение рассматриваемой об-
ратной задачи единственно и может быть эффективно найдено как аналитически,
так и численно.
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1. Введение

Рассмотрим систему уравнений

∂

∂t


εE(x, t) +

t∫

−∞

ε̂(x, t− s)E(x, s) ds




+ σ(x)E(x, t) +

t∫

−∞

σ̂(x, t− s)E(x, s) ds− rotH(x, t) = 0, (1)
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∂

∂t
H(x, t) + µrotE(x, t) = 0; (x, t) ∈ R4.

В уравнениях (1) E = (E1, E2, E3) и H = (H1, H2, H3) — векторы электрической
и магнитной напряженностей поля, ε и µ — некоторые положительные числа,
σ(x) ≥ 0 — проводимость среды. Эти уравнения описывают распространение
электромагнитных волн в неоднородной среде с памятью, определяемой функ-
циями ε̂(x, t) и σ̂(x, t).

Пусть B = {x ∈ R3 | |x| < R} — шар радиуса R и S — его граница. Примем,
что

σ(x) = 0, x ∈ (R3 \B); ε̂(x, t) = 0, σ̂(x, t) = 0, (x, t) ∈ (R3 \B)× R. (2)

В дальнейшем будем рассматривать для уравнений (1) задачу Коши с на-
чальными данными

E(x, t) = ℓ δ(t− τ(x, ν)), H(x, t) = ε1/2µ−1/2(ν × ℓ)δ(t− τ(x, ν)), t < 0, (3)

в которых ν и ℓ — единичные векторы, ортогональные друг другу, ν · ℓ = 0,
функция τ(x, ν) определена формулой

τ(x, ν) = (εµ)1/2(x · ν +R),

δ(t) — дельта-функция Дирака.
Формулы (3) описывают дельта-образную плоскую электромагнитную вол-

ну, распространяющуюся в направлении ν и поляризованную в направлении ℓ.
В момент времени t = 0 эта волна касается границы S шара B в точке x = −Rν
и далее распространяется уже в неоднородной среде. Ее фронт t = τ(x, ν) оста-
ется плоским, но амплитуда его меняется.

Решение задачи (1), (3) зависит от параметров ν и ℓ. Поэтому оно будет
обозначаться через E(x, t.ν, ℓ),H(x, t.ν, ℓ), но иногда для сокращения записи за-
висимость от параметров ν и ℓ будет опускаться.

Задачу (1), (3) назовем прямой задачей. Основной задачей, которую будем
изучать, является обратная задача, заключающаяся в отыскании функций ε̂ и
σ̂, характеризующих память среды. При этом принимаем, что эти функции
представимы в виде

ε̂(x, t) = p(x)K1(t), K1(0) = 1, σ̂(x, t) = q(x)K2(t), K2(0) = 1, (4)

в котором K1(t) и K2(t) — известные гладкие функции для t ≥ 0, а носите-
ли функций p(x) и q(x) содержатся в B. В дальнейшем будем предполагать,
что p(x) и q(x) являются гладкими функциями в R3. Под термином гладкая

функция подразумевается функция бесконечно дифференцируемая в соответ-
ствующей области.

Определим плоскость

P (ψ) = {x · χ(ψ) = 0}, χ(ψ) = (− sinψ, cosψ, 0), ψ ∈ [0, π),

и векторы

ℓ(ϕ, ψ) = (sinϕ cosψ, sinϕ sinψ, cosϕ),

ν(ϕ, ψ) = (cosϕ cosψ, cosϕ sinψ,− sinϕ), (ϕ, ψ) ∈ [0, 2π)× [0, π).

Заметим, что единичные векторы χ, ν и ℓ попарно ортогональны. Следователь-
но, векторы ν и ℓ расположены в плоскости P (ψ). Обозначим S+(ν) = {x ∈ S |
x · ν > 0}.
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Обратная задача. Пусть положительные числа ε и µ и неотрицательная
функция σ(x) известны. Требуется найти функции p(x) и q(x) по следующей
информации о решениях прямой задачи: заданы функции

F1(x, ϕ, ψ) = lim
t→τ(x,ν)+0

t∫

−∞

(E(x, s, ν(ϕ, ψ), ℓ(ϕ, ψ)) · ℓ(ϕ, ψ)) ds,

F2(x, ϕ, ψ) = lim
t→τ(x,ν)+0

(E(x, t, ν(ϕ, ψ), ℓ(ϕ, ψ)) · ℓ(ϕ, ψ))

(5)

для всех x ∈ (P (ψ) ∩ S+(ν(ϕ, ψ))), ψ ∈ [0, π), и всех ℓ(ϕ, ψ) и ν(ϕ, ψ), (ϕ, ψ) ∈
[0, 2π)× [0, π).

Заметим, что F1(x, ϕ, ψ) и F2(x, ϕ, ψ) являются функциями трех скалярных
переменных, так как x принадлежит полуокружности (P (ψ)∩S+(ν(ϕ, ψ))) при
фиксированных ϕ и ψ. Поэтому обратная задача не является переопределенной:
для отыскания двух функций трех переменных используется информация той
же самой размерности.

Обратные задачи для интегро-дифференциальных уравнений математиче-
ской физики, в которых изучаются свойства ядер некоторых интегральных опе-
раторов, описывающих предысторию процесса распространения волн, начали
изучаться сравнительно давно. По-видимому, первая из работ принадлежит
Лоренци и Синестрари и относится к 1988 г. (см. [1]). В ней авторы изучают
ядра памяти, связанные с упругими материалами. Затем в 1994 г. появилась
работа Д. К. Дурдиева [2] для волнового уравнения с ядром, зависящим только
от времени. Задачам определения ядер памяти в уравнениях вязкоупругости
посвящены работы [3–9]. В них изучены различные варианты постановок об-
ратных задач, использующие разнообразную информацию о решениях прямых
задач для этих уравнений. В работах [10, 11] рассматриваются проблемы изуче-
ния ядер интегро-дифференциальных операторов для уравнений электродина-
мики. В [12] изучена задача определения ядра памяти в нелинейном волновом
уравнении. Отметим также книгу [13], в которой приведен большой круг задач
об определении ядер памяти для различных уравнений математической физики
и собрана обширная библиография по таким задачам.

В настоящей работе изучается сформулированная выше обратная задача.
Она существенно отличается по постановке и методам исследования от работ
[10, 11]. Полученные результаты являются новыми. В следующем разделе изу-
чается прямая задача, выписывается структура решения в окрестности фрон-
та волны, выводятся амплитудные формулы для сингулярной части решения
и его регулярной части на фронте волны. В разд. 3 проводится анализ за-
дач об определении функций p(x) и q(x). Показывается, что задание функции
F1(x, ϕ, ψ) определяет интегралы от p(x) по всевозможным прямым, пересека-
ющим область B. Тем самым задача о построении p(x) приводится к задаче
рентгеновской томографии. Это позволяет однозначно ее найти. После этого
оказывается возможным найти по функции F2(x, ϕ, ψ) интегралы от q(x) так-
же по всевозможным прямым, пересекающим область B. Это обстоятельство
сводит проблему построения q(x) к полностью аналогичной задаче томографии.

2. Представление решения прямой задачи

Найдем формулы для амплитуды сингулярной части электрической напря-
женности поля и значения ее регулярной части на фронте волны. Чтобы это
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сделать, удобно использовать для функции E(x, t) интегро-дифференциальное
уравнение второго порядка. Выведем его следующим образом. Вначале про-
дифференцируем оба уравнения (1) по переменной t, а затем исключим из пер-
вого уравнения rotHt. Тогда получим уравнение

εEtt + (p(x) + σ(x))Et + p(x)

t∫

−∞

K ′1(t− s)E(x, s) ds

+ q(x)E + q(x)

t∫

−∞

K ′2(t− s)E(x, s) ds+
1

µ
rot rotE = 0. (6)

Воспользуемся равенством rot rotE = −�E +∇ div E. В результате из (6) по-
лучаем уравнение

εµEtt + µ(p(x) + σ(x))Et + µp(x)

t∫

−∞

K ′1(t− s)E(x, s) ds

+ µq(x)E + µq(x)

t∫

−∞

K ′2(t− s)E(x, s) ds = �E−∇divE. (7)

Вычислим div E с помощью первого равенства (1). В результате вычислений
получаем соотношение

ε


 ∂

∂t
div E(x, t) +

t∫

−∞

K ′1(t− s) div[p(x)E(x, s)] ds




+ div[(p(x) + σ(x))E(x, t)] +

t∫

−∞

K2(t− s) div[q(x)E(x, s)] ds = 0.

Из него следует формула

div E(x, t) = −1

ε





t∫

−∞

(t− s)K ′1(t− s) div[p(x)E(x, s)] ds

+

t∫

−∞

div[(p(x) + σ(x))E(x, s)] ds +

t∫

−∞

(t− s)K2(t− s) div[q(x)E(x, s)] ds



. (8)

Из равенств (7) и (8) получаем уравнение

εµEtt + µ(p(x) + σ(x))Et −�E + µp(x)

t∫

−∞

K ′1(t− s)E(x, s) ds

+ µq(x)E + µq(x)

t∫

−∞

K ′2(t− s)E(x, s) ds

− 1

ε





t∫

−∞

(t− s)K ′1(t− s)∇ div[p(x)E(x, s)] ds+

t∫

−∞

∇ div
[(
p(x) + σ(x)

)
E(x, s)

]
ds
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+

t∫

−∞

(t− s)K2(t− s)∇ div[q(x)E(x, s)] ds



 = 0. (9)

Представим решение уравнения (9), удовлетворяющее первому условию (3),
в виде асимптотического разложения в окрестности фронта t = τ(x, ν):

E(x, t, ν, ℓ) = α(x, ν, ℓ)δ(t− τ(x, ν)) + θ0(t− τ(x, ν))[β(x, ν, ℓ)

+ γ(x, ν, ℓ)(t− τ(x, ν)) + . . . ], (10)

в котором θ0(t) — функция Хевисайда: θ0(t) = 1 для t ≥ 0 и θ0(t) = 0 для
t < 0, а многоточием обозначены члены более высокого порядка малости, чем
(t− τ(x, ν)).

Теорема 1. Пусть

R3
−(ν) = {x ∈ R3 | x · ν +R ≤ 0}, R3

+(ν) = {x ∈ R3 | x · ν +R > 0}.

Для функций α(x, ν, ℓ) и β(x, ν, ℓ) имеют место равенства

α(x, ν, ℓ) = ℓ, β(x, ν, ℓ) = 0, x ∈ R3
−, (11)

α(x, ν, ℓ) = A(x, ν)ℓ, A(x, ν) = exp

(
− µ1/2

2ε1/2

∫

L(x,ν)

[
p(ξ) + σ(ξ)

]
ds

)
, x ∈ R3

+,

(12)

β(x, ν, ℓ) = B(x, ν)ℓ, B(x, ν) = − A(x, ν)

2(εµ)1/2

∫

L(x,ν)

[
µq(ξ)− �ξA(ξ, ν)

A(ξ, ν)

]
ds, x ∈ R3

+,

(13)
в которых L(x, ν) — луч, выходящий из точки x в направлении −ν, ξ = x− sν
— промежуточная точка интегрирования на L(x, ν), s > 0. В качестве положи-
тельного направления на L(x, ν) принимается направление возрастания пара-
метра s.

Доказательство. Непосредственные вычисления приводят к формулам

Ett(x, t, ν, ℓ) = α(x, ν, ℓ)δ′′(t− τ(x, ν)) + β(x, ν, ℓ)δ′(t− τ(x, ν))
+ γ(x, ν, ℓ)δ(t− τ(x, ν)) + . . . , (14)

�E(x, t, ν, ℓ) = α(x, ν, ℓ)|∇τ(x, ν)|2δ′′(t− τ(x, ν))
− [2(∇τ(x, ν) · ∇)α(x, ν, ℓ) +α(x, ν, ℓ)�τ(x, ν)− β(x, ν, ℓ)|∇τ(x, ν)|2 ]δ′(t− τ(x, ν))

− [2(∇τ(x, ν) · ∇)β(x, ν, ℓ) + β(x, ν, ℓ)�τ(x, ν) − γ(x, ν, ℓ)|∇τ(x, ν)|2

−�α(x, ν, ℓ)]δ(t − τ(x, ν)) + . . . , (15)

в которых выписаны только сингулярные составляющие, а многоточием обозна-
чены регулярные члены.

Подставим выражения для Ett и �E из формул (14), (15) в уравнение (9).
Используем при этом очевидные равенства

|∇τ(x, ν)|2 = εµ, �τ(x, ν) = 0.
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В вычислениях член с сингулярностью δ′′(t − τ(x, ν)) исчезнет. Приравняем к
нулю члены при сингулярностях δ′(t − τ(x, ν)) и δ(t − τ(x, ν)). Тогда получим
уравнения

2(∇τ(x, ν) · ∇)α(x, ν, ℓ) + µ(p(x) + σ(x))α(x, ν, ℓ) = 0, (16)

2(∇τ(x, ν) · ∇)β(x, ν, ℓ) + µ(p(x) + σ(x))β(x, ν, ℓ) + µq(x)α(x, ν, ℓ)

+ (p(x) + σ(x))(∇τ(x, ν) · α(x, ν, ℓ))−�α(x, ν, ℓ) = 0. (17)

Заметим, что коэффициент γ(x, ν, ℓ) в этих формулах не участвует. Уравнение
для него можно было бы найти, а затем и вычислить сам коэффициент, если
выписать разложение (10) со следующим членом γ1(x, ν, ℓ)(t− τ(x, ν))2, сосчи-
тать возникающие коэффициент при θ0(t − τ(x, ν)) и приравнять его к нулю.
Однако для исследования обратной задачи нам этот коэффициент γ(x, ν, ℓ) не
нужен, поэтому вычислять его не будем.

Введем в рассмотрение плоскость �(ν) = {x ∈ R3 | x · ν+R = 0}, касающу-
юся в точке x = −Rν сферы S и являющуюся общей границей полупространств
R3
−(ν) и R3

+(ν). Из начальных условий (3) следует формула (11). Таким обра-
зом, чтобы найти α(x, ν, ℓ) и β(x, ν, ℓ) нужно их продолжить в полупространство
R3

+(ν) с помощью уравнений (16), (17). При этом целесообразно использовать
начальные условия на �(ν), вытекающие из равенств (11):

α(x, ν, ℓ) = ℓ, β(x, ν, ℓ) = 0 для x ∈ �(ν). (18)

Опишем процедуру построения функций α(x, ν, ℓ) и β(x, ν, ℓ) в полупро-
странстве R3

+(ν). Пусть x0 — произвольная точка плоскости �(ν). Выпустим

из нее луч x = x0 + sν, s ≥ 0. Вдоль этого луча имеет место равенство

(∇τ(x, ν) · ∇)α(x, ν, ℓ) = (εµ)1/2(ν · ∇)α(x, ν, ℓ) = (εµ)1/2
d

ds
α(x, ν, ℓ).

Поэтому уравнение (16) и начальные данные для него можно записать в виде

2(εµ)1/2
d

ds
α(x, ν, ℓ) + µ(p(x) + σ(x))α(x, ν, ℓ) = 0, α|s=0 = ℓ.

Интегрируя это уравнение, находим, что

α(x0 + sν, ν, ℓ) = ℓ exp


− µ1/2

2ε1/2

s∫

0

[
p(x0 + s′ν) + σ(x0 + s′ν)

]
ds′


 , s > 0. (19)

Из формулы (19) видно, что вектор α(x, ν, ℓ) имеет в неоднородной среде то
же направление ℓ, что и в однородной. В связи с этим первый член второй
строки в уравнении (17) равен нулю. Само уравнение можно записать в виде
обыкновенного дифференциального уравнения вдоль прямой x = x0 + sν:

2(εµ)1/2
d

ds
β(x, ν, ℓ)+µ(p(x)+σ(x))β(x, ν, ℓ)+µq(x)α(x, ν, ℓ)−�α(x, ν, ℓ) = 0 (20)

с начальными данными
β|s=0 = 0. (21)

Интегрируя линейное уравнение (20) с учетом начальных данных (21), получаем
формулу

β(x0 + sν, ν, ℓ) = − 1

2(εµ)1/2
exp


− µ1/2

2ε1/2

s∫

0

[p(x0 + s′ν) + σ(x0 + s′ν)] ds′



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×
s∫

0

[µq(x0 + s′ν)α(x0 + s′ν, ν, ℓ)−�x0α(x0 + s′ν, ν, ℓ)]

× exp


 µ1/2

2ε1/2

s′∫

0

[p(x0 + s′′ν) + σ(x0 + s′′ν)] ds′′


 ds′, s > 0. (22)

Равенства (19) и (22) удобно переписать в виде (12) и (13). Пусть x ∈ R3
+. Тогда

расстояние от точки x до ее проекции x0 на плоскость �(ν) равно s(x, ν) =
x · ν + R, а произвольная точка ξ на отрезке прямой, соединяющей x и x0,
может быть представлена в виде ξ = x− sν, s ∈ [0, s(x, ν)]. С учетом того, что
функции p(x), σ(x) и q(x) равны нулю вне B, можно интегрирование по отрезку,
соединяющему точки x и x0, заменить интегрированием по лучу L(x, ν) = {ξ =
x− sν, s ≥ 0}. Тогда равенства (19) и (22) преобразуются в (12) и (13).

3. Исследование обратной задачи

Из данных (5) обратной задачи, представления (10) и формул (12), (13)
следуют равенства

F1(x, ϕ, ψ) = A(x, ν(ϕ, ψ)), F2(x, ϕ, ψ) = B(x, ν(ϕ, ψ)) (23)

для всех x ∈ (P (ψ)∩S+(ν(ϕ, ψ))), ψ ∈ [0, π), и всех ν(ϕ, ψ), (ϕ, ψ) ∈ [0, 2π)×[0, π).
Таким образом, функции A(x, ν(ϕ, ψ)) и B(x, ν(ϕ, ψ)) в обратной задаче

известны для указанных выше значений их аргументов. Рассмотрим первое
равенство (23). В этом случае, используя формулу (12), находим интегралы

∫

L(x,ν(ϕ,ψ))

p(ξ) ds = h1(x, ϕ, ψ) (24)

∀x ∈ (P (ψ) ∩ S+(ν(ϕ, ψ))), ψ ∈ [0, π); ∀ ν(ϕ, ψ), (ϕ, ψ) ∈ [0, 2π)× [0, π),

в которых функция h1(x, ϕ, ψ) определена равенством

h1(x, ϕ, ψ) = −2ε1/2µ−1/2 lnA(x, ν(ϕ, ψ)) −
∫

L(x,ν(ϕ,ψ))

σ(ξ) ds.

Для любого фиксированного значения ψ ∈ (0, π) множество P (ψ)∩B представ-
ляет собой круг радиуса R. Объединение этих кругов для всех ψ ∈ [0, π) обра-
зует шар B. Формула (24) при фиксированном ψ ∈ [0, π) задает интегралы по
всевозможным прямым, пересекающим круг P (ψ)∩B. Действительно, если за-
фиксировать еще и угол ϕ, то формула (24) определяет интегралы вдоль пучка
параллельных лучей, выходящих из точек полуокружности (P (ψ)∩S+(ν(ϕ, ψ)))
в направлении −ν(ϕ, ψ). При изменении угла ϕ от 0 до 2π это семейство лучей
делает полный оборот в плоскости P (ψ). Говоря об интегралах вдоль прямых и
лучей, мы, конечно, имеем в виду финитность подынтегральных функций p(x)
и σ(x). Из сказанного выше следует, что задача решения интегрального уравне-
ния (24), т. е. отыскания подынтегральной функции p(x), представляет собой
хорошо известную задачу рентгеновской томографии. Решение ее единствен-
но и устойчиво в соответствующих пространствах. Кроме того, существуют
аналитические формулы обращения и большое число численных алгоритмов,
решающих эту задачу.
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Примем теперь, что p(x) найдена. Тогда функция A(x, ν) может быть вы-
числена для любых x ∈ (B ∪ S) и любых ν ∈ S2. В этом случае, используя
формулу (13), можно найти интегралы

∫

L(x,ν(ϕ,ψ))

q(ξ) ds = h2(x, ϕ, ψ) (25)

∀x ∈ (P (ψ) ∩ S+(ν(ϕ, ψ))), ψ ∈ [0, π); ∀ ν(ϕ, ψ), (ϕ, ψ) ∈ [0, 2π)× [0, π),

в которых функция h2(x, ϕ, ψ) определена равенством

h2(x, ϕ, ψ) = −2ε1/2B(x, ν(ϕ, ψ))

µ1/2A(x, ν(ϕ, ψ))
+

∫

L(x,ν(ϕ,ψ))

�ξA(ξ, ν(ϕ, ψ))

µA(ξ, ν(ϕ, ψ))
ds.

Задача об отыскании функции q(x) по интегралам (25) представляет собой в
точности такую же задачу томографии, как и предыдущая.

Резюмируя результат исследования обратной задачи, приходим к следую-
щему утверждению.

Теорема 2. Обратная задача редуцируется к двум последовательно реша-
емым задачам рентгеновской томографии (24) и (25).
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