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Светлой памяти Семёна Самсоновича Кутателадзе

Уже больше трех десятилетий активно развивается анализ на разнообраз-
ных метрических структурах, в том числе и в наиболее общей ситуации — непо-
средственно на метрических пространствах. Наряду с привычным определени-
ем, основанным на существовании обобщенных производных, соболевские про-
странства функций с первыми производными в регулярных областях G ⊂ Rn

допускают альтернативные описания, формулируемые в терминах метрики и
меры Лебега и не использующие в явном виде линейной структуры евклидова
пространства и дифференцирования. Это позволяет на метрических простран-
ствах с мерой помимо классов суммируемых функций определить различные
классы функций с «обобщенной гладкостью», которые можно считать функ-
циональными пространствами соболевского типа, поскольку в евклидовом слу-
чае они совпадают с пространствами Соболева W 1

p (G). При таком подходе к
определению пространств соболевского типа они наследуют в метрическом слу-
чае некоторые свойства классических пространств Соболева W 1

p (G). Получены
метрические аналоги различных евклидовых результатов, в том числе аналоги
соболевских теорем вложения.

Цель изучения на метрических пространствах с мерой различных функци-
ональных классов соболевского типа и связанных с ними отображений метриче-
ских пространств заключается в получении весьма универсальных метрических
результатов и в разработке новых методов доказательств, не использующих ли-
нейную структуру в области определения. Метрические результаты применимы
в различных ситуациях, поскольку не связаны с конкретными метрическими
пространствами и, как правило, определяются соотношением меры и метрики.
К примеру, введенные Хайлашем [1] функциональные пространства соболев-
ского типа M1

p (X, d, µ) использовались при изучении пространств Соболева в
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евклидовых областях с нерегулярными границами [2] и при описании следов
соболевских функций на фракталах [3].

В работе [4] имеется краткий обзор по данной тематике, в котором можно
найти ссылки на статьи, содержащие более полную библиографию. Основными
объектами изучения в [4] были функциональные пространства M1

p (X, d, µ) и

связанные с ними отображения класса M1
p (X,Y ), действующиe из метрического

пространства (X, d) в метрическое пространство (Y, ρ).
В этой работе мы продолжаем изучение различных вопросов, связанных с

пространствами соболевского типа M1
p (X, d, µ).

В первом параграфе работы содержатся необходимые сведения о свойствах
функций из пространств соболевского типа M1

p (X, d, µ). Во втором параграфе

рассматриваются отображения класса M1
p (X,Y ), формулируются известные и

доказываются новые свойства таких отображений, в частности, доказывает-
ся полнота пространства M1

p (X,Y ). В третьем параграфе изучаются свойства
отображений метрических пространств ϕ : (X, d) → (Y, ρ), индуцирующих по
правилу ϕ∗u = u ◦ϕ ограниченные операторы композиции в шкале пространств
соболевского типа

ϕ∗ : S1
p(Y, ρ, ν)→ Sαq (X, d, µ).

§ 1. Функциональные пространства
соболевского типа M1

p
(X,d, µ)

В этом параграфе приведем для удобства формулировки основных опреде-
лений и известных результатов, которые потребуются в дальнейшем.

Далее будем предполагать, что полное метрическое пространство (X, d)
имеет конечный диаметр, а конечная регулярная борелевская мера µ имеет но-
ситель в множестве X.

Функцию g : X → [0,∞) будем называть допустимой для µ-измеримой

функции u : X → R, если существует такое множество E ⊂ X, что µ(E) = 0 и
неравенство

|u(x)− u(y)| ≤ d(x, y)(g(x) + g(y)) (1.1)

выполняется для всех точек x, y ∈ X \ E.
Для функции u : X → R при p ≥ 1 символом Dp(u) обозначим множество

всех допустимых функций, принадлежащих пространству Лебега Lp(X,µ).
Определим два функциональных пространства следующим образом:

S1
p(X, d, µ) = {u : X → R | Dp(u) 6= ∅};

M1
p (X, d, µ) =

{
u ∈ Lp(X,µ) | u ∈ S1

p(X, d, µ)
}
.

Полунорма в пространстве S1
p(X, d, µ) и норма в пространстве M1

p (X, d, µ)
определяются равенствами

∥∥u | S1
p(X, d, µ)

∥∥ = inf
g∈Dp(u)

‖g | Lp(X,µ)‖,

∥∥u |M1
p (X, d, µ)

∥∥ = ‖u | Lp(X,µ)‖+
∥∥u | S1

p(X, d, µ)
∥∥.

В работе [1] показано, что пространство M1
p (X, d, µ) банахово. Отметим,

что в силу конечности диаметра метрического пространства и конечности ме-
ры следствием неравенства (1.1) является совпадение пространств S1

p(X, d, µ) и

M1
p (X, d, µ) как множеств функций.
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В евклидовых областях G ⊂ Rn с липшицевой границей пространство
M1
p (G, | · |,mn), рассматриваемое относительно стандартной евклидовой мет-

рики и меры Лебега, и классическое пространство Соболева W 1
p (G) совпадают

как множества функций, а их нормы эквивалентны [1]. Это свойство позволяет
считать пространство M1

p (G, | · |,mn) естественным метрическим аналогом про-

странства Соболева W 1
p (G) и называть его пространством соболевского типа.

Различные свойства пространств M1
p (X, d, µ) и их взаимосвязь с другими

классами функций изучались многими авторами. Отметим некоторые нужные
нам результаты.

Для пространств M1
p (X, d, µ) содержательную теорию, включающую в себя

различные варианты теорем вложения, удается получить в случае, когда мера
µ удовлетворяет простому геометрическому «условию удвоения»

µ(B(x, 2r)) ≤ Cdµ(B(x, r)), (1.2)

т. е. мера шара удвоенного радиуса допускает оценку сверху через меру исход-
ного шара.

Условие удвоения обеспечивает выполнение леммы Витали о покрытии и
связанных с ней свойств локально суммируемых функций.

Следствием условия удвоения является оценка снизу меры произвольного
шара B(x, r) при r ≤ diam(X):

µ(B(x, r)) ≥ Crs. (1.3)

В различных теоремах вложения показатель s ≤ log2 Cd, называемый показа-

телем регулярности меры µ, играет в некотором смысле роль «размерности»
метрического пространства (X, d) относительно меры µ.

Далее мы будем предполагать, что мера µ удовлетворяет условию удвоения
и имеет показатель регулярности s > 1.

Символом uE будем обозначать среднее значение функции u на множестве
E:

uE = —

∫

E

u dµ =
1

µ(E)

∫

E

u dµ.

Следующее утверждение было доказано в теореме 6 работы [1].

Лемма 1.1 [1]. Пусть мера µ удовлетворяет условию удвоения, является
s-регулярной и u ∈M1

p (X, d, µ). Тогда
1) при 1 < p < s функция u принадлежит Lq(X,µ), где 1 ≤ q ≤ ps

s−p , и

‖u | Lq(X,µ)‖ ≤ C
∥∥u |M1

p (X, d, µ)
∥∥;

2) если p = s, то функция u принадлежит Lq(X,µ) при всех q ∈ [1,∞);
3) при p > s функция u принадлежит L∞(X,µ) и

‖u− uX | L∞(X,µ)‖ ≤ Cµ(X)1/s−1/p
∥∥u | S1

p(X, d, µ)
∥∥. (1.4)

Нам будет удобнее вместо п. 3 использовать довольно простое следствие
оценки (1.4).

Лемма 1.2 [4]. Пусть мера µ удовлетворяет условию удвоения и s-регуляр-
на, s < p < ∞. Тогда для всякой функции u ∈ M1

p (X, d, µ) существует эквива-
лентная ей непрерывная функция ũ, для которой при всех x, y ∈ X выполняется
неравенство

|ũ(x)− ũ(y)| ≤ C[d(x, y)]1−s/p
∥∥u | S1

p(X, d, µ)
∥∥. (1.5)
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Пусть α ∈ (0, 1). Заменяя в определении пространствM1
p (X, d, µ) и S1

p(X, d, µ)
неравенство (1.1) на

|u(x)− u(y)| ≤ [d(x, y)]α(g(x) + g(y)),

получим функциональные пространства Mα
p (X, d, µ) и Sαp (X, d, µ).

Функциональные пространстваMα
p (X, d, µ), быть может, не совсем привыч-

ны, но, с одной стороны, они имеют простое определение и полученные для них
результаты являются весьма универсальными, с другой стороны, они близки к
пространствам Бесова Bαp,p(X, d, µ). Как показано в работе [5], для любого ε > 0

Bαp,p(X, d, µ) ⊂Mα
p (X, d, µ) ⊂ Bα−εp,p (X, d, µ).

Рассмотрим на множестве X новую гёльдерову метрику dα, полагая

dα(x, y) = [d(x, y)]α.

Для шара в метрике dα будем использовать обозначение Bα(x, r). Поскольку

µ(Bα(x, r)) = µ(B(x, r1/α)) ≥ Crs/α,
относительно метрики dα мера µ является s/α-регулярной.

Далее будем использовать термин «гёльдеровы классы», имея в виду про-
странства соболевского типа Mα

p , связанные с соответствующей гёльдеровой

метрикой. Вполне очевидно, что Mα
p (X, d, µ) = M1

p (X, dα, µ) и Sαp (X, d, µ) =

S1
p(X, dα, µ). Таким образом, гёльдеровы классы относительно исходной метри-

ки являются пространствами функций, имеющих «гладкость», равную единице
относительно гёльдеровой метрики. Это означает, что при получении, к приме-
ру, теорем вложения для функциональных пространств Mα

p (X, d, µ) достаточно

в утверждениях для пространствM1
p (X, d, µ) заменить показатель регулярности

s на s/α.
Приведем лишь нужные нам следствия лемм 1.1 и 1.2.

Лемма 1.3. Пусть мера µ удовлетворяет условию удвоения и s-регулярна.
Тогда

1) при 1 < αp < s пространство Mα
p (X, d, µ) непрерывно вложено в про-

странство Лебега Lq(X,µ), где 1 ≤ q ≤ ps
s−αp ;

2) при s < αp <∞ для всякой функции u ∈Mα
p (X, d, µ) существует эквива-

лентная ей непрерывная функция ũ, для которой при всех x, y ∈ X выполняется
неравенство

|ũ(x) − ũ(y)| ≤ C[d(x, y)]α−s/p
∥∥u | Sαp (X, d, µ)

∥∥.
Отметим существование в шкале пространств Mα

p (X, d, µ) внутренней тео-
ремы вложения.

Лемма 1.4 [2]. Пусть мера µ удовлетворяет условию удвоения и s-регуляр-
на, 1 < p < ∞, α ∈ (0, 1). Тогда пространство M1

p (X, d, µ) непрерывно вложено
в пространство Mα

q (X, d, µ), где
1) 1 ≤ q ≤ sp

s−(1−α)p при (1− α)p < s;

2) 1 ≤ q <∞ при (1 − α)p = s;
3) 1 ≤ q ≤ ∞ при (1 − α)p > s.

При учете равенства Mα
p (X, d, µ) = M1

p (X, dα, µ) соответствующее вложе-

ние пространства Mα
p (X, d, µ) в пространство Mβ

q (X, d, µ) при β < α является
простым следствием леммы 1.4.
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§ 2. Отображения метрических
пространств класса M1

p
(X,Y )

Определим интересующие нас классы отображений, действующих из мет-
рического пространства (X, d) в метрическое пространство (Y, ρ). В некоторых
работах авторы используют изометрическое вложение метрического простран-
ства (Y, ρ) в пространство ограниченных функций и изучают далее отображения
со значениями в банаховом пространстве. При таком подходе возникает опре-
деленная зависимость от выбранного способа вложения. Будем рассматривать
отображения с областью значений непосредственно в метрическом простран-
стве.

Рассмотрим полное сепарабельное метрическое пространств (Y, ρ) и, следуя
работе Ю. Г. Решетняка [6], при p ≥ 1 определим принадлежность отображе-
ния ϕ : (X, d) → (Y, ρ) лебеговскому классу Lp(X,Y ) условием: вещественные
функции ϕy(x) = ρ(ϕ(x), y) принадлежат пространству Лебега Lp(X,µ) при
всех y ∈ Y.

Замечание. Первоначально такое условие использовалось в работе Коре-
ваара и Шоэна [7] для функций, определенных в областях риманова простран-
ства. В [6] областью определения является произвольное пространство с мерой
(M,S, µ), где M — произвольное множество, S — σ-алгебра подмножеств M и
µ : S → R — неотрицательная мера.

Элементом класса Lp(X,Y ) будем считать совокупность отображений, сов-
падающих µ-почти всюду в X.

Из неравенства

|ϕy1(x) − ϕy2(x)| ≤ ρ(y1, y2)
и конечности меры µ следует, что отображение ϕ принадлежит классу Lp(X,Y ),
если хотя бы для одного y ∈ Y функция ϕy принадлежит Lp(X,µ). Пусть ϕ и
ψ — произвольные отображения класса Lp(X,Y ). Поскольку

ρ(ϕ(x), ψ(x)) ≤ ρ(ϕ(x), y) + ρ(ψ(x), y) = ϕy(x) + ψy(x),

функция Hϕ,ψ(x) = ρ(ϕ(x), ψ(x)) принадлежит пространству Лебега Lp(X,µ).
Несложно проверить, что функция

ρp(ϕ, ψ) =

(∫

X

[ρ(ϕ(x), ψ(x))]p dµ

)1/p

= ‖Hϕ,ψ | Lp(X,µ)‖

является метрикой на множестве отображений класса Lp(X,Y ). При этом мет-
рическое пространство (Lp(X,Y ), ρp) полное [6, 7].

Впоследствии нам будет удобнее использовать другую метрику ηp, согласо-
ванную с определением класса Lp(X,Y ).

Если ϕ, ψ ∈ Lp(X,Y ), то для функции

ηp(ϕ, ψ) = sup
z∈Y
‖ϕz − ψz | Lp(X,µ)‖

симметричность, неравенство треугольника и равенство ηp(ϕ,ϕ) = 0 вполне
очевидны.

Совпадение почти всюду отображений ϕ и ψ в случае ηp(ϕ, ψ) = 0 прове-
ряется довольно просто. Из свойств нормы пространства Lp(X,µ) и равенства
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ηp(ϕ, ψ) = 0 следует, что при всяком z ∈ Y равенство ϕz(x) − ψz(x) = 0 выпол-
няется при почти всех x ∈ X. Положим

Ez = {x ∈ X | ϕz(x)− ψz(x) 6= 0}.
Пусть P — счетное всюду плотное подмножество в Y и

E =
⋃

z∈P
Ez .

Отметим, что µ(E) = 0 и при всех x ∈ X \ E и всех z ∈ P
ρ(ϕ(x), z)− ρ(ψ(x), z) = 0.

Если x ∈ X \ E и ψ(x) ∈ P, то, полагая z = ψ(x), получаем ρ(ϕ(x), ψ(x)) = 0.
Если ψ(x) /∈ P, то существует такая последовательность {zk}, что zk ∈ P и
zk → ψ(x) в Y. В силу непрерывности метрики

ρ(ϕ(x), ψ(x)) = lim
k→∞

ρ(ϕ(x), zk) = 0.

Поэтому
ηp(ϕ, ψ) = 0⇐⇒ ϕ(x) = ψ(x) при x ∈ X \ E.

Отображения ϕ и ψ совпадают почти всюду. Таким образом, функция ηp явля-
ется метрикой на множестве отображений класса Lp(X,Y ).

Метрическое пространство (Y, ρ) будем называть регулярным, если оно яв-
ляется полным, сепарабельным и всякий замкнутый шар B ⊂ Y является ком-
пактным множеством.

Если метрическое пространство (Y, ρ) регулярно, то с точки зрения сходи-
мости метрики ηp и ρp эквивалентны.

Поскольку

|ϕz(x) − ψz(x)| = |ρ(ϕ(x), z)− ρ(ψ(x), z)| ≤ ρ(ϕ(x), ψ(x)),

то ηp(ϕ, ψ) ≤ ρp(ϕ, ψ).
С другой стороны, если последовательность отображений {ϕk} класса

Lp(X,Y ) фундаментальна относительно метрики ηp, то при всяком z ∈ Y после-
довательность вещественных функций {[ϕk]z} сходится в полном пространстве
Lp(X,µ). Остается воспользоваться леммой 2.3 работы [6], согласно которой
последовательность отображений {ϕk} сходится по метрике ρp к некоторому
отображению ϕ ∈ Lp(X,Y ).

В работе Кореваара и Шоэна [7] рассматриваются отображения соболевско-
го типа с областью определения в римановом пространстве и областью значений
в метрическом пространстве (X, d). Авторы используют довольно сложную кон-
струкцию: для отображения u ∈ Lp(�,X) определяют специального вида функ-
ционал энергии Ep(u) и полагают по определению, что отображение u принад-
лежит классу KSp(�,X), если Ep(u) <∞. В работах [6, 8] доказано, что всякая
вещественная функция класса KSp(�,R) принадлежит пространству Соболева
W 1
p (�).

Нам удобнее при определении классов отображений соболевского типа ис-
пользовать подход, предложенный Ю. Г. Решетняком [6]. С одной стороны,
определение работы [6] весьма универсально, условия легко формулируются и
с ними легче работать, с другой стороны Ю. Г. Решетняк показал [8], что опре-
деление работы [6] приводит к тому же классу отображений, что и определение
работы [7].
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Модифицируя схему Ю. Г. Решетняка, определим связанные с простран-
ствами M1

p (X, d, µ) классы отображений соболевского типа, действующих из
метрического пространства (X, d) в метрическое пространство (Y, ρ).

Определение класса M 1
p (X,Y ). Будем говорить, что определенное почти

всюду в X отображение ϕ : (X, d)→ (Y, ρ) принадлежит классу M 1
p (X,Y ), если

1) для всякого y ∈ Y функция ϕy(x) = ρ(ϕ(x), y) принадлежит функцио-
нальному пространству M1

p (X, d, µ);

2) существует такая функция ω ∈ Lp(X,µ), что при всех y ∈ Y функция ω
является допустимой для функции ϕy .

Заметим, что из п. 1 следует принадлежность отображения ϕ классу Lp(X,Y ).

Лемма 2.1. Пусть отображение ϕ : (X, d)→ (Y, ρ) удовлетворяет следую-
щим условиям:

1) ϕ ∈ Lp(X,Y );
2) существуют такое множество E ⊂ X и такая неотрицательная функция

g ∈ Lp(X,µ), что µ(E) = 0 и неравенство

ρ(ϕ(x1), ϕ(x2)) ≤ d(x1, x2)(g(x1) + g(x2)) (2.1)

выполняется для всех точек x1, x2 ∈ X \ E.
Тогда ϕ ∈ M 1

p (X,Y ). Если метрическое пространство (Y, ρ) сепарабельно,

то для принадлежности отображения ϕ классу M 1
p (X,Y ) выполнение условий 1

и 2 является необходимым.

Это утверждение в несколько иной формулировке доказано в лемме 2.1
работы [4].

В случае, когда множество X является липшицевой областью G ⊂ Rn, а
Y = R, получаем класс вещественных функций M 1

p (G,R), для которого соглас-
но лемме 2.1 и отмеченному ранее результату работы [1] выполняются соотно-
шения

M 1
p (G,R) = M1

p (G, | · |,mn) = W 1
p (G).

В некоторых случаях использование неравенства (2.1) позволяет получить
простые доказательства утверждений, касающихся отображений класса M 1

p (X,Y ).

Говорят, что отображение метрических пространств ψ : (Y, ρ)→ (Z, δ) удо-

влетворяет условию Липшица, если существует постоянная K <∞ такая, что
для любых y1, y2 ∈ Y

δ[ψ(y1), ψ(y2)] ≤ Kρ(y1, y2).
Если ϕ ∈M 1

p (X,Y ), а ψ : (Y, ρ)→ (Z, δ) удовлетворяет условию Липшица,
то, используя лемму 2.1, легко показать, что отображение � = ψ ◦ ϕ принадле-
жит классу M 1

p (X,Z) [4].
Рассмотрим еще один класс отображений.

Определение класса M1
p(X,Y ). Будем говорить, что определенное почти

всюду в X отображение ϕ : (X, d)→ (Y, ρ) принадлежит классуM1
p(X,Y ), если

1) для всякого y ∈ Y функция ϕy(x) = ρ(ϕ(x), y) принадлежит функцио-
нальному пространству M1

p (X, d, µ);

2) при всех y ∈ Y нормы всех функций ϕy равномерно ограничены, т. е.

∥∥ϕy | S1
p(X, d, µ)

∥∥ ≤ C0 <∞.
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Введем обозначение

〈ϕ〉p = sup
y∈Y

∥∥ϕy | S1
p(X, d, µ)

∥∥.

Принадлежность отображения ϕ классу M1
p(X,Y ) эквивалентна выполне-

нию условий ϕ ∈ Lp(X,Y ) и 〈ϕ〉p <∞.
На множестве отображений M1

p(X,Y ) можно определить метрику, полагая

для отображений ϕ, ψ ∈M1
p(X,Y )

η1,p(ϕ, ψ) = sup
y∈Y

∥∥ϕy − ψy |M1
p (X, d, µ)

∥∥.

Выполнение аксиом метрики в данном случае вполне очевидно.

Лемма 2.2. Если пространство (Y, ρ) регулярно, то множество отобра-
жений M1

p(X,Y ) с метрикой η1,p(·, ·) является полным метрическим простран-
ством.

Доказательство. Если {ϕn} — фундаментальная относительно метрики
η1,p(·, ·) последовательность отображений классаM1

p(X,Y ), то при фиксирован-
ном y ∈ Y последовательность функций [ϕn]y фундаментальна в полном про-
странстве M1

p (X, d, µ) и сходится к некоторой функции hy ∈ M1
p (X, d, µ). При

этом
‖[ϕn]y − hy | Lp(X,µ)‖ → 0 при n→∞.

Вполне очевидно, что последовательность {ϕn} является фундаментальной
и относительно метрики ηp(·, ·), сходимость по которой эквивалентна сходимо-
сти по метрике ρp(·, ·). Поэтому последовательность {ϕn} сходится в полном
метрическом пространстве Lp(X,Y ) к некоторому отображению ϕ ∈ Lp(X,Y ).
Поскольку

|[ϕn]y(x) − ϕy(x)| ≤ ρ(ϕn(x), ϕ(x)),

то

‖[ϕn]y − ϕy | Lp(X,µ)‖ ≤
(∫

X

[ρ(ϕn(x), ϕ(x))]p dµ

)1/p

= ρp(ϕn, ϕ)→ 0 при n→∞.
Следовательно, ϕy = hy почти всюду и поэтому ϕy ∈M1

p (X, d, µ).
Cогласно определению метрики η1,p(·, ·)

sup
y∈Y

∥∥[ϕn]y − hy |M1
p (X, d, µ)

∥∥→ 0 при n→∞. (2.2)

Из свойства (2.2) следует существование такого номера n0, что при произволь-
ном y ∈ Y выполняется неравенство

∥∥[ϕn0 ]y − ϕy | M1
p (X, d, µ)

∥∥ < 1. Поэтому
при всех y ∈ Y

∥∥ϕy | S1
p(X, d, µ)

∥∥ ≤
∥∥ϕy |M1

p (X, d, µ)
∥∥ ≤ 1 +

∥∥[ϕn0 ]y |M1
p (X, d, µ)

∥∥ <∞.
Это означает, что предельное отображение ϕ принадлежит классу M1

p(X,Y ) и
согласно свойству (2.2) η1,p(ϕn, ϕ)→ 0. �

Вполне очевидно, что M 1
p (X,Y ) ⊂ M1

p(X,Y ). С одной стороны, прове-

рить принадлежность отображения классу M1
p(X,Y ) проще, чем принадлеж-

ность классу M 1
p (X,Y ), с другой стороны, многие результаты, к примеру, тео-

ремы вложения, получаемые для класса M1
p(X,Y ), не только верны для класса

M 1
p (X,Y ), но и точны.
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Согласно определениям соответствующих классов отображений принадлеж-
ность отображения ϕ класса M1

p(X,Y ) лебеговскому классу Lq(X,Y ) является
непосредственным следствием принадлежности вещественной функции ϕy про-
странству M1

p (X, d, µ), непрерывно вложенному в пространство Лебега Lq(X,µ)
(лемма 1.1).

Лемма 2.3 [4]. Пусть мера µ удовлетворяет условию удвоения и s-регу-
лярна. Тогда

1) если 1 < p < s, то включение

M1
p(X,Y ) ⊂ Lq(X,Y )

имеет место при всех 1 ≤ q ≤ ps
s−p , при этом для всякого отображения ϕ ∈

M1
p(X,Y ) и для произвольной точки y ∈ Y выполняется оценка

‖ϕy | Lq(X,µ)‖ ≤ C
∥∥ϕy |M1

p (X, d, µ)
∥∥;

2) если p = s, то M1
p(X,Y ) ⊂ Lq(X,Y ) при всех q ∈ [1,∞);

3) если p > s, то M1
p(X,Y ) ⊂ L∞(X,Y ) и для всякого отображения ϕ ∈

M1
p(X,Y ) и произвольной точки y ∈ Y выполняется оценка

‖ϕy − [ϕy]X | L∞(X,µ)‖ ≤ Cµ(X)1/s−1/p
∥∥ϕy | S1

p(X, d, µ)
∥∥.

Несколько сложнее доказывается утверждение, уточняющее результат п. 3.

Лемма 2.4 [4]. Пусть мера µ удовлетворяет условию удвоения и s-регуляр-
на, s < p <∞, а метрическое пространство (Y, ρ) регулярно. Тогда для всякого
отображения ϕ ∈ M1

p(X,Y ) существует эквивалентное ему непрерывное отобра-
жение ψ, для которого при всех x1, x2 ∈ X выполняется неравенство

ρ(ψ(x1), ψ(x2)) ≤ C[d(x1, x2)]
1−s/p〈ϕ〉p. (2.3)

Замечание. Поскольку M 1
p (X,Y ) ⊂M1

p(X,Y ), то для отображений клас-

са M 1
p (X,Y ) верны утверждения лемм 2.3 и 2.4. С другой стороны, на евкли-

довом шаре B ⊂ Rn согласно лемме 2.1 M 1
p (B,R) = M1

p (B, | · |,mn) = W 1
p (B).

Следовательно, показатели в леммах 2.3 и 2.4 точные, так как на шаре B они
совпадают с показателями классических соболевских теорем вложения.

Естественным образом определяются гёльдеровы классы отображений:
определенное почти всюду в X отображение ϕ : (X, d) → (Y, ρ) принадлежит

классу Mα
p (X,Y ), если

1) для всякого y ∈ Y функция ϕy(x) = ρ(ϕ(x), y) принадлежит функцио-
нальному пространству Mα

p (X, d, µ);

2) при всех y ∈ Y нормы всех функций ϕy ограничены, т. е.

∥∥ϕy | Sαp (X, d, µ)
∥∥ ≤ C0 <∞.

Как и в леммах 2.3 и 2.4, формальная переформулировка утверждений
для пространств функций M1

p (X, d, µ) в леммах 1.3 и 1.4 позволяет получить
теоремы вложения для отображений, принадлежащих гёльдеровым классам
Mα
p (X,Y ).
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Лемма 2.5 [4]. Пусть мера µ удовлетворяет условию удвоения и s-регуляр-
на, а метрическое пространство (Y, ρ) регулярно. Тогда

1) если 1 < αp < s, то включение

Mα
p (X,Y ) ⊂ Lq(X,Y )

имеет место при всех 1 ≤ q ≤ ps
s−αp ;

2) если s < αp <∞, то для всякого отображения ϕ ∈ Mα
p (X,Y ) существует

эквивалентное ему непрерывное отображение ψ, для которого при всех x1, x2 ∈
X выполняется неравенство

ρ(ψ(x1), ψ(x2)) ≤ C[d(x1, x2)]
α− s

p .

§ 3. Операторы композиции

Задача об описании классов отображений, сохраняющих при замене пере-
менной пространства Соболева L1

p(G), G ⊂ Rn, была сформулирована Ю. Г. Ре-
шетняком в 1968 г. Первые результаты, полученные С. К. Водопьяновым и
В. М. Гольдштейном [9, 10], способствовали дополнительному интересу к этой
задаче, поскольку оказалось, что соответствующие замены переменной связаны
с классами квазиконформных и квазиизометрических отображений.

Впоследствии менялись постановки задач, изучались классы отображений,
индуцирующих при замене переменной ограниченные операторы в весовых про-
странствах Соболева, в пространствах Бесова и в других классах функций,
определенных в областях евклидова пространства Rn. С. К. Водопьянов и его
ученики активно изучали замены переменной в пространствах Соболева на
группах Карно. В настоящее время тематика активно развивается и остается
актуальной. Работа С. К. Водопьянова и Н. А. Евсеева [11] содержит небольшой
обзор результатов, связанных с инвариантностью функциональных классов при
замене переменной.

Далее рассматриваются полные метрические пространства (X, d), (Y, ρ),
имеющие конечный диаметр, и конечные борелевские меры — µ с носителем
в множестве X и ν с носителем в множестве Y.

Нас интересуют свойства отображений метрических пространств ϕ : (X, d)
→ (Y, ρ), индуцирующих при замене переменной ограниченные операторы ком-
позиции в пространствах соболевского типа, т. е. операторы

ϕ∗ : S1
p(Y, ρ, ν)→ S1

q (X, d, µ),

действующие по правилу ϕ∗u = u ◦ ϕ.
Учитывая, с одной стороны, разнообразие возникающих в метрическом слу-

чае ситуаций, с другой стороны, ограниченность доступных в этом случае ме-
тодов доказательств и технических приемов, решение сформулированной зада-
чи в полном объеме в данный момент не представляется возможным. Даже
в евклидовом случае окончательное решение поставленной Ю. Г. Решетняком
проблемы было получено С. К. Водопьяновым спустя три десятилетия после
начала исследований по данной тематике [12].

Мы лишь рассмотрим различные постановки задачи и некоторые резуль-
таты, касающиеся операторов композиции в пространствах соболевского типа
M1
p .
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Из содержания § 1 следует, что структура функционального пространства
соболевского типа M1

p зависит от взаимосвязи метрики и меры. Поэтому и свой-
ства операторов композиции естественным образом зависят от свойств соответ-
ствующих метрик и мер. Мы не предполагаем изначально явной взаимосвязи
между метриками d и ρ, а также между мерами µ и ν, но нам понадобятся
некоторые соотношения, связывающие меру µ с метрикой d, а меру ν — с мет-
рикой ρ.

Кроме использованного ранее условия удвоения нам потребуется двусто-
ронняя оценка меры шара.

Метрическое пространство (X, d) будем называть s-однородным (s > 1),
если существует такая мера µ, что при 0 < r < diam(X) для всех шаров
B(x, r) ⊂ X выполняется оценка

L1r
s ≤ µ(B(x, r)) ≤ L2r

s, 0 < L1, L2 <∞. (3.1)

Поскольку
B(x, r) ⊂ B(x, r) ⊂ B(x, r + ε),

оценка (3.1) выполняется и для замкнутых шаров. Из неравенства (3.1) следует,
что мера µ удовлетворяет условию удвоения и является s-регулярной.

Далее, рассматривая s-однородное метрическое пространство, будем пред-
полагать, что для заданной на нем меры выполняется оценка (3.1). Для меры
в пространстве (X, d) будем использовать обозначение µ, а меру в пространстве
(Y, ρ) обозначим символом ν.

Взаимно однозначное отображение ϕ : (X, d) → (Y, ρ) будем называть ква-

зиизометрическим (квазиизометрией), если для всех x1, x2 ∈ X выполняется
неравенство

C1 d(x1, x2) ≤ ρ(ϕ(x1), ϕ(x2)) ≤ C2 d(x1, x2), 0 < C1, C2 <∞.
В работе [4] показано, что квазиизометрия ϕ полных s-однородных метриче-

ских пространств (X, d) и (Y, ρ) индуцирует по правилу ϕ∗u = u◦ϕ изоморфизм
пространств соболевского типа

ϕ∗ : S1
p(Y, ρ, ν)→ S1

p(X, d, µ)

при всех показателях p ∈ [1,∞).
При показателях суммируемости p, бо́льших «размерности» метрического

пространства, выполняется и обратное свойство: если s-однородные метриче-
ские пространства (X, d) и (Y, ρ) регулярны, p > s и отображение ϕ : (X, d) →
(Y, ρ) индуцирует при замене переменной изоморфизм пространств соболевско-
го типа

ϕ∗ : S1
p(Y, ρ, ν)→ S1

p(X, d, µ), ‖ϕ∗‖ <∞,
то существует такое квазиизометрическое отображение ψ, что ψ = ϕ почти
всюду [4].

Заметим, что s-однородное пространство относительно метрики d при α ∈
(0, 1] является s/α-однородным относительно метрики dα, а условия квазиизо-
метричности относительно метрик d, ρ и метрик dα, ρα с точностью до пересчета
констант эквивалентны. Поэтому условие квазиизометричности отображения ϕ
является достаточным для изоморфности оператора композиции

ϕ∗ : Sαp (Y, ρ, ν)→ Sαp (X, d, µ),

при всех p ∈ [1,∞), а при αp > s является необходимым [4].
Следующее утверждение является простым обобщением соответствующе-

го результата работы [4], в котором предполагалась изоморфность оператора
композиции.
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Лемма 3.1. Если отображение ϕ : X → Y индуцирует при замене пере-
менной ограниченный оператор

ϕ∗ : S1
p(Y, ρ, ν)→ S1

q (X, d, µ) (1 ≤ q ≤ p),

то отображение ϕ принадлежат классу M1
q(X,Y ).

Доказательство. Рассмотрим произвольную точку y ∈ Y, функцию fy(t)

= ρ(t, y) и функцию g(t) ≡ 1/2, ‖g | Lp(Y, ν)‖ = 2−1[ν(Y )]1/p = C0 < ∞. По-
скольку

|fy(t1)− fy(t2)| = |ρ(t1, y)− ρ(t2, y)| ≤ ρ(t1, t2) = ρ(t1, t2)(g(t1) + g(t2)),

то fy ∈ S1
p(Y, ρ, ν) и

∥∥fy | S1
p(X, d, µ)

∥∥ ≤ C0.
Поскольку оператор ϕ∗ ограничен, то функция ϕ∗fy принадлежит про-

странству S1
q (X, d, µ) и

∥∥ϕ∗fy | S1
q (X, d, µ)

∥∥ <∞. При этом

ϕy(x) = ρ(ϕ(x), y) = ϕ∗fy(x) ∈ S1
q (X, d, µ).

Имеем ϕy(x) ≤ diam(Y ) < ∞ и мера µ конечна. Поэтому ϕy ∈ Lq(X,µ) ∩
S1
q (X, d, µ), следовательно, ϕy ∈M1

q (X, d, µ). При этом

∥∥ϕy | S1
q (X, d, µ)

∥∥ ≤ ‖ϕ∗‖
∥∥fy | S1

p(X, d, µ)
∥∥ ≤ C0‖ϕ∗‖ <∞.

В силу произвольности выбора y это и означает, что отображение ϕ при-
надлежит классу M1

q(X,Y ). �

Пусть s-однородные метрические пространства (X, d) и (Y, ρ) регулярны и
s < q ≤ p <∞. Чтобы выяснить степень искажения метрики отображением ϕ :
(X, d)→ (Y, ρ), индуцирующим при замене переменной ограниченный оператор

ϕ∗ : S1
p(Y, ρ, ν)→ S1

q (X, d, µ),

нам понадобятся две оценки.

1. Пусть a ∈ Y , 0 < r < diam(Y ). Рассмотрим пробную функцию

ha,r(y) =

{ r−ρ(a,y)
r , если ρ(a, y) ≤ r,

0, если ρ(a, y) > r.

По построению ha,r(a) = 1 и ha,r(y) ≡ 0 вне шара B(a, r).
Покажем, что функция

ga,r(y) =

{ 1
r , если ρ(a, y) ≤ r,
0, если ρ(a, y) > r,

является допустимой для функции ha,r.

Пусть y1, y2 ∈ B(a, r), тогда

|ha,r(y1)− ha,r(y2)| =
1

r
|ρ(a, y1)− ρ(a, y2)|

≤ 1

r
ρ(y1, y2) ≤ ρ(y1, y2)(ga,r(y1)) + ga,r(y2)).

Если ρ(a, y1) ≤ r и ρ(a, y2) > r, то

|ha,r(y1)− ha,r(y2)| =
1

r
|r − ρ(a, y1)| ≤

1

r
ρ(y1, y2) ≤ ρ(y1, y2)(ga,r(y1)) + ga,r(y2)).
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Если ρ(a, y1) > r и ρ(a, y2) > r, то

|ha,r(y1)− ha,r(y2)| = 0.

Учитывая s-однородность пространства (Y, ρ), получаем

∥∥ha,r | S1
p(Y, ρ, ν)

∥∥ ≤ ‖ga,r | Lp(Y, ν)‖ =
1

r
[ν(B(a, r))]1/p ≤ C1r

s/p−1. (3.2)

2. Если q > s, непрерывная функция u принадлежит S1
q (X, d, µ) и |u(x1)−

u(x2)| ≥ 1, то согласно лемме 1.2
∥∥u | S1

q (X, d, µ)
∥∥ ≥ C2[d(x1, x2)]

s/q−1. (3.3)

Лемма 3.2. Пусть s-однородные метрические пространства (X, d) и (Y, ρ)
регулярны. Если s < q ≤ p < ∞ и отображение ϕ : (X, d) → (Y, ρ) индуцирует
при замене переменной ограниченный оператор композиции

ϕ∗ : S1
p(Y, ρ, ν)→ S1

q (X, d, µ), ‖ϕ∗‖ <∞,
то существует совпадающее почти всюду с ϕ такое гёльдерово отображение ψ,
что

ρ(ψ(x1), ψ(x2)) ≤ C0[d(x1, x2)]
γ , где γ =

p(q − s)
q(p− s) ≤ 1. (3.4)

Доказательство. Согласно лемме 3.1 отображение ϕ принадлежит
M1
q(X,Y ) и по лемме 2.4 существует непрерывное отображение ψ, совпадающее

с отображением ϕ почти всюду. Поскольку для всякой функции u ∈ S1
p(Y, ρ, ν)

функции u ◦ϕ и u ◦ψ совпадают почти всюду, т. е. принадлежат одному классу
эквивалентности, то отображение ψ по правилу ψ∗u = u ◦ ψ индуцирует огра-
ниченный оператор композиции ψ∗ = ϕ∗. При этом для всякой непрерывной
функции u ∈ S1

p(Y, ρ, ν) функция ψ∗u непрерывна.
Пусть x1, x2 ∈ X , ψ(x1) = a, ψ(x2) = b и ρ(a, b) = r > 0. Рассмотрим

функцию v = ha,r, принадлежащую пространству S1
p(Y, ρ, ν). Функция u = ψ∗v

принадлежит S1
q (X, d, µ) и непрерывна, при этом

u(x1) = v(ψ(x1)) = ha,r(a) = 1, u(x2) = v(ψ(x2)) = ha,r(b) = 0.

Используя оценки (3.2) и (3.3), получаем

C2[d(x1, x2)]
s/q−1 ≤

∥∥u | S1
q (X, d, µ)

∥∥ ≤ ‖ψ∗‖
∥∥ha,r | S1

p(Y, ρ, ν)
∥∥

≤ ‖ψ∗‖C1r
s/p−1 ≤ K2‖ψ∗‖[ρ(ψ(x1), ψ(x2)]

s/p−1.

Поскольку s/p− 1 < 0 и s/q − 1 < 0, для отображения ψ выполняется оценка

ρ(ψ(x1), ψ(x2) ≤ C0[d(x1, x2)]
γ . �

Следствие 3.3. Рассмотрим регулярные s-однородные метрические про-
странства (X, d) и (Y, ρ). Если s < p < ∞ и отображение ϕ : (X, d) → (Y, ρ)
индуцирует при замене переменной ограниченный оператор композиции

ϕ∗ : S1
p(Y, ρ, ν)→ S1

p(X, d, µ),

то существует совпадающее почти всюду с ϕ липшицево отображение ψ, обла-
дающее N -свойством Лузина.

Доказательство. Существование отображения ψ и его липшицевость яв-
ляются следствием леммы 3.2 при q = p.
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Поскольку метрические пространства s-однородны, меры шаров одинако-
вого радиуса B(x,R) ⊂ X и B(y,R) ⊂ Y сравнимы, в частности,

ν(B(y,R)) ≤ C1µ(B(x,R)), µ(B(x,Kr)) ≤ C2K
sµ(B(x, r)).

Рассмотрим произвольное открытое множество U ⊂ X. Для каждой точки

x ∈ U существует замкнутый шар Bx = B(x, rx) ⊂ U. Семейство таких шаров
B = {Bx} образует покрытие множества U и согласно лемме Витали о покрытии

существует такой счетный набор непересекающихся шаров B(xk, rk) ∈ B, что

U ⊂
⋃

k

B(xk, 5rk).

Пусть yk = ψ(xk). Для отображения ψ выполняется неравенство

ρ(ψ(x1), ψ(x2) ≤ C0[d(x1, x2)],

поэтому множество ψ(B(xk, 5rk)) принадлежит замкнутому шару B(yk, Rk), где
Rk = C05rk. Следовательно,

ν(ψ(U)) ≤ ν
(⋃

k

B(yk, Rk)
)
≤
∑

k

ν(B(yk, Rk)) ≤ C1

∑

k

µ(B(xk, Rk))

≤ C1C25
sCs0

∑

k

µ(B(xk, rk)) ≤ C3µ(U).

В силу регулярности меры µ для всякого множества нулевой меры E ⊂ X
и произвольного ε > 0 существует такое открытое множество U, что E ⊂ U
и µ(U) < ε. Очевидным следствием оценки искажения меры открытых мно-
жеств является равенство ν(ψ(E)) = 0, что и означает выполнение N -свойства
Лузина. �

Для отображений, индуцирующих ограниченные операторы композиции в
пространствах M1

p при показателях суммируемости, меньших «размерности»
метрического пространства, удается получить оценку меры прообраза шара.

Нам потребуется оценка нормы еще одной пробной функции Пусть a ∈ Y,
0 < 2r < diam(Y ). Рассмотрим функцию

Ha,r(y) =





1, если ρ(a, y) ≤ r,
2r−ρ(a,y)

r , если r ≤ ρ(a, y) ≤ 2r,

0, если ρ(a, y) > 2r.

Легко проверить, что функция

Ga,r(y) =

{ 1
r , если ρ(a, y) ≤ 2r,

0, если ρ(a, y) > 2r,

является допустимой для функции Ha,r.
Учитывая s-однородность пространства (Y, ρ), получаем

∥∥Ha,r |M1
p (Y, ρ, ν)

∥∥ ≤ ‖Ha,r | Lp(Y, ν)‖ + ‖Ga,r | Lp(Y, ν)‖

≤ [ν(B(a, 2r))]1/p +
1

r
[ν(B(a, 2r))]1/p ≤ C1[ν(B(a, r))]1/p−1/s. (3.5)
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Лемма 3.4. Пусть s-однородные метрические пространства (X, d) с мерой
µ и (Y, ρ) с мерой ν регулярны. Если 1 < q ≤ p < s и гомеоморфизм ϕ : (X, d)→
(Y, ρ) индуцирует при замене переменной ограниченный оператор композиции

ϕ∗ : M1
p (Y, ρ, ν)→M1

q (X, d, µ), ‖ϕ∗‖ <∞,

то при 2r < diamY для всякого шара B(a, r) ⊂ Y выполняется оценка

µ(ϕ−1(B(a, r))) ≤ K0[ν(B(a, r))]σ , где σ =
q(s− p)
p(s− q) < 1. (3.6)

Доказательство. Пусть 2r < diamY. Рассмотрим шар B(a, r) ⊂ Y и со-
ответствующую пробную функцию Ha,r. Поскольку отображение ϕ является го-
меоморфизмом, то v(x) = ϕ∗Ha,r(x) = Ha,r(ϕ(x)) = 1 на множестве ϕ−1(B(a, r)).

Согласно лемме 1.1 при 1 < q < s пространство M1
q (X, d, µ) непрерывно

вложено в пространство Лебега Lω(X,µ), где 1/ω = 1/q−1/s. Учитывая оценку
(3.5), получаем

[µ(ϕ−1(B(a, r)))]1/ω ≤ ‖v | Lω(X,µ)‖1/ω ≤ C2

∥∥ϕ∗Ha,r |M1
q (X, d, µ)

∥∥1/q

≤ C2‖ϕ∗‖
∥∥Ha,r |M1

p (Y, ρ, ν)
∥∥1/p ≤ C3[ν(B(a, r))]1/p−1/s.

Простой пересчет показателей приводит к оценке (3.6). �

Замечание. Поскольку диаметры множеств X и Y конечны, µ(X) < ∞
и ν(Y ) < ∞, то оценки лемм 3.2 и 3.4 представляют интерес для малых зна-
чений d(x1, x2) и малых шаров, так как при больших размерах они очевидно
выполняются.

Чтобы получить достаточные условия для оператора композиции, действу-
ющего из пространства S1

p(Y, ρ, ν) в пространство S1
q (X, d, µ), нам потребуются

некоторые простые конструкции из теории меры.
Рассмотрим полные метрические пространства (X, d) с мерой µ, (Y, ρ) с

мерой ν и отображение ϕ : (X, d) → (Y, ρ). Предположим, что отображение ϕ
является гомеоморфизмом и обладает N -свойством Лузина (если µ(E) = 0, то
ν(ϕ(E)) = 0). В этом случае мера ω, определяемая равенством ω(E) = ν(ϕ(E)),
абсолютно непрерывна относительно меры µ. Согласно теореме Радона — Ни-
кодима существует такая суммируемая по µ функция J, что

∫

E

J(x) dµ = ω(E) = ν(ϕ(E))

для всякого измеримого множества E ⊂ X.
Докажем подходящую для наших целей формулу замены переменной в ин-

теграле Лебега. Пусть неотрицательная функция u принадлежит L1(Y, ν). Для
измеримой функции h(x) = u(ϕ(x)) воспользуемся разложением по характери-
стическим функциям измеримых множеств — теорема 7 в п. 1.1.2 из [13]:

h(x) =

∞∑

k=1

1

k
χEk

(x).

Если y = ϕ(x), то y ∈ ϕ(Ek) тогда и только тогда, когда x ∈ Ek. Поэтому

∞∑

k=1

1

k
χϕ(Ek)(y) =

∞∑

k=1

1

k
χEk

(x) = h(x) = u(ϕ(x)) = u(y).
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Согласно теореме о монотонной сходимости

∫

X

u(ϕ(x))J(x) dµ =

∫

X

h(x)J(x) dµ =

∞∑

k=1

1

k

∫

X

χEk
(x)J(x) dµ

=

∞∑

k=1

1

k

∫

Ek

J(x) dµ =

∞∑

k=1

1

k
ν(ϕ(Ek)) =

∫

Y

∞∑

k=1

1

k
χϕ(Ek)(y) dν =

∫

Y

u(y) dν. (3.7)

С отображением ϕ свяжем две функции, характеризующие искажение мет-
рики и меры,

�(x) = sup
z∈X

ρ(ϕ(x), ϕ(z))

d(x, z)
, H(x) =

�(x)

(J(x))1/p
.

Теорема 3.5. Рассмотрим полные метрические пространства (X, d) с ме-
рой µ, (Y, ρ) с мерой ν и отображение ϕ : (X, d) → (Y, ρ). Если выполнены
следующие условия:

1) отображение ϕ является гомеоморфизмом и обладает N -свойством Лу-
зина;

2) функция H принадлежит Lσ(X,µ), где 1
σ = 1

q − 1
p ,

то при 1 ≤ q ≤ p отображение ϕ индуцирует по правилу ϕ∗u = u ◦ϕ ограничен-
ный оператор композиции

ϕ∗ : S1
p(Y, ρ, ν)→ S1

q (X, d, µ).

Доказательство. Если x, z ∈ X и x 6= z, то в силу гомеоморфности отоб-
ражения ϕ

�(x) ≥ ρ(ϕ(x), ϕ(z))

diamX
> 0.

Поэтому из второго условия следует, что J(x) > 0 почти всюду в X. Если A ⊂ X
и µ(A) > 0, то

ν(ϕ(A)) =

∫

A

J(x) dµ > 0.

Следовательно, гомеоморфизм ϕ обладает N−1-свойством Лузина (если ν(B) =
0, то µ(ϕ−1(B)) = 0).

Пусть u ∈ S1
p(Y, ρ, ν). Тогда существуют такое множество D ⊂ Y и такая

допустимая функция g ∈ Lp(Y, ν), что ν(D) = 0 и

|u(y1)− u(y2)| ≤ ρ(y1, y2)(g(y1) + g(y2))

для всех y1, y2 ∈ Y \D.
Пусть v(x) = (ϕ∗u)(x) = u(ϕ(x)), h(x) = g(ϕ(x)), E = ϕ−1(D), x1 = ϕ−1(y1),

x2 = ϕ−1(y2).
Поскольку отображение ϕ обладает N−1-свойством Лузина, то µ(E) = 0 и

для точек x1, x2 ∈ X \ E выполняется оценка

|v(x1)− v(x2)| = |u(ϕ(x1))− u(ϕ(x2))| ≤ ρ(ϕ(x1), ϕ(x2))[g(ϕ(x1)) + g(ϕ(x2))]

= d(x1, x2)
ρ(ϕ(x1), ϕ(x2))

d(x1, x2)
(h(x1)+h(x2)) ≤ d(x1, x2)(�(x1)h(x1)+�(x2)h(x2)).
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Таким образом, функция �(x)h(x) является допустимой для функции v(x). При
1 ≤ q < p, используя неравенство Гёльдера и формулу замены переменной (3.7),
оценим норму допустимой функции в пространстве Лебега Lq(X,µ):

∫

X

[�(x)h(x)]q dµ =

∫

X

[g(ϕ(x))J1/p(x)]q
(

�(x)

J1/p(x)

)q
dµ

≤
(∫

X

[g(ϕ(x))]pJ(x) dµ

)q/p (∫

X

Hσ(x) dµ

)(p−q)/p
≤ C0

(∫

Y

gp(y) dν

)q/p
<∞.

Это означает, что функция �(x)h(x) принадлежит Lq(X,µ), а функция

v = v ◦ u = ϕ∗u принадлежит пространству S1
q (X, d, µ) и ‖ϕ∗‖ ≤ C1/q

0 .
При q = p оценка получается еще проще, без использования неравенства

Гёльдера. �

Замечание. Простые достаточные условия в теореме 3.5 похожи на усло-
вия, использованные С. К. Водопьяновым и его учениками при изучении опера-
торов композиции в пространствах Соболева на группах Карно, к примеру, см.
[14, 15]. Основное отличие заключается в замене нормы дифференциала отобра-
жения на функцию �(x), что связано со спецификой определения допустимой
функции в пространствах M1

p (X, d, µ).
Поскольку ∫

X

J(x) dµ = ν(Y ) <∞,

то J(x) < ∞ почти всюду, а из принадлежности функции H пространству
Lσ(X,µ) следует, что и �(x) <∞ почти всюду.

Пусть при ε > 0 множество Eε состоит из всех точек x ∈ X, для которых
найдется такая точка z ∈ X, что d(x, z) ≥ ε и 2ρ(ϕ(x), ϕ(z)) ≥ d(x, z)�(x). При
x ∈ Eε

�(x) ≤ 2 diam(Y )

ε
<∞,

поэтому при любом фиксированном ε > 0 значения функции �(x) на множестве
Eε не влияют на сходимость соответствующего интеграла. Вопрос о сходимости
интеграла во втором условии зависит от локальных свойств отображения ϕ в
сколь угодно малой окрестности множества нулевой меры, на котором функция
�(x) может быть равна бесконечности.

Согласно следствию 3.3 на s-однородных пространствах при q = p > s
можно изначально предполагать, что отображение ϕ липшицево и обладает N -
свойством Лузина, а функция �(x) ограничена.

Наличие шкалы пространств Sαp позволяет рассматривать операторы ком-
позиции со значениями в гёльдеровых классах, т. е. операторы

ϕ∗ : S1
p(Y, ρ, ν)→ Sαq (X, d, µ). (3.8)

Практически дословно повторяя доказательство леммы 3.1, легко показать,
что отображение ϕ : X → Y, индуцирующее при замене переменной ограничен-
ный оператор (3.8), принадлежат классу Mα

q (X,Y ).
С точки зрения выполнения соответствующих теорем вложения оператор

композиции не может улучшить свойства сразу всего класса функций. Это
накладывает определенные ограничения на выбор показателей α и q. Пусть
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α ∈ (0, 1) и 1/τ = 1/p− (1 − α)/s. Согласно лемме 1.4 при q ≤ τ пространство
M1
p (X, d, µ) вложено в пространство Mα

q (X, d, µ). Заметим, что при p > s будет
τ > s/α, поэтому существуют такие значения q, что s/α < q ≤ τ.

Доказательство следующего утверждения вполне аналогично доказатель-
ству леммы 3.2.

Лемма 3.6. Пусть s-однородные метрические пространства (X, d) и (Y, ρ)
регулярны. Если s < p < ∞, s/α < q ≤ τ и отображение ϕ : (X, d) → (Y, ρ)
индуцирует при замене переменной ограниченный оператор композиции

ϕ∗ : S1
p(Y, ρ, ν)→ Sαq (X, d, µ), ‖ϕ∗‖ <∞,

то существует совпадающее почти всюду с ϕ такое гёльдерово отображение ψ,
что

ρ(ψ(x1), ψ(x2)) ≤ C0[d(x1, x2)]
λ, где λ =

p(αq − s)
q(p− s) ≤ 1. (3.9)

Доказательство. Поскольку ϕ принадлежит классу Mα
q (X,Y ) и αq > s,

согласно лемме 2.5 существует эквивалентное ϕ непрерывное отображение ψ.
При этом оператор композиции ψ∗ = ϕ∗.

Пусть x1, x2 ∈ X,ψ(x1) = a, ψ(x2) = b и ρ(a, b) = r > 0. Рассмотрим функ-
цию v = ha,r, принадлежащую пространству S1

p(Y, ρ, ν). Функция u = ψ∗v при-

надлежит S1
q (X, d, µ) и непрерывна, при этом

u(x1) = v(ψ(x1)) = ha,r(a) = 1, u(x2) = v(ψ(x2)) = ha,r(b) = 0.

Поскольку αq > s, непрерывная функция u принадлежит Sαq (X, d, µ) и
|u(x1)− u(x2)| ≥ 1, то согласно лемме 1.3

∥∥u | Sαq (X, d, µ)
∥∥ ≥ C2[d(x1, x2)]

s/q−α. (3.10)

Используя оценки (3.2) и (3.10), получаем

C2[d(x1, x2)]
s/q−α ≤

∥∥u | Sαq (X, d, µ)
∥∥ ≤ ‖ψ∗‖

∥∥ha,r | S1
p(Y, ρ, ν)

∥∥

≤ ‖ψ∗‖C1r
s/p−1 ≤ K2‖ψ∗‖[ρ(ψ(x1), ψ(x2)]

s/p−1.

Поскольку s/p−1 < 0 и s/q−α < 0, то для отображения ψ выполняется оценка

ρ(ψ(x1), ψ(x2) ≤ C0[d(x1, x2)]
λ.

Учитывая неравенство q ≤ τ легко проверить, что λ ≤ 1. �

Заметим, что при q = τ будет λ = 1, т. е. отображение ϕ липшицево.

Если отображение ϕ : (X, d) → (Y, ρ) индуцирует ограниченный оператор
композиции

ϕ∗ : S1
p(Y, ρ, ν)→ S1

ω(X, d, µ), s < ω ≤ p,

то по лемме 3.2 показатель гёльдеровости γ равен p(ω−s)
ω(p−s) .

Согласно лемме 1.4 пространство M1
ω(X, d, µ) вложено в Mα

q (X, d, µ), если
1/q = 1/ω − (1 − α)/s. Следовательно, можно рассматривать оператор ϕ∗ как
оператор композиции, действующий из пространства S1

p(Y, ρ, ν) в пространство
Sαq (X, d, µ).
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Выражая ω через q и подставляя в равенство для показателя γ, получаем
то же самое значение, что и в лемме 3.6:

γ =
p(αq − s)
q(p− s) .

В работе установлены лишь некоторые свойства отображений, индуцирую-
щих операторы композиции в пространствах соболевского типа. Помимо рас-
смотренных постановок задачи на метрических пространствах возможны и дру-
гие ситуации, к примеру, случай, когда меры, определенные в пространствах
(X, d) и (Y, ρ), имеют различные порядки регулярности. Для более полного
рассмотрения вопроса требуются дополнительные исследования и новые подхо-
ды к изучению свойств функций и отображений, определенных на метрических
пространствах с мерой.

ЛИТЕРАТУРА

1. Hajłasz P. Sobolev spaces on an arbitrary metric spaces // Potential Analysis. 1996. V. 5,
N 4. P. 403–415.

2. Романов А. С. О следах функций, принадлежащих обобщенным классам соболевского
типа // Сиб. мат. журн.. 2007. Т. 48, № 4. С. 848–866.

3. Hajłasz P., Martio O. Traces of Sobolev functions on fractal type sets and characterization of
extension domains // J. Funct. Anal.. 1997. V. 143. P. 221–246.

4. Романов А. С. Отображения метрических пространств, связанные с функциональными
классами соболевского типа // Сиб. мат. журн.. 2023. Т. 64, № 4. С. 794–814.

5. Романов А. С. О непрерывности функций соболевского типа на однородных метрических
пространствах // Сиб. электрон. мат. изв.. 2022. Т. 19, № 2. С. 460–483.

6. Решетняк Ю. Г. Соболевские классы функций со значениями в метрическом простран-
стве // Сиб. мат. журн.. 1997. Т. 38, № 3. С. 657–675.

7. Korevaar N. J., Schoen R. M. Sobolev spaces and harmonic maps for metric space targets //
Comm. Anal. Geom.. 1993. V. 1, N 4. P. 561–659.

8. Решетняк Ю. Г. Соболевские классы функций со значениями в метрическом простран-
стве. II // Сиб. мат. журн.. 2004. Т. 45, № 4. С. 855–870.

9. Водопьянов С. К., Гольдштейн В. М. Структурные изоморфизмы пространств W 1
n и

квазиконформные отображения // Сиб. мат. журн.. 1975. Т. 16, № 2. С. 224–246.
10. Водопьянов С. К., Гольдштейн В. М. Функциональные характеристики квазиизометри-

ческих отображений // Сиб. мат. журн.. 1976. Т. 17, № 4. С. 768–773.
11. Водопьянов С. К., Евсеев Н. А. Изоморфизмы соболевских пространств на группах Кар-

но и квазиизометрические отображения // Сиб. мат. журн.. 2014. Т. 55, № 5. С. 1001–1039.
12. Vodop’yanov S. K. Composition operators on Sobolev spaces // Contemp. Math.. 2005. V. 382.

P. 327–342.

13. Evans L. C., Gariepy R. F. Measure theory and fine properties of functions. New York: CRC
Press, 1992.

14. Водопьянов С. К., Ухлов А. Д. Пространства Cоболева и (P,Q)-квазиконформные отоб-
ражения групп Карно // Сиб. мат. журн.. 1998. Т. 39, № 4. С. 776–795.

15. Водопьянов С. К., Евсеев Н. А. Функциональные и аналитические свойства одного класса
отображений квазиконформного анализа на группах Карно // Сиб. мат. журн.. 2022.
Т. 63, № 2. С. 283–315.

Поступила в редакцию 7 февраля 2025 г.

После доработки 20 августа 2025 г.

Принята к публикации 27 августа 2025 г.

Романов Александр Сергеевич (ORCID 0000-0001-7906-3933)
Институт математики им. С. Л. Соболева СО РАН,
пр. Академика Коптюга, 4, Новосибирск 630090
asrom@math.nsc.ru


