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МНОЖЕСТВЕННОСТЬ АСИМПТОТИЧЕСКИХ

СЕРИЙ СОБСТВЕННЫХ ЧИСЕЛ ТРЕТЬЕЙ

КРАЕВОЙ ЗАДАЧИ С БОЛЬШИМ

ОТРИЦАТЕЛЬНЫМ КОЭФФИЦИЕНТОМ РОБЭНА

С. А. Назаров

Аннотация. Изучается асимптотика собственных чисел и функции спектральной
задачи для оператора Лапласа в плоской области с третьим краевым условием
на границе, причем (переменный) коэффициент Робэна в нем отрицательный и
большой. Приведены известные и новые асимптотические формулы для собствен-
ных чисел, как отрицательных, так и положительных, и для собственных функ-

ций, выявляющие разнообразные способы их локализации. Помимо формального
асимптотического анализа и краткого обзора предшествующих результатов изложе-
на процедура обоснования асимптотики в не изученном ранее случае неизменного
коэффициента Робэна и глобального вырожденного максимума кривизны границы,
реализующегося в нескольких точках.
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Посвящаю статью Семёну Самсоновичу Кутателадзе
с благодарностью за подарок1) в виде слова «околовершинная».

1. Постановки задач. Пусть � — область на плоскости, ограниченная
простым замкнутым гладким (класса C∞, см. разд. 10, 1◦) контуром � , в d-
окрестности Vd которого введем систему криволинейных координат (n, s), где
d > 0, s — длина дуги на контуре, измеряемая против часовой стрелки, а n —
ориентированное расстояние до него, причем n < 0 на � ∩ Vd. Собственные
числа краевой задачи

−�uε(x) = λεuε(x), x = (x1, x2) ∈ �, (1)

∂nu
ε(x)− ε−1a(s)uε(x) = 0, x ∈ � = ∂�, (2)

или соответствующего интегрального тождества [1]

(∇uε,∇ψε)� − ε−1(auε, ψε)� = λε(uε, ψε)� ∀ψε ∈ H1(�) (3)

Работа выполнена при финансовой поддержке Министерства науки и высшего образова-
ния Российской Федерации (соглашение № 075-15-2025-344 от 29.04.2025 в Санкт-Петербургс-
ком международном математическом институте имени Леонарда Эйлера, ПОМИ РАН).

1)Семён Самсонович подсказал, как исправить первоначально корявое название статьи
[29].
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образуют монотонную неограниченную последовательность

λε1 < λε2 ≤ λε3 ≤ · · · ≤ λεp ≤ · · · → +∞. (4)

Здесь ε ∈ (0, 1] — малый параметр, ∇ = grad, � — оператор Лапласа, ∂n —
производная вдоль внешней нормали, (·, ·)� и (·, ·)� — скалярные произведе-
ния в пространствах Лебега L2(�) и L2(� ), H1(�) — пространство Соболева, а
a ∈ C∞(� ) — положительный (вообще говоря, переменный) коэффициент, часто
называемый коэффициентом Робэна (после добавления знака минус — на это
далее не обращаем внимания). Собственные функции uεp ∈ C∞(�) сформули-
рованной задачи подчиним условиям ортогональности и нормировки

(
uεp, u

ε
q

)
�

= δp,q, p, q ∈ N, (5)

где δp,q — символ Кронекера, а N = {1, 2, 3, . . .} — натуральный ряд.
Основная цель работы — указать асимптотику собственных пар {число;

функция} задачи (1), (2) при стремлении малого параметра ε > 0 к нулю.
Асимптотическое строение ее собственных чисел из нижнего диапазона спек-
тра давно привлекает внимание математиков и далее при рассмотрении разных
ситуаций будут перечислены публикации с основными результатами в этом на-
правлении, однако пристальное внимание уделяется двум вопросам: во-первых,
обоснованию асимптотических формул в так называемом «вырожденном» слу-
чае (разд. 7–9) и, во-вторых, выявлению множественности серий собственных
чисел с «устойчивыми асимптотиками» (разд. 6). Схема обоснования асимп-
тотики, отличающаяся от опубликованных ранее для задач с большим отрица-
тельным коэффициентом Робэна и легко приспосабливаемая для других рас-
смотренных в работе случаев, — основное техническое нововведение, так как
сами алгоритмы построения асимптотики известны с прошлого века и доста-
точно нетрудоемки.

Сформировать асимптотику положительных членов последовательности (4)
совсем несложно (разд. 5), однако билинейная форма из левой части интеграль-
ного тождества (3) не является положительной, а значит, в спектре имеются и
отрицательные собственные числа — именно им и отвечают собственные функ-
ции, которым характерны различные типы локализации. Приведем предвари-
тельные и краткие пояснения.

Оператор Лапласа в криволинейных координатах принимает вид

� = J (n, s)−1∂nJ (n, s)∂n + J (n, s)−1∂sJ (n, s)−1∂s, (6)

где J (n, s) = 1 + nκ(s) — якобиан, а κ — кривизна контура � , вообще говоря,
знакопеременная, т. е. отрицательная на вогнутых дугах. Именно поведение
функций a и κ определяет асимптотическое строение собственных чисел и раз-
номасшабные эффекты локализации. На множестве �∩Vd вводится растянутая
нормальная координата n 7→ ζ = −ε−1n ≥ 0, придающая дифференциальному
оператору (6) расщепление

� = ε−2∂2
ζ − ε−1κ(s)∂ζ + ∂2

s − ζκ(s)2∂ζ + . . . . (7)

Здесь и далее многоточие заменяет младшие асимптотические члены, которыми
можно пренебречь при формальном асимптотическом анализе. Кроме того,
замена λε 7→ ε−2µ спектрального параметра, «заморозка» коэффициентов в
какой-либо точке s0 ∈ � и переход к ε = 0 преобразуют соотношения (1), (2) в
краевую задачу для обыкновенного дифференциального уравнения

−∂2
ζw(ζ) = µw(ζ), ζ ∈ R+ = (0,+∞), −∂ζw(0) = a(s0)w(0), (8)
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у которой имеется собственная пара

{µ0 = −a(s0)2;w0(ζ) = e−a(s0)ζ} ∈ R− ×H1(R+), (9)

характеризующаяся экспоненциальной скоростью затухания функции при ζ →
+∞ или при удалении от границы вдоль внутренней нормали. Вместе с тем
при вариации точки s0 величина µ0 может изменяться, и это обстоятельство
вынуждает каким-либо способом произвести еще одно растяжение координаты

s 7→ η = ε−θ(s− s0) ∈ R (10)

с сопутствующим выбором показателя θ > 0, обеспечивающим разные темпы
концентрации собственных функций uεk около точки s0 (разд. 4, 5 и 7). При
этом, как окажется, в качестве s0 выступают точки экстремумов коэффициента
Робэна a и кривизны κ, а наличие нескольких таких точек вызывает множе-
ственность асимптотических серий отрицательных собственных чисел {λεmε

k
}k∈N

в последовательности (4) в дополнение к уже упоминавшейся серии положи-
тельных собственных чисел, не провоцирующих эффект локализации.

Величина показателя θ зависит от многих обстоятельств и, в частности, по-
стоянство коэффициента a(s) при s ∈ � вовсе не обеспечивает локализацию соб-
ственных функций около всего контура (разд. 2, 3). Показатель определяется
и качеством экстремума, а в разд. 7–9 подробно исследуется случай вырожден-
ных экстремумов, ранее не рассмотренный в литературе. Наконец, в разд. 10
перечислены легкодоступные обобщения и оставленные открытыми вопросы.

2. Локализация около всей границы. Пусть сначала � — круг и

a(s) = a0, причем, разумеется, κ(s) = κ0 > 0. (11)

Кроме того, n = r и s = Rϕ — полярные координаты и � = {x : |x| = R} —
окружность радиусом R = κ−1

0 > 0. Подставим в задачу (1), (2) расщепление
(7) и асимптотические анзацы

λε = ε−2µ0 + ε−1µ′ + µ′′ + λ̃ ε, (12)

uε(x) = χ�(x)(v(s)(w0(ζ) + εw′(ζ)) + w′′(ζ, s)) + ũ ε(x), (13)

где χ� ∈ C∞c (� ∩ Vd) — срезающая функция, зависящая только от переменной
n,

χ� = 1 при n ≥ −d/2 и χ� = 0 при n ≤ −d. (14)

В результате сбора множителей при одинаковых степенях малого параметра
ε получим задачу (8) для главных асимптотических членов и следующую для
первых поправок:

−∂2
ζw
′(ζ)− µ0w

′(ζ) = µ′w0(ζ) − κ0∂ζw0(ζ), ζ ∈ R+, −∂ζw′(0) = a0w
′(0). (15)

Поскольку решение определено с точностью до слагаемого cw0, можно считать,
что

µ′ = −κ0a0 и w′(ζ) = 0. (16)

Следовательно, задача для вторых поправок выглядит так:

−∂2
ζw
′′(ζ, s) − µ0w

′′(ζ, s)

= f(ζ, s) := µ′′w0(ζ)v(s) + w0(ζ)∂
2
sv(s)− κ2

0ζ∂ζw0(ζ)v(s), ζ ∈ R+,

−∂ζw′′(0) = a0w
′′(0).

(17)
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Условием ее разрешимости (взаимная ортогональность функций f и w0 в про-
странстве L2(R+)) служит простейшее обыкновенное дифференциальное урав-
нение

−∂2
sv(s) = σv(s), s ∈ � ,

которое порождает собственные пары {σp; vp}, p ∈ N, заданные формулами

{0; 2−1/2} при p = 1,

{(2πκ0q)
2; sin(2πκ0s)}, {(2πκ0q)

2; cos(2πκ0s)} при p = 2q, 2q + 1, q ∈ N.
Вторая поправка в представлении (12) собственного числа λεp имеет вид

µ′′p = σp − κ2
0/2 (первые два асимптотических члена не зависят от p; см. пер-

вые равенства в списках (9) и (16)), а анзац (13) для собственной функции uεp
начинается с произведения cpvp(s)w0(ζ), за которым следует нуль и решение
ставшей разрешимой задачи (17).

Алгоритм построения асимптотики мало чем отличается от классического
метода Вишика — Люстерника [2–4]. Обоснование асимптотики также приво-
дится при помощи известных приемов (см., например, [5, 6]), причем благода-
ря симметрии круга � двукратные собственные числа можно расцепить искус-
ственными краевыми условиями на диаметре круга. Собственные функции uεp,

нормированные2) равенством (5), можно зафиксировать так, чтобы выполня-
лись оценки
∣∣λ̃ εp
∣∣ ≤ cpε1/2 и ε

∥∥uεp − uεp0;L2(�)
∥∥+

∥∥uεp − uεp0;L2(�)
∥∥ ≤ Cpε1/2 при ε ∈ (0, εp],

(18)
где εp и cp, Cp — положительные величины, зависящие от номера p ∈ N; кроме
того,

uεp0(x) = (4a0ε)
−1/2κ

1/2
0 χ�(x)vp(s)w0(−ε−1n).

3. Локализация около точки. Первый случай. Пусть теперь

a(s) = a0, κ(s) = κ0−K(s−s0)2+O(|s−s0|3), K > 0 и κ(s) < κ0 при s ∈ � \{s0}.
(19)

Иными словами, коэффициент Робэна постоянен, а кривизна имеет строгий
(т. е. невырожденный) глобальный максимум в одной точке s0 ∈ � . Тогда, как
известно из множества публикаций (см. ссылки ниже, но также далее разд. 7
и, в частности, формулу (42)), следует ввести растянутую координату (10) с
показателем θ = 1/4 и принять такие асимптотические анзацы для собственных
пар задачи (1), (2):

λε = ε−2µ0 + ε−1µ′ + ε−1/2µ′′ + λ̃ ε, (20)

uε(x) = χ�(x)χ� (x)(v(η)(w0(ζ) + εw′(ζ)) + ε3/2w′′(ζ, η)) + ũ ε(x). (21)

Здесь помимо срезки (14) присутствует срезающая функция χ� ∈ C∞(� ), рав-
ная единице в фиксированной окрестности точки s0 и нулю на расстоянии от
нее. Числа µ0, µ

′ и функции w0, w
′ определены прежними формулами (9), (16),

однако при этом из-за переменности кривизны в дифференциальном уравнении
осталась невязка

ε−1a0(κ0 − κ(s))w0(ζ) = ε−1a0(K(s− s0)2 +O(|s− s0|3))
= ε−1/2a0Kη

2 +O(ε−1/4|η|3). (22)

2)В формальных конструкциях на нормировку собственных функций внимание не обра-
щаем и потому не пишем номер собственной пары в асимптотических анзацах.
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Сбор множителей при ε−1/2 в формулах ε3/2∂2
nw
′′(ζ) = ε−1/2∂2

ζw
′′(ζ), ∂2

sv(η) =

ε−1/2∂2
ηv(η) и соотношении (22) приводит к такой задаче для вторых поправоч-

ных членов в анзацах (20) и (21):

−∂2
ζw
′′(ζ, η) − µ0w

′′(ζ, η) = ((µ′′ − a0Kη
2)v(η) + ∂2

ηv(η))w0(ζ), ζ ∈ R+, (23)

−∂ζw′′(0, η) = a0w
′′(0, η).

Условие разрешимости задачи (23) сводится к уравнению гармонического ос-
циллятора [7]

−∂2
ηV (η) +A2η2V (η) = MV (η), η ∈ R, (24)

с дискретным спектром {Mk = A(2k − 1)}k∈N и параметром

A =
√
a0K. (25)

Соответствующие собственные функции Vk, нормированные в L2(R), затухают

на бесконечности как O(|η|k−1e−Aη
2/2), — громоздкие выражения для них не

понадобятся (см., например, [7]).
Итак, вторые поправки в асимптотическом анзаце (20) принимают вид

µ′′k = (2k − 1)
√
a0K, k ∈ N,

а множителями vk в анзаце (21) служат упомянутые собственные функции Vk
обыкновенного дифференциального уравнения (24).

На этом построение формальных асимптотик заканчивается. Зависимость
похожих асимптотических конструкций от кривизны и возникновение уравне-
ния гармонического осциллятора были ранее3) замечены в публикации [8] для
смешанной краевой задачи в тонкой области со скошенной боковой поверхно-
стью. Сама задача (1), (2) изучалась во многих статьях (см. [9–16] и др.), где по-
очередно были получены результаты разного свойства: оценка снизу, главный,
первый и второй поправочные члены для первого собственного числа, оценки
и старшие члены асимптотики всех собственных чисел из низкочастотного диа-
пазона спектра и, наконец, полные асимптотические разложения спектральных
пар. Несколько более общая чем (19) ситуация будет обсуждаться и далее, но
здесь сформируем известный результат именно для нее: при любом p ∈ N най-
дутся такие положительные εp и cp, Cp, что для остатков в асимптотических
анзацах (11) и (12) верны оценки

∣∣λ̃ εp
∣∣ ≤ cpε−1/4,

ε
∥∥∇xuεp −∇xuεp0;L2(�)

∥∥+
∥∥uεp − uεp0;L2(�)

∥∥ ≤ Cpε1/4 при ε ∈ (0, εp],
(26)

где при учете нормировки всех собственных функций главный асимптотический
член приобретает вид

uεp0(x) = ε−5/8(2a0)
−1/2χ� (s)χ�(x)vp(ε

−1/4(s− s0))w0(−ε−1n).

4. Локализация около точки. Второй случай. Пусть теперь кон-
тур и его кривизна любые, но коэффициент a имеет единственный глобальный
строгий максимум в точке s0 ∈ � , т. е.

a(s) = a0 −K(s− s0)2 +O(|s− s0|3), K > 0 и a(s) < a0 при s ∈ � \ {s0}. (27)

3)Оставляем в стороне многочисленные исследования задач акустики и дифракции.
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После замены (10) с показателем θ = 1/2 примем асимптотические анзацы для
собственных пар

λε = ε−2µ0 + ε−1µ′ + λ̃ ε, (28)

uε(x) = χ�(x)χ� (x)(v(η)w0(ζ, s) + εw′(ζ, η))) + ũ ε(x), (29)

где µ0 = −a2
0, но в сравнении с разд. 3 показатель экспоненциальной функции

w0(ζ, s) = e−a(s)ζ (30)

зависит от переменной s. Следовательно,

− ∂2
ζw

0(ζ, s) + a2
0w

0(ζ, s) = e−a(s)ζ
(
a2
0 − a(s)2

)

= e−a(s)ζ(2a0K(s− s0)2 +O(|s− s0|3)) = εe−a(s)ζ(2a0Kη
2 +O(ε1/2|η|3)). (31)

Итак, собираем члены порядка ε−1, возникшие в результате подстановки анза-
цев (28) и (29) в уравнение (1), и выводим похожую на (23) задачу для первых
поправочных членов

−∂2
ζw
′(ζ, η) − µ0w

′(ζ, η) =
(
(µ′ − 2a0Kη

2)v(η) + ∂2
ηv(η)

)
w0(ζ), ζ ∈ R+,

−∂ζw′(0, η) = a0w
′(0, η).

(32)

Условие ее разрешимости превращается в уравнение гармонического осцилля-
тора (24) с отличающимся от (25) параметром

A =
√

2a0K. (33)

В результате основной поправкой в асимптотическом анзаце (28) служит соб-
ственное число

µ′k = (2k − 1)
√

2a0K, k ∈ N,
обыкновенного дифференциального уравнения (24), а множителем vk в анзаце
(29) — соответствующая собственная функция Vk.

Представленная выше формальная асимптотика решений задачи (1), (2) в
ситуации (27) была выписана в статье [17] среди прочих, однако большое ко-
личество работ (см. [18–23] и др.) содержит вполне аналогичные подходы и
относится к родственным задачам Дирихле для оператора Лапласа в тонких
областях переменного сечения. В этих работах, в частности, помимо главных
членов построены полные асимптотические разложения собственных пар и вы-
ведены асимптотически точные оценки погрешностей.

Для остатков в представлениях (28) и (29) выполнены неравенства
∣∣λ̃ εp
∣∣ ≤ cpε−1/4,

ε
∥∥uεp − uεp0;L2(�)

∥∥+
∥∥uεp − uεp0;L2(�)

∥∥ ≤ Cpε1/2 при ε ∈ (0, εp],
(34)

где положительные величины εp и cp, Cp зависят от номера p ∈ N и, кроме того,

uεp0(x) = ε−3/4(2a0)
−1/2χ� (s)χ�(x)vp(ε

−1/2(s− s0))w0(−ε−1n, s).

Отметим, что поправочные слагаемые из анзацев (29) и (21), (13) не вклю-
чены в финальные оценки точности (36) и (26), (18) потому, что они (слагаемые)
не определены полностью: например, остался произвол cw0 в выборе решений
w′ и w′′ обеих задач (15) и (17), который удается устранить лишь путем постро-
ения младших асимптотических членов (см. разд. 10, 3◦). Соответствующие
итерационные процессы известны в полной мере (см. [4, 24, 25] и др.).
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5. Положительные собственные числа. Алгоритм построения асимп-
тотики собственных чисел задачи (1), (2) на положительной полуоси R+ элемен-
тарен, причем единственными препятствиями в интерпретации возмущения как
регулярного (ср. монографию [5]) — малый параметр и «неправильный» знак
(см. статью [3]) при старшей производной в преобразованном краевом условии
(2)

uε(x) = εa(s)−1∂nu
ε(x), x ∈ � . (35)

Приведем краткие пояснения для κℓ-кратного собственного числа βℓ задачи
Дирихле

−�v(x) = βv(x), x ∈ �, v(x) = 0, x ∈ � ;

иными словами, считаем, что βℓ−1 < βℓ = · · · = βℓ+κℓ−1 < βℓ+κℓ
. Соответствую-

щие собственные функции vℓ, . . . , vℓ+κℓ−1 подчиним условиям ортогональности
и нормировки вида (5) в пространстве L2(�).

В качестве асимптотических представлений собственных пар
{
λεNε

p
;uεNε

p

}

задачи (1), (2) в количестве κℓ штук (т. е. p = ℓ, . . . , ℓ + κℓ − 1) возьмем выра-
жения

λεNε
p

= βℓ + εβ′ℓp + λ̃ εNε
p
, (36)

uεNε
p
(x) =

ℓ+κn−1∑

q=ℓ

bpqvq(x) + εv′ℓp(x) + ũ εNε
p
(x). (37)

Здесь bℓp =
(
bℓpℓ , . . . , b

ℓp
ℓ+κℓ−1

)
— ортонормированные в евклидовом пространстве

Rκn столбцы и {β′ℓp; v′ℓp} — пары, подлежащие определению. Причины появле-
ния «странного» индекса Nε

p поясняются в очередном разделе.
Подставив анзацы (36) и (37) в задачу (1), (35), видим, что члены порядка

единицы взаимно уничтожаются, а коэффициенты при ε формируют следую-
щую задачу Дирихле:

−�v′ℓp(x) − βℓv′ℓp(x) = β′ℓp

ℓ+κℓ−1∑

q=ℓ

bpqvq(x), x ∈ �,

v′ℓp(x) =
1

a(s)

ℓ+κℓ−1∑

q=ℓ

bpq
∂vq
∂n

(x), x ∈ � .
(38)

Посредством формулы Грина превратим условия разрешимости задачи (38) в
количестве κℓ штук в систему алгебраических уравнений

M ℓbq = β′ℓpb
q,

где M ℓ — симметричная (κℓ × κℓ)-матрица с элементами

M ℓ
pq =

∫

�

1

a(s)

∂vp
∂n

(x)
∂vq
∂n

(x) ds, p, q = ℓ, . . . , ℓ+ κℓ − 1.

Матрица M ℓ положительно определенная, так как a > 0 и следы нормаль-
ных производных собственных функций не могут стать линейно зависимыми
на контуре � по теореме о единственности продолжения (см., например, [26]).
Собственные числа названной матрицы

β′ℓ+κℓ−1 ≥ · · · ≥ β′ℓ > 0 (39)
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Рис. 1. Эллипс («огурец»), «яйцо» и «боб» (a–c). Глобальные максимумы кри-
визны указаны значком •, а локальные — значком ◦, причем отрицательный —
дополнительной стрелкой. Асимметричное кольцо («номерок в гардеробе») (d) и
перфорированный круг («телефонный диск») (e).

конкретизируют поправочные члены асимптотических анзацев (36), а для фи-

гурирующих в них остатков можно получить оценки
∣∣λ̃ εNε

p

∣∣ ≤ cℓε2. Осложнения

с оправданием асимптотик собственных функций поясняются далее в замеча-
нии 1.

6. О множественности асимптотических серий. В любой из ситуа-
ций (19), (27) или (11) предельный переход ε→ +0 сопровождается насыщени-
ем отрицательной полуоси R− собственными числами (4). При фиксированном
номере k ∈ N член λεk этой последовательности уходит на отрицательную бес-
конечность со скоростью O(ε−2). Таким образом, номера Nε

p обнаруженных
в разд. 4 положительных чисел λεNε

p
неограниченно возрастают при ε → +0.

Вместе с тем при увеличении параметра ε собственные числа согласно фор-
мулам (36) и (39) смещаются вверх от их предельных значений βp, а значит,
никак не могут осуществить упомянутое насыщение, происходящее, как будет
пояснено на примере из разд. 10, 2◦, из-за пересечения начала координат λ = 0
собственными числами, которым отвечают быстроосциллирующие собственные
функции.

Асимптотические конструкции из разд. 3 или 4 приспособлены не толь-
ко к глобальным, но и к локальным максимумам коэффициента Робэна a или
кривизны κ. Если в первом случае максимумы обусловлены графиком положи-
тельной функции � ∋ s 7→ a(s) и потому сами остаются положительными, то
у функции � ∋ s 7→ κ(s) помимо положительных (рис. 1, a и b) могут появить-
ся и отрицательные (локальные) максимумы кривизны на вогнутых участках
границы (рис. 1, c). Каждый из локальных максимумов по прежним формулам
порождает серию

{
λεNε

k
}k∈N собственных чисел с устойчивыми асимптотиками,

причем, как и в разд. 5, их номера Nε
k приобретают рост при ε→ +0.

Разумеется, может случиться, что обе функции a и κ имеют строгие гло-
бальные максимумы на контуре � . Сравнивая анзацы (20) и (28), а также оцен-
ки (26) и (34), видим, что основной (самой нижней) асимптотической серией
собственных чисел задачи (1), (2) всегда служит построенная в разд. 4. Именно
поэтому в требование (19) включено постоянство коэффициента Робэна a.

Задача (1), (2) на круге допускает разделение переменных и поэтому, как и
в разд. 10, 2◦, появляется лишь одна серия отрицательных собственных чисел с
устойчивой асимптотикой. Впрочем, отказ от односвязности области� (рис. 1, d
и e) приводит к образованию нескольких асимптотических серий. Формулы (12)
и (16) показывают, что собственные числа, отвечающие внутренним окружно-
стям, имеющим меньшие радиусы, расположены выше тех, которые построены
в разд. 2, т. е. их номера растут при ε→ +0.

Если глобальный максимум (непостоянных) функций κ или a реализуется
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в нескольких точках на контуре � (для эллипса на рис. 1, a, их две), то соб-
ственные числа из нескольких первых серий могут приобрести пару одинако-
вых асимптотических членов и тем самым серии перемешиваются (ср. разд. 7).
Это обстоятельство не сказывается на строении асимптотических формул, так
как носители главных частей собственных функций удалены один от другого (в
противоположность анализу из разд. 5). Вместе с тем кратность собственного
числа несколько влияет на процедуру обоснования асимптотики.

Замечание 1. Асимптотические серии собственных чисел из низкочастот-
ного диапазона спектра, порожденные в рассматриваемых случаях глобальны-
ми максимумами, называются основными, а остальные, расположенные выше
основной, — вторичными. Для основной серии возможно обоснование асимпто-
тик как собственных чисел, так и собственных функций (см. далее теоремы 3
и 4). Для вторичных серий классическая [2] и формулируемая в разд. 9 лем-
ма 2 обнаруживает в малой окрестности построенного асимптотического при-
ближения собственное число исходной задачи, однако идентифицировать все
собственные числа в этой окрестности не удается по причине эпизодического
или даже частого появления членов основной серии, «сторонних» для констру-
ируемой асимптотики, получить приемлемые представления для собственных
функций невозможно, точнее, формулы, гарантируемые леммой 2, оказывают-
ся абсолютно неинформативными.

7. Вырожденный экстремум — формальная асимптотика. Изменим
ограничения, введенные в разд. 3, и допустим, что a(s) = a0, но при j = 1, . . . , J
выполнены соотношения

e|κ(s)− κ0 +Kj(s− sj)2m| ≤ Kj|s− sj |2m+1 с коэффициентами Kj,Kj > 0,

а также κ(s) < κ0 при s ∈ � \ {s1, . . . , sJ}. (40)

При этом m ∈ N и m > 1, однако величина κ0 не зависит от номера j, т. е.
вырожденный глобальный максимум кривизны достигается в (попарно различ-
ных) точках s1, . . . , sJ := s0 ∈ � — обсуждаем именно кратные собственные
числа (см. рис. 2, b). Подберем показатель θ в формуле (10) для растянутых
координат на дуге � . Главные члены асимптотики по-прежнему имеют вид (9)
и (16), однако теперь формулы (40) изменяют невязку (22) следующим образом:

ε−1a0(κ0 − κ(s))w0(ζ) = ε−1a0(Kj(s− sj)2m +O(|s − sj |1+2m))

= ε−1+2mθa0Kjη
2m
j +O(ε−1−(1+2m)θ|ηj |1+2m), (41)

где ηj = ε−θ(s − sj). Сравнение выражения (41) с еще одним соотношением
∂2
sv(ηj) = ε−2θ∂2

ηjv(ηj) требует соблюсти равенство 1− 2mθ = 2θ, а значит,

θ =
1

2(1 +m)

(
отметим, что θ =

1

4
при m = 1; ср. разд. 3

)
. (42)

В итоге примем похожие на (20) и (21) асимптотические анзацы

λε = −ε−2a2
0 − ε−1a0κ0 + ε−1/(1+m)µ′′j + λ̃ ε, (43)

uε(x) = χj(x)v(η)(w0(ζ) + ε2−1/(1+m)w′′(ζ, ηj)) + ũ ε(x) в окрестности точки sj ,
(44)
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где j = 1, . . . , J , коэффициенты при ε−2 и ε−1 взяты из формул (9) и (16), а

χj(s) = χ�(n)χj� (s) — гладкие срезающие функции, χ� — срезка из представле-

ния (21) и χj� ∈ C∞c (R),

χj� (s) = 1 при |s− sj| ≤ d� /2 и χj� (s) = 0 при |s− sj | ≥ d� , (45)

d� = min{sj − sj−1 | j = 1, . . . , J}.
В результате получим для поправочной пары {µ′′j ;w′′j } набор задач (23) с за-

менами a0Kη
2 7→ a0Kjη

2m и индексами j = 1, . . . , J . Условием разрешимости
таких задач служат обыкновенные дифференциальные уравнения аналогичного
(24) строения:

−∂2
ηjVj(ηj)+A2

jη
2m
j Vj(ηj) = MjVj(ηj), ηj ∈ R, с коэффициентом Aj =

√
a0Kj.

(46)
У этих уравнений по-прежнему дискретные спектры ℘j = {Mpj}p∈N, а собствен-
ные функции Vjp можно нормировать в L2(R), так как они затухают на беско-

нечности со степенно-экспоненциальной скоростьюO(|ηj |φpje−Aj |ηj |1+m/(1+m)) —
точная формула далее не понадобится, но ее можно получить при помощи из-
вестных приемов (см. [7, 27] и др.).

Итак, в качестве предельной задачи выступает совокупность (j = 1, . . . , J)
дифференциальных уравнений (46). Подчеркивая это наблюдение, выберем
новую литеру «�» для членов упорядоченной последовательности {�ℓ}ℓ∈N ≃
{Mpj}p,j∈N, т. е. объединения спектров ℘1 ∪ · · · ∪ ℘J .

Очередные разделы статьи посвящены обоснованию асимптотических раз-
ложений (43) и (44), но здесь приведем еще формальный анализ ситуации, в
которой, как и в разд. 4, кривизна безразлична, а коэффициент a в краевом
условии (2) достигает глобальный, но вырожденный максимум в одной точке s0
(обобщение на несколько точек вполне очевидно):

a(s) = a0 −K(s− s0)2m +O(|s − s0|2m+1), K > 0 и a(s) < a0 при s ∈ � \ {s0}.

Показатели степеней малого параметра в поправочных членах из асимптотиче-
ских анзацев

λε = ε−2µ0 + ε−2/(1+m)µ′ + λ̃ ε, (47)

uε(x) = χ0(x)(v(ε
−1/(1+m)(s− s0))w0(ζ, s)

+ ε2m(1+m)w′(ζ, ε−1/(1+m)(s− s0))) + ũ ε(x), (48)

в которых µ0 = −a−2
0 и w0 — экспонента (30), подобраны так, чтобы модифи-

цированная (замена (s − s0)2 7→ (s − s0)2m) выкладка (31) привела к похожей
на (32) задаче для пары {µ′;w′}, условием разрешимости которой (задачи) слу-
жит уравнение (46) с параметром (33). Собственные числа этого уравнения
дают выражения для поправок µ′ в анзаце (47), а соответствующие собствен-
ные функции указывают множители v(ε−1/(1+m)(s− s0)) в анзаце (48). Оценки
асимптотических остатков в принятых анзацах выводятся при помощи упро-
щенной схемы обоснования асимптотики для ситуации (40).

8. Экспоненциальное затухание собственных функций и сходи-
мость атрибутов собственных пар. В соответствии с формулой (42) поло-
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Рис. 2. Левые (le) и правые (ri) искривленные «прямоугольники» �
εle/ri
j и сек-

торы ∢
εle/ri
j , а также верхний (up) «прямоугольник» �εup

j (пропорции нарушены);

стрелки указывают оси координат, участвующих в определении весовой функции
R ε

γ , а исходный «прямоугольник» �ε
j с точкой sj на середине основания тонирован

на рис. (a). На рис. (b) область изменения весовой функции тонирована сильно, а
область, где она экспоненциально велика, — слабо; высветлены участки равенства
ее единице.

жим θ = (2(1 +m))−1 и начнем с рассмотрения простой задачи для обыкновен-
ного дифференциального уравнения

−d
2wε

dζ2
(ζ) +

k

1− ζk
dwε

dζ
(ζ) = µεwε(ζ), ζ ∈ (0, εθh),

−dw
ε

dζ
(0) =

a

ε
wε(0),

dwε

dζ
(ε−θh) = 0

(49)

со спектральным параметром µε и положительными величинами k, a и h.

Лемма 1. Существуют такие положительные c и ε, что первое собственное
число задачи (49) удовлетворяет соотношению

∣∣µε1 + ε−2a2 + ε−1ka
∣∣ ≤ c при ε ∈

(
0, ε
]
. (50)

Доказательство. Для вывода асимптотической формулы достаточны
вычисления из конца разд. 1 и начала разд. 2: основное приближение к соб-
ственной функции wε

1 имеет вид e−aζ/ε, но оставляет невязки — ограниченную

ζk2/(1− ζk) в уравнении и экспоненциально малую −ε−1ae−ahε−θ−1

в (послед-
нем) краевом условии Неймана. Первая и определяет оценку остатка в пред-
ставлении (50), а схема обоснования традиционна (см. [4; 5, гл. 6; 6, гл. 9] и
др.).

Для проверки экспоненциального затухания собственной функции задачи
(1), (2) в условиях из разд. 6, отвечающей собственному числу

λεp ≤ −ε−2a2
0 − ε−1a0κ0 +«pε

−2θ, (51)

определим непрерывную и кусочно-гладкую весовую функцию Rε
γ > 0 в замы-

кании �; здесь «p > 0 — некоторое число (см. далее формулу (84)). С этой
целью около точек sj ∈ � нарисуем искаженные (в криволинейных координа-
тах) «прямоугольники» �εj = {x ⊂ � ∩ Vd : |s − sj | < εθh, n ∈ (−hεθ, 0)}, на

которых положим Rε
γ(x) = 1, а размер h зафиксируем так, чтобы

a0Kjh
2m ≥ «p + 2, j = 1, . . . , J. (52)

На рис. 2, a, к «прямоугольнику» �εj примыкают три «прямоугольника» �
εle/ri
j

и �εupj с размерами H × hεθ и 2hεθ ×H соответственно, а также две четверти
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«кругов» ∢
εle/ri
j с центрами в вершинах P

εle/ri
j 6∈ � первого «прямоугольника»

и радиусом H ≤ min{d/2, d�/3} (см. формулы (14) и (45)). Считаем, что на
указанных пяти множествах функция Rε

γ принимает соответственно значения

eγε
−θs

le/ri
j , eγε

−θnup
j и eγε

−θr
le/ri
j (см. рис. 2, a, с продольными s

le/ri
j , попереч-

ной nupj и радиальными r
le/ri
j координатами, отмеренными от границы ∂�εj), а

вне названных фигур и, разумеется, вне «прямоугольников» �εj , j = 1, . . . , J ,

она равна большой постоянной eγε
−θh. Построенная весовая функция кусочно-

гладкая и непрерывная, так как объединения ⋓εj шести фигур, отвечающие каж-
дой из точек s1, . . . , sJ , содержатся в окрестности Vd и не пересекаются одна с
другой (рис. 2, b). Подчеркнем еще раз, что вне множества � \ ⋓ε функция Rε

γ

становится экспоненциально большой. Через ⋓ε и �ε обозначаем объединения
⋓ε1 ∪ · · · ∪ ⋓εJ и �ε1 ∪ · · · ∪�εJ соответственно.

В интегральное тождество (3) для пары {λεp;uεp} подставим пробную функ-
цию ψε = Rε

γu
ε
pγ , где uεpγ = Rε

γu
ε
p, — обе функции принадлежат пространству

H1(�) благодаря свойствам веса Rε
γ . После двукратного его коммутирования с

оператор-градиентом ∇ получим равенство
∥∥∇uεpγ ;L2(�)

∥∥2 − λεp
∥∥uεpγ ;L2(�)

∥∥2 − ε−1a0

∥∥uεpγ ;L2(� )
∥∥2

=
∥∥uεpγ

(
Rε
γ

)−1∇xRε
γ ;L

2(�)
∥∥2
. (53)

Для оценки правой части заметим, что
∣∣∇Rε

γ(x)
∣∣ ≤ γε−θRε

γ(x), но ∇Rε
γ(x) = 0 при x ∈ (� \ ⋓ε) ∪�ε, (54)

и, следовательно,
∥∥uεpγ

(
Rε
γ

)−1∇xRε
γ ;L

2(�)
∥∥2 ≤ γ2ε−2θ

∥∥uεpγ ;L2(⋓ε)
∥∥2
.

Правую часть обработаем при помощи леммы 1, в которой положим a = a0,
k = κ(s), и, обратившись к вариационной постановке задачи (49) при учете
якобиана J (n, s) = 1 + nκ(s), придем к такому неравенству для функции uεpγ ,
записанной в локальных координатах n и s:

0∫

−εθh

(∣∣∂nuεpγ(n, s)
∣∣2 +

(
a2
0

ε2
+
a0

ε
κ(s)

)∣∣uεpγ(n, s)
∣∣2
)

J (n, s) dn− a0

ε

∣∣uεpγ(0, s)
∣∣2

≥ −c

0∫

−εθh

∣∣uεpγ(n, s)
∣∣2J (n, s) dn.

Проинтегрируем его по мелким дугам � εj = {s ∈ � : |s− sj | ≤ εθh} = � ∩ ∂�εj и

продырявленному ими контуру � \ � ε = � \ ∂�ε, где � ε = � ε1 ∪ · · · ∪ � εJ . В силу
формул (40) и (52) на множестве � ε при малом ε выполнено соотношение

ε−1a0(κ0 − κ(s)) ≥ ε−1a0 min{K1, . . . ,KJ}(εθh)2m

−max{K1, . . . ,KJ}εθ(2m+1) ≥ ε−2θ(«p + 2),

а значит, ограничение (51) гарантирует оценку
∫

(V
εθh
∩�)\�ε

(
|∇uεpγ(x)|2 − λεp|uεpγ(x)|2

)
dx − a0

ε

∫

�\� ε

∣∣uεpγ(x)
∣∣2 ds
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≥
(
−λεp −

a2
0

ε2
− a0

ε
κ0 + ε−2θ(«p + 1) + c

) ∫

(V
εθh
∩�)\�ε

∣∣uεpγ(x)
∣∣2 dx

≥ (ε−2θ − c)
∥∥uεpγ ;L2((Vεθh ∩ �) \�ε)

∥∥2
. (55)

Кроме того, на исключенных «прямоугольниках» �εj верны равенства Rε
γ = 1

и uεpγ = uεp, а значит, ввиду нормировки
∥∥uεp;L2(�)

∥∥ = 1 (см. условие (5))
находим, что
∫

�ε
j

(∣∣∇uεpγ(x)
∣∣2 − λεp

∣∣uεpγ(x)
∣∣2) dx− a0

ε

∫

� ε
j

∣∣uεpγ(x)
∣∣2 ds

≥ −
(
λεp +

a2
0

ε2
+
a0

ε
κ0 +Kjh

2mε−2θ + c

)∫

�ε
j

∣∣uεpγ(x)
∣∣2 dx

≥ −Cjε−2θ
∥∥uεpγ ;L2

(
�εj

)∥∥2
= −Cjε−2θ

∥∥uεp;L2
(
�εj

)∥∥2 ≥ −ε−2θCj . (56)

Наконец, вне окрестности Vεθh контура � следующая примитивная формула
очевидна:

∫

�\V
εθh

(∣∣∇uεpγ(x)
∣∣2 − λεp

∣∣uεpγ(x)
∣∣2)

≥
∥∥uεpγ ;H1(� \ Vεθh)

∥∥2
+ caε

−2
∥∥uεpγ ;L2(� \ Vεθh)

∥∥2
, ca > 0.

Собрав полученные оценки, превращаем соотношение (53) в неравенство

∥∥Rε
γu

ε
p;L

2(� \�ε)
∥∥2 ≤ cp, (57)

причем ключевыми оказываются оценки (55) и (56), определяющие левую и
правую части этого неравенства после сокращения множителя ε−2θ ≤ ε−2.

Теорема 1. Если собственное число λεp задачи (1), (2) удовлетворяет огра-
ничению (51), то найдутся такие положительные величины γp и εp, cp, что соот-
ветствующая собственная функция, нормированная в L2(�), подчинена оценке

ε2
∥∥Rε

γp∇u
ε
p;L

2(�)
∥∥2

+
∥∥Rε

γpu
ε
p;L

2(�)
∥∥2 ≤ cp при ε ∈ (0, εp], (58)

где Rε
γ — введенная выше экспоненциальная весовая функция.

Доказательство. Добавив к формуле (57) соотношение
∥∥uεp;L2(�ε)

∥∥2 ≤∥∥uεp;L2(�)
∥∥2

= 1, приходим к нужной оценке для квадрата второй нормы в (58).
Эта оценка, ограничение (51) и известное следовое неравенство [1, гл. 1]

‖v;L2(� )‖2 ≤ C�‖v;H1(�)‖ ‖v;L2(�)‖ (59)

позволяют вывести из равенства (53) оценку
∥∥∇uεpγ ;L2(�)

∥∥2 ≤ Cpε
−2, а затем

вынести вес Rε
γ из-под градиента при помощи формул (54), заканчивая тем

самым доказательство теоремы.

Если выполнено неравенство (51), то найдется положительная бесконечно
малая последовательность {εi}i∈N, вдоль которой имеет место сходимость

ε2θ
(
λεp + ε−2a2

0 + ε−1a0κ0

)
→ µ̂p при ε→ +0 (60)



Множественность асимптотических серий собственных чисел 1121

(индекс i у малого параметра не пишем для краткости). Соответствующую
собственную функция uεp, нормированную в L2(�) и гладкую вместе со своим
следом � ∋ s 7→ uεp(0, s), умножим на срезки (45) и заметим, что в силу экс-
поненциального ее затухания при удалении от точек s1, . . . , sJ (теорема 1) для
произведений uεpj = χju

ε
p справедливо соотношение

∥∥uεp1;L2(�)
∥∥2

+ · · ·+
∥∥uεpJ ;L2(�)

∥∥2
= 1− . . . . (61)

Здесь и далее многоточие замещает экспоненциально малые при ε → +0 ве-
личины. Запишем функции в криволинейных координатах и на множествах
�j = � ∩ suppχj введем представления

uεpj(x) = χ�(n)uεpj(0, s)e
a0n/ε + uε0pj(n, s). (62)

Пусть еще �j = � ∩ �j . Вычислим левую часть равенства

J∑

j=1

(∥∥∇uεpj ;L2(�j)
∥∥2 − ε−1a0

∥∥uεpj ;L2(�j)
∥∥2 − λεp

∥∥uεpj ;L2(�j)
∥∥2)

= . . . ,

обеспеченного интегральным тождеством (3), при помощи простых формул

0∫

−∞

∣∣∣∣
d

dn
ea0n/ε

∣∣∣∣
2

dn =
a2
0

ε2

0∫

−∞

e2a0n/ε dn =
a0

2ε
,

0∫

−∞

n

∣∣∣∣
d

dn
ea0n/ε

∣∣∣∣
2

dn =
a2
0

ε2

0∫

−∞

ne2a0n/ε dn = −1

4
,

2

0∫

−∞

∂uε0pj
∂n

(n, s)
d

dn
ea0n/ε dn = −2

a2
0

ε2

0∫

−∞

uε0pj(n, s)e
a0n/ε dn (так как uε0pj(0, s) = 0),

0∫

−∞

ea0n/ε

(
nκ(s)∂nu

ε0
pj(n, s) +

(
nκ(s)

a2
0

ε2
+
a0κ0

ε

)
uε0pj(n, s)

)
dn

=
a0

ε

0∫

−∞

(κ0 − κ(s))ea0n/εuε0pj(n, s) dn.

При учете якобиана J (n, s) = 1 + nκ(s) и формулы (51) обнаруживаем, что

J∑

j=1

(
1

2

∥∥(κ0 − κ)1/2uεpj(0, ·);L2(�j)
∥∥2

+
∥∥∂nuε0pj;L2(�j)

∥∥2

+
1

2

(
a2
0

ε2
+
a0κ0

ε

)∥∥uε0pj;L2(�j)
∥∥2

+
∥∥J −1∂su

ε
pj ;L

2(�j)
∥∥2
)

≤ ε−2θ«p +

J∑

j=1

(
Iεpj +

a0

ε

∫

�j

|n|κ(s)
1 + nκ(s)

e2a0n/ε|uεpj(0, s)|2 dx
)

+ cpe
−γpε−θ

, (63)
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где γp — некоторый положительный показатель (см. теорему 1) и

Iεpj ≤
a0

ε

(
2

∣∣∣∣
∫

�j

κ0 − κ(s)
1 + nκ(s)

uεpj(0, s)e
a0n/εuε0pj(n, s) dx

∣∣∣∣

+ κ0

∣∣∣∣
∫

�j

nκ(s)

1 + nκ(s)
uεpj(0, s)e

a0n/εuε0pj(n, s) dx

∣∣∣∣
)

≤ Cκ
(
ε−1/2

∥∥(κ0 − κ)1/2uεpj(0, ·);L2(�j)
∥∥+ ε1/2

∥∥uεpj(0, ·);L2(�j)
∥∥)∥∥uε0pj ;L2(�j)

∥∥.

Благодаря ограничению (51), условию нормировки (5), исходному интегрально-
му тождеству (3) и следовому неравенству (59) верны соотношения

∥∥∇uεp;L2(�)
∥∥2 ≤ Cpε−2

∥∥uεp;L2(�)
∥∥2

= Cp,
∥∥uεp;L2(� )

∥∥2 ≤ cp� ε−1.

Таким образом, во-первых,

Iεpj ≤ Cκ
(∥∥(κ0 − κ)1/2uεpj(0, ·);L2(�j)

∥∥+ cp�
)
ε−1/2

∥∥uε0pj ;L2(�j)
∥∥

и, во-вторых, последний интеграл в формуле (63) (без множителя a0/ε) оцени-

вается сверху величиной cp�κε
2
∥∥uεpj ;L2(�j)

∥∥2
. В итоге видим, что при малом

ε > 0 левая часть неравенства (63) не превосходит cpε
−θ — далее ссылаемся на

обсуждаемую оценку именно с такой мажорантой.

В силу формул (61) и (63) имеем

∣∣∣∣∣
ε

2a0

J∑

j=1

∥∥uεpj(0, s);L2(�j)
∥∥2 − 1

∣∣∣∣∣ ≤ cε. (64)

Определим еще функции uε⊥pj (n, s) = uεp(n, s)− r
−1/2
ε uεpj(s)e

a0n/ε и

uεpj(s) =
1√
rε

0∫

−ε

ea0n/εuεp(n, s) dn, где rε =

0∫

−ε

e2a0n/ε dn =
ε

2a0
(1 − e−2a0) > 0.

(65)
Заметим, что согласно оценке (63) для L2(�j)-нормы функции uε0pj (ее появление

отмечено фигурной скобкой снизу) выполнено соотношение

cκ
∥∥(κ0 − κ)1/2

(
uεpj −

√
rεu

ε
pj(0, ·)

)
;L2(�j)

∥∥2 ≤
∥∥uεpj −

√
rεu

ε
pj(0, ·);L2(�j)

∥∥2

=

∫

�j


 1√

rε

0∫

−ε

ea0n/εuεp(n, s) dn−
√
rεu

ε
pj(0, s)




2

ds

=
1

rε

∫

�j




0∫

−ε

ea0n/ε
(
uεp(n, s)− ea0n/εuεpj(0, s)︸ ︷︷ ︸

)
dn




2

ds

≤ cJ

rε

∥∥uε0pj ;L2(�j)
∥∥2 ≤ cjε1−θ (66)

с положительным множителем cκ. Кроме того, вытекающая из определений
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(65) ортогональность

∫

�j

0∫

−ε

ea0n/εuεpj(s)u
ε⊥
pj (n, s) dnds

=

∫

�j

uεpj(s)




0∫

−ε

ea0n/εuεpj(n, s) dn− uεpj(s)
1√
rε

0∫

−ε

e2a0n/ε dn


 ds = 0

конечно же сохраняется для производных функций uεpj и uε⊥pj по переменной s,
а значит,

(1− εκ0)
∥∥J −1∂su

ε
pj ;L

2(�j)
∥∥2

≥
∫

�j

0∫

−ε

(
r−1/2
ε ∂su

ε
pj(s)e

a0n/ε + ∂su
ε⊥
pj (n, s)

)2
dnds

=

∫

�j

0∫

−ε

(∣∣∂suεpj(s)
∣∣2 +

0∫

−ε

∣∣∂suε⊥pj (n, s)
∣∣2 dn

)
ds ≥

∥∥∂suεpj ;L2(�j)
∥∥2
. (67)

Теперь введем функции vεpj «быстрых» переменных ε−θ(s− sj) = ηj ∈ R,

vεpj(ηj) = εθ/2uεpj(sj + εθηj), (68)

продолжив uεpj нулем на всю вещественную ось. Формулы (64) и (66) влекут за
собой соотношение ∣∣∣∣∣

J∑

j=1

∥∥vεpj ;L2(R)
∥∥2 − 1

∣∣∣∣∣ ≤ cpε
1−θ. (69)

Кроме того, оценки (66) и (67) показывают, что

∥∥vεpj ; W 1
m(R)

∥∥2
:=
∥∥∂ηjvεpj ;L2(R)

∥∥2
+
∥∥ηmj vεpj ;L2(R)

∥∥2

≤ cjpj
(
ε2θ−θεθ

∥∥J −1∂su
ε
pj ;L

2(�j)
∥∥2

+ ε−2mθεθrε
∥∥(s− sj)muεpj ;L2(�j)

∥∥2)
.

Поскольку rε = O(ε), оба суммарных показателя степеней малого параметра
равны 2θ (см. формулы (65) и (42)). Следовательно, оценка (63) гарантирует
равномерную ограниченность сумм W 1

m(R)-норм функций (68), а понятная ком-
пактность вложения (гильбертова) весового пространства Соболева в простран-
ство Лебега L2(R) означает, что вдоль бесконечно малой положительной под-
последовательности {εi}i∈N (сохранили обозначение) имеет место сходимость

vεipj → v̂pj слабо в W 1
m(R), но сильно в L2(R), причем

J∑

j=1

‖v̂pj ;L2(R)‖2 = 1.

(70)
Важное последнее равенство, гарантирующее нетривиальность вектор-функции
(v̂p1, . . . , v̂pJ ), обеспечено оценкой (69) и проверенной сильной сходимостью (70).

Для произвольного набора функций �1, . . . , �J ∈ C∞c (R) введем в формулу
(
uεp, (�+ λεp)ψ

ε
)
�

=
(
uεp, (∂n − ε−1a0)ψ

ε
)
�
, (71)
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происходящую от интегрального тождества (3), пробную функцию

ψε(x) = χ1(x)w0(−ε−1n)�1(ε
−θ(s− sj)) + · · ·+ χJ(x)w0(−ε−1n)�J(ε−θ(s− sj)),

имитирующую асимптотический анзац (44). По определению функций χj и w0

правая часть формулы (71) обращается в нуль, а проведенные выше выкладки
приводят к соотношению

J∑

j=1

((
χjw0u

ε
p,
(
∂2
s − ε−1Kj(s− sj)2m

)
�j
)
�j

+

(
λεp +

a2
0

ε2
+
a0κ0

ε

)(
χjw0u

ε
p, �j

)
�j

+
(
χju

ε
p, R

ε
j(�j)

)
�j

)
= 0,

где для «остаточного» выражения Rεj(�j), которое включает сомножителями

экспоненту e−a0n/ε и линейную комбинацию функций �j ∂s�j с коэффициента-

ми O(1 + ε−1|n|), верна оценка
∥∥Rεj(�j);L2(�j)

∥∥ ≤ c�ε−θ+1/2. Теперь, умножив

последнее равенство на r
−1/2
ε ε2θ, перейдем к пределу при ε → +0 в согласии

со сходимостями (60), (70) и связями (62), (65), (68). В итоге ввиду взаимной
независимости функций �1, . . . , �J получаем совокупность (j = 1, . . . , J) инте-
гральных тождеств

(
v̂pj , ∂

2
ηj�j

)
R

+Kj

(
v̂pj , η

2m
j �j

)
R

= µ̂p(v̂pj , �j)R ∀�j ∈ C∞c (R),

которые как раз и означают, что пары
{
µ̂p; v̂pj

}
удовлетворяют предельным

дифференциальным уравнениям (46). Приняв во внимание последнее равенство
из списка (70), формулируем полученный результат.

Теорема 2. При ограничении (40) и постоянном коэффициенте Робэна
a0 > 0 предельные переходы (60) и (68) дают пары {µ̂p; v̂pj} ∈ R+ × W 1

m(R),
j = 1, . . . , J , среди которых хотя бы одна является собственной для предельного
дифференциального уравнения (40).

Замечание 2. Установленная локализация собственных функций задачи
(1), (2), а также полученные оценки, в частности, приведшие к формуле (69),
показывают, что условия ортогональности и нормировки (5) порождают соот-
ношения (v̂p1, v̂p1)R + · · ·+ (v̂pJ , v̂pJ)R = δp,q.

9. Асимптотика собственных пар в случае вырожденных макси-
мумов кривизны. Следовое неравенство (59) позволяет выбрать коэффици-
ент b > 0 так, чтобы билинейная форма

〈uε, ψε〉ε = (∇xuε,∇xψε)� + bε−2(uε, ψε)� − ε−1a0(u
ε, ψε)� (72)

стала скалярным произведением в гильбертовом пространстве H ε = H1(�),
причем

‖uε; H ε‖2 ≥ c�(‖∇xuε;L2(�)‖2 + ε−2‖uε;L2(�)‖2 + ε−1‖uε;L2(� )‖2), c� > 0.
(73)

Введем еще компактный положительный, непрерывный и симметричный, а зна-
чит, самосопряженный оператор T ε, заданный при помощи тождества

〈T εuε, ψε〉ε = (uε, ψε)� ∀uε, ψε ∈H ε.



Множественность асимптотических серий собственных чисел 1125

В силу теорем 10.1.5 и 10.2.2 из [28] его существенный спектр состоит из од-
ной точки τ = 0, а дискретный образует бесконечно малую положительную
монотонную последовательность нормальных собственных чисел

τε1 ≥ τε2 ≥ τε3 ≥ · · · ≥ τεk ≥ · · · → +0. (74)

Неравенство (73) показывает, что τε1 ≤ c−1
� ε2. Интегральное тождество

(3) эквивалентно абстрактному уравнению T εuε = τεuε в пространстве H ε с
новым спектральным параметром

τε = ε2(b + ε2λε)−1. (75)

Последовательности (4) и (74) связаны именно формулой (75).
Следующее утверждение, известное как лемма о «почти собственных» чис-

лах и векторах (первоисточник [2]), вытекает из спектрального разложения ре-
зольвенты (см., например, [28; гл. 6]).

Лемма 2. Пусть uε ∈H ε и τ ε ∈ R+ таковы, что

‖uε; H ε‖ = 1, ‖T εuε − τ εuε; H ε‖ =: δε ∈ (0, T ε).

Тогда имеется собственное число τεn(ε) оператора T ε, подчиненное неравенству∣∣τ ε − τεn(ε)

∣∣ ≤ δε. Более того, для любого δε∗ ∈
(
δε, τ ε

)
найдутся коэффициенты

C ε
Nε , . . . ,C ε

Nε+Xε−1, при которых верны формулы
∥∥∥∥∥u

ε −
N

ε+X
ε−1∑

i=Nε

C ε
i U ε

i ; H ε

∥∥∥∥∥ ≤ 2
δε

δε∗
,

N
ε+X

ε−1∑

i=Nε

∣∣C ε
i

∣∣2 = 1, (76)

где τε
Nε , . . . , τεNε+Xε−1 — набор всех собственных чисел оператора T ε из (за-

мкнутого) сегмента [τ ε − δε∗, τ ε + δε∗], а соответствующие собственные векторы
U ε

Nε , . . . ,U ε
Nε+Xε−1 подчинены условиям ортогональности и нормировки〈

U ε
p ,U

ε
q

〉
ε

= δp,q.

Пусть {�ℓ}ℓ∈N — упорядоченная последовательность, полученная объедине-
нием последовательностей {Mjp}p∈N собственных чисел предельных уравнений
(46), j = 1, . . . , J , а �ℓ — κℓ-кратный ее член, т. е.

�ℓ−1 < �ℓ = �ℓ+κℓ−1 < �ℓ+κℓ
. (77)

В качестве «почти собственных» пар оператора T ε возьмем
{
τ εk = ε2

(
b− a2

0 − εa0κ0 + ε2−θ�ℓ
)−1

;uεk = ‖vεk; H ε‖−1vεk
}
, k = ℓ, . . . , ℓ+ κℓ − 1,

(78)
причем для �k = Mjkpk положим vεj = 0 при j 6= k и

vεk(x) = χjk(x)w0(−ε−1n)Vjkpk(ε−θ(s− sjk)), (79)

где w0 — экспонента из формулы (9), {Mjkpk ;Vjkpk} — собственная пара уравне-
ния (46), χj ∈ C∞c (R2) — произведение срезающих функций (14) и (45). Удобно
считать, что ∂nχj = 0 на � .

Оценим величину δεk из леммы 2, найденную по собственной паре (78). Име-
ем

δεk =
∥∥(T ε − τ εk

)
uεk; H

ε
∥∥ = sup

∣∣〈(T ε − τ εk )uεk, ψ
ε
〉
ε

∣∣

= τ εk
∥∥vεk; H ε

∥∥−1
sup
∣∣(∇vεk,∇ψε

)
�
− ε−1a0

(
vεk, ψ

ε
)
�

+
(
ε−2a2

0 + ε−1a0κ0 − ε−2θ�k
)(
vεk, ψ

ε
)
�

∣∣. (80)
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Здесь супремум вычисляется по единичной сфере в пространстве H ε, т. е.
‖ψε; H ε‖ = 1, и для пробной функции ψε ∈ H1(�) правая часть неравенства
(73) равномерно по ε ∈ (0, ε0] ограничена. Преобразуем выражение Iεk(ψ

ε) меж-
ду последними знаками модуля в цепочке (80), считая, что �k = Mjp. Используя
формулу интегрирования по частям, выводим равенство

Iεk(ψ
ε) =

(
�vεk −

(
ε−2a2

0 + ε−1a0κ0 − ε−2θMjp)v
ε
k, ψ

ε
)
�
−
(
∂nv

ε
k − ε−1a0v

ε
k, ψ

ε
)
�
.

Последнее скалярное произведение обращается в нуль согласно определениям
функции (79) и срезки χj , для которой по построению ∂nχj = 0 на � . Кро-
ме того, благодаря экспоненциальному затуханию собственных функций w0 и
Vjp коммутирование срезки с оператором � привносит экспоненциально малую
погрешность, обозначаемую по обыкновению многоточием. Итак,

Iεk(ψ
ε) = (�(w0Vjp), χjψ

ε)� −
((
ε−2a2

0 + ε−1a0κ0 − ε−2θMjp

)
w0Vjp, χjψ

ε
)
�

+ . . . .
(81)

Используя представление (6) оператора Лапласа, приходим к формуле

�(w0Vjp)(x) = ea0n/ε

(
a2
0

ε2
Vjp(ηj) +

a0κ(s)Vjp(ηj)

ε(1 + nκ(s))

+
ε−2θ∂2

ηjVjp(ηj)

(1 + nκ(s))2
− n∂sκ(s)ε

−θ∂ηjVjp(ηj)

(1 + nκ(s))3

)
.

Обозначим выражения из правой части через I ε
0 , . . . ,I

ε
3 . Первое из них при-

сутствует в обоих скалярных произведениях из суммы (81) и потому исчезает
из нее. Для последнего получаем, что
∣∣(I ε

3 , ψ
ε)�
∣∣

≤ c3




0∫

−2dχ

n2e2a0n/ε dn




1/2

ε−θ




2dχ∫

−2dχ

∣∣∣∣
dVjp
dηj

(ηj)

∣∣∣∣
2

ds




1/2

‖ψε;L2(�)‖

≤ C3ε
3/2ε−θεθ/2ε = C3ε

(5−θ)/2.

Здесь помимо непосредственных вычислений норм применена вытекающая из
неравенства (73) оценка для множителя ‖ψε;L2(�)‖.

В выражении I ε
2 воспользуемся уравнением (46) и преобразуем следующую

сумму:

I ε
4 (n, s) := I ε

1 (n, s) + I ε
2 (n, s)− (ε−1a0κ0 − ε−2θMjp)w0(ζ)Vjp(ηj)

=
a0(κ(s)− κ0 +Kj(s− sj)2m)

ε(1 + nκ(s))
w0(ζ)Vjp(ηj)

+
nκ(s)

1 + nκ(s)

(
a0Kj(s− sj)2m
ε(1 + nκ(s))

− a0κ0

ε
− ε−2θMjp(2 + nκ(s))

)
w0(ζ)Vjp(ηj).

Таким образом, согласно представлению (40) имеем

∣∣(I ε
4 , ψ

ε
)
�

∣∣ ≤ c4






0∫

−2dχ

e2a0n/ε dn




1/2

× 1

ε


ε2θ(2m+1)

2dχ∫

−2dχ

η
2(2m+1)
j

∣∣Vjp(ηj)
∣∣2 ds




1/2

+




0∫

−2dχ

n2e2a0n/ε dn




1/2
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×




2dχ∫

−2dχ

(ε−2(s− sj)4m + ε−4θ)|Vjp(ηj)|2 ds




1/2
‖ψε;L2(�)‖

≤ C4(ε
1/2ε−θ/2 + ε3/2(ε−1+θ/2 + ε−3θ/2))ε ≤ 3C4ε

(3−θ)/2.

Кроме того, посредством вычислений, более простых, чем приведенные, пока-
зываем, что в силу определений (72) и (79) выполнена следующая оценка снизу:

∥∥vεk; H ε
∥∥2 ≥ c0(ε−2εεθ + ε−1εθ + ε−2εεθ) = 3c0ε

θ−1, c0 > 0.

В итоге, собрав полученные неравенства, видим, что величина (80) не пре-
восходит

ckε
2ε(1−θ)/2ε3/2 = ckε

4−θ/2,

a значит, лемма 2 предоставляет собственные числа τεNε
k

и λεNε
k

соответственно

оператора T ε и задачи (1), (2), для которых (чисел) верны соотношения
∣∣τεNε

k
− τ εk

∣∣ ≤ ckε
4−θ/2 ⇔

∣∣λεNε
k

+ ε−2a2
0 + ε−1a0κ0 − ε−θ�k

∣∣

≤ ckε
−θ/2(b+ ε2λεNε

k

)(
b− a2

0 − εa0κ0 + ε2−θ�k
)
. (82)

Отсюда сначала выводим, что

1

2

(
b+ε2λεNε

k

)
≤ b−a2

0−εa0κ0 +ε2−θ�k при ckε
2−θ/2(b−a2

0−εa0κ0+ε2−θ�k
)
≤ 1

2
,

а затем, подобрав подходящие εk > 0 и Ck > 0, получаем окончательную оценку
∣∣λεNε

k
+ ε−2a2

0 + ε−1a0κ0 − ε−θ�k
∣∣ ≤ Ckε

−θ/2 при ε ∈ (0, εk]. (83)

Несмотря на то, что мажоранта неограниченно возрастает при ε → +0,
формула (83) оправдывает асимптотику какого-то члена последовательности
(4), поскольку все показатели степеней малого параметра в левой части строго
меньше −θ/2. Ближайшая цель — убедиться в том, что в асимптотической
формуле (83) фигурирует именно собственное число λεk.

Теорема 3. При ограничениях (40) и a(s) = a0 для любого k ∈ N найдутся
такие положительные εk и Ck, что для члена λεk последовательности (4) соб-
ственных чисел задачи (1), (2) выполнено неравенство (83), в которомNε

k = k, а
{�ℓ}ℓ∈N — упорядоченная объединенная последовательность собственных чисел
Mjp предельных уравнений (46), j = 1, . . . , J .

Доказательство. Сначала рассмотрим кратное собственное число �ℓ из
формулы (77) и, воспользовавшись второй частью леммы 2, убедимся в том,
что построенное отображение k 7→ Nε

k можно сделать инъекцией. Положим

δε = ε−θ/2 max{Cℓ, . . . ,Cℓ+κℓ−1} и δε∗ = t−1δε, а параметр t ∈ (0, 1) зафик-
сируем далее. Обозначим через C ε

(ℓ), . . . ,C
ε
(ℓ+κℓ−1) ∈ RX

ε

столбцы, а через

S ε
(ℓ), . . . ,S

ε
(ℓ+κℓ−1) ∈ H1(�) — линейные комбинации собственных векторов опе-

ратора T ε, возникшие в формуле (76) (при необходимости выравниваем высоты
столбцов добавлением нулевых элементов). Благодаря условиям ортогонально-
сти и нормировки собственных векторов имеем
∣∣C ε

(q) · C ε
(p) − δp,q

∣∣ =
∣∣〈S ε

(p),S
ε
(q)

〉
ε
− δp,q

∣∣ ≤
∣∣〈S ε

(p),S
ε
(p) − uεq

〉
ε

∣∣

+
∣∣〈S ε

(p) − uεp,u
ε
q

〉
ε

∣∣+
∣∣〈uεp,uεq

〉
ε
− δp,q

∣∣ ≤ 2t+ 2t+ 0 = 4t.
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Здесь учтены обе оценки (76) и определение величины δε∗, а также дизъюнкт-
ность носителей функций uεp и uεq при p 6= q вместе с равенством

∥∥uεk; H ε
∥∥ = 1.

Следовательно, при малом t столбцы C ε
(ℓ), . . . ,C

ε
(ℓ+κℓ−1) «почти ортонормирова-

ны» в пространстве RX
ε

, что возможно только в случае Xε ≥ κℓ. Именно в этом
и нужно было убедиться, так как после фиксации подходящего t > 0 не менее κℓ
собственных чисел τεNε

ℓ
, . . . , τεNε

+κℓ−1 попадают на сегмент
[
τ εℓ −t−1δε, τ εℓ +t−1δε

]
,

а некоторое увеличение его длины по существу не сказывается на финальной
оценке (83).

Итак, каждому члену �p последовательности {�p}p∈N поставлено в соот-
ветствие свое собственное число λεNε

p
, а значит,

λεp ≤ λεNε
p
≤ −ε−2a2

0 − ε−1a0κ0 + ε−θ�p + Cpε
−θ/2. (84)

Таким образом, во-первых, p ≤ Nε
p и, во-вторых,

λεp ≤ −ε−2a2
0 − ε−1a0κ0 + ε−θ�k + Ckε

−θ/2,

т. е. выполнено неравенство (51) с мажорантой «p = �p + Cp. Возьмем

p = ℓ+κℓ−1 из формулы (77) и предположим, что N
εpi
p > p для некоторой поло-

жительной бесконечно малой последовательности {εpi }i∈N. Тогда найдутся удо-

влетворяющие неравенству (51) собственные числа λ
εpi
ℵ задачи (1), (2), для ко-

торых собственные функции u
εpi
ℵ ортогональны в пространстве L2(�) другим и,

что важно, разным собственным функциям uεq1 , . . . , u
ε
qℓ+κℓ−1

той же задачи, от-

вечающие собственным числам из сегмента
[
0,−ε−2a2

0− ε−1a0κ0 + ε−θ«ℓ+κℓ−1

]
.

Для всех них справедлива теорема 2, а значит, ввиду установленной силь-
ной сходимости (70) атрибут vℵ ∈ H1(R)J , найденный согласно формуле (68)

по последовательности {uε
p
i

ℵ }i∈N, ортогонален не менее ℓ + κℓ − 1 собствен-
ным функциям Vjp уравнений (46) при j = 1, . . . , J и Mjp ≤ �p (замеча-
ние 2). В то же время предельное собственное число µ̃ℵ также не превосходит
�p = �ℓ = · · · = �ℓ+κℓ−1. Эти наблюдения противоречат способу образования
последовательности {�q}q∈N. Следовательно, p = Nε

p и доказательство теоре-
мы 3 закончено.

Займемся асимптотикой собственных функций. Если собственное число
�ℓ простое (например, точка глобального максимума кривизны единственна),
то применение с этой целью второй части леммы 2 элементарно. Рассмот-
рим κℓ-кратное собственное число �ℓ из формулы (77). По доказанному в
теореме 3 найдется такой множитель ̺ℓ > 0, что в ̺ℓε

4−θ-окрестности точки
τ εℓ (ср. формулу (82)) располагаются собственные числа τεℓ , . . . , τ

ε
ℓ+κℓ−1 опе-

ратора T ε и только они. Следовательно, найдутся нормированные столбцы
C ε

(ℓ), . . . ,C
ε
(ℓ+κℓ−1) ∈ Rκℓ , для которых

∥∥∥∥∥u
ε
k −

ℓ+κℓ−1∑

i=ℓ

C ε
(k)iU

ε
i ; H ε

∥∥∥∥∥ ≤ 2
ckε

4−θ/2

̺ℓε4−θ
= 2

ck
̺ℓ
εθ/2.

Поскольку по построению
〈
uεp,u

ε
q

〉
ε

= δp,q, условия ортогональности и норми-

ровки для собственных векторов оператора T ε означают, что (κℓ×κℓ)-матрица
C ε :=

(
C ε

(ℓ), . . . ,C
ε
(ℓ+κℓ−1)

)
ортогональная (вещественная унитарная). После ее

обращения Bε := (C ε)−1 (т. е. транспонирования) остается принять во вни-
мание различие нормировок собственных векторов и функций в пространствах
H ε и H1(�) (см. неравенство (73)) и сформулировать полученный результат.
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Теорема 4. В условиях теоремы 3 для ортонормированных в пространстве
L2(�) собственных функций задачи (1), (2), отвечающих ее собственным числам
λεℓ , . . . , λ

ε
ℓ+κℓ−1 (см. формулу (77)) найдутся такие ортогональная (κℓ × κℓ)-

матрица Bε =
(
Bε
pq

)
и величины εℓ > 0, cℓ > 0, что при ε ∈ (0, εℓ] выполнены

оценки

ε2
∥∥∇uεq −∇Sεq;L

2(�)
∥∥2

+
∥∥uεq − Sεq;L

2(�)
∥∥2 ≤ cℓε

θ/2,

где q = ℓ, . . . , ℓ+ κℓ − 1 и

Sεq(x) =
2a0

ε1+θ

ℓ+κℓ−1∑

p=ℓ

Bε
pqχjp(x)w0

(
− n

ε

)
Vjpkp

(
s− sjp
εθ

)
в случае �p = Mjpkp ,

а w0 — экспонента (9), Vjpkp — собственная функция уравнения (46) и θ =
1

2(1+m) .

10. Разное. 1◦. Гладкость границы и коэффициента Робэна. Требо-
вания a ∈ C∞(� ) и � ∈ C∞, разумеется, излишни — при выводе и обосновании
асимптотических разложений принимали участие примитивные формулы Тей-
лора, и поэтому в разд. 3, 4 и 7 достаточно предположить принадлежность
коэффициента Робэна и кривизны контура классам Гёльдера C3,δ. В разд. 5
при нахождении первых поправочных асимптотических членов достаточна дву-
кратная непрерывная дифференцируемость границы.

Если a — непрерывная кусочно-гладкая положительная функция с глобаль-
ным максимумом в точке s0 ∈ � , причем

a(s) = a0 −K|s− s0|+O
(
(s− s0)2

)
, K > 0,

то алгоритм построения асимптотик в целом сохраняется, однако в растяжении
(10) возникает показатель θ = 1/3, а предельным уравнением вместо (24) стано-
вится уравнение Эйри на оси R ∋ η с дифференциальным оператором−∂2

η+K|η|
(см., например, [28]). Схожие процедуры можно найти в публикациях [29, 30],
посвященных задачам Дирихле в тонких многогранниках и многоугольниках
(треугольнике).

В случае кусочно-гладкой границы спектр задачи Робэна для оператора
Лапласа приобретает разнообразные особенности строения, например, в обла-
стях с пикообразными заострениями могут появиться непустые существенный
и остаточный спектры (см. [31–34] и др.). Не останавливаясь на подробно-
стях, упомянем статьи [11, 35, 36], посвященные названной задаче в областях
с угловыми и коническими точками. Приведенные списки ссылок конечно же
неполные.

2◦. Простой пример. В прямоугольнике � = (0, H)× (0, 2π) рассмотрим
дифференциальное уравнение (1) с краевыми условиями и условиями перио-
дичности

−∂u
ε

∂x1
(0, x2) =

1

ε
uε(0, x2), uε(H,x2) = 0, x2 ∈ (0, 2π),

uε(x1, 0) = uε(x1, 2π),
∂uε

∂x2
(x1, 0) =

∂uε

∂x2
(x1, 2π), x1 ∈ (0, H).

(85)

Разделив переменные и построив асимптотику собственных чисел обыкновенно-
го дифференциального уравнения на отрезке (0, H), обнаруживаем следующие
серии собственных чисел задачи (1), (85) с устойчивыми асимптотиками:

{k2 − ε−2 +O(e−1/ε)}k∈N2
0

и {k2 + 4H−2π2(1 + ε+O(ε2))}k∈N2
0
, j ∈ N, (86)
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Здесь N2
0 = {0, 1, 1, 2, 2, 3, 3, . . .}. Первая серия содержит отрицательные члены,

которые при ε → +0 уходят на отрицательную бесконечность, но при больших
индексах k ∈ N2

0 также и положительные собственные числа, перемешивающи-
еся с членами остальных (j ∈ N) серий (86). Тот факт, что последние члены
остаются положительными при всех малых ε > 0, т. е. не проникают в отрица-
тельную полуось, согласуется с асимптотическими формулами из разд. 5.

3◦. Полные асимптотические разложения. При условиях гладкости
из разд. 1 благодаря проверенной локализации собственных функций для от-
рицательной части спектра задачи (1), (2) и простоте собственных чисел инди-
видуальных предельных задач продолжение итерационных процессов, начатых
в разд. 3, 4, 7, и построение полных асимптотических разложений собственных
пар производится при помощи давно известных процедур (см. статьи [2, 4], мо-
нографии [25, 26, 37] и многие другие публикации). То же, разумеется, можно
сказать и о ситуации из разд. 2. Следует подчеркнуть, что построение бес-
конечных рядов в сингулярно возмущенных спектральных задачах зачастую
малополезное занятие, поскольку, как показано в [38, гл. 7] (см. также [39, 40]),
привлечение в асимптотические формулы вида (83) даже всего двух-трех по-
правочных асимптотических членов обычно провоцирует несоразмерные уве-
личение коэффициента Ck в мажоранте и уменьшение грани εk допустимого
изменения параметра. Лишь для некоторых весьма специфических способов
возмущения границы установлена [41, 42] аналитическая зависимость простых
собственных чисел от малых параметров. Вместе с тем построение младших
членов асимптотики позволяет вывести точные оценки остатков в разложениях
собственных пар — это относится и к теоремам 3 и 4, в которых таким путем
мажоранты могут быть уменьшены до C•ℓ и c•ℓε

θ соответственно, впрочем при
неконтролируемом уменьшении величины εk.

Разложения в бесконечные асимптотические ряды доступны не только для
основной, но и вторичных, в частности, положительной, серий собственных чи-
сел. Автору известна лишь одна работа [43] с подобным, вполне неожиданным,
результатом для разных диапазонов спектра.

Рис. 3. Шар (a), «сплющенный» (b) и тонкий (c) эллипсоиды — зоны локализации:
соответственно поверхность, линия и две точки. «Песочные часы» (d).

4◦. Многомерные области. Исследование собственных пар спектраль-
ных краевых задач с большим отрицательным коэффициентом Робэна прово-
дилось преимущественно в плоских областях. По поводу асимптотик в мно-
гомерных областях упомянем содержательную работу [44] и прокомментируем
формальный анализ лишь при удобной — эллипсоидальной — геометрии обла-
сти, предоставляющей различные типы локализации собственных функций, но
в общем случае разнообразие асимптотических анзацев разрастается неимовер-
но. Пусть коэффициент Робэна a = a0 постоянен и

� =
{
x = (x1, x2, x3) : α−2

1 x2
1 + α−2

2 x2
2 + α−2

3 x2
3 = 1

}
, αj > 0, j = 1, 2, 3.
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Если αj = 1 и � — единичный шар (рис. 3, a), то метод Вишика — Люстерника
[2–4] без труда дает асимптотику собственных пар задачи (1), (2) и, в частно-
сти, устанавливает локализацию собственных функций около всей сферической
поверхности. Асимптотический анализ из разд. 3 и 2 (см. также [8]) подска-
зывает, что при 1 = α1 ≥ α2 > α3, т. е. в случае «сплющенного» эллипсоида
(рис. 3, b), наблюдается концентрация собственных функций около длинного эк-
ватора. Наконец, при α1, α2 < α3 = 1, т. е. для сигарообразного эллипсоида
нетрудно предсказать эффект локализации около точек x = (0, 0,±1) (рис. 3, c)
и появление в качестве предельного уравнения двумерного аналога уравнения
гармонического осциллятора (24)

−�V (η)−
(
A2

1η
2
1 +A2

2η
2
2

)
V (η) = MV (η), η = (η1, η2) ∈ R2,

собственные функции которого по-прежнему обладают экспоненциальным за-
туханием на бесконечности (см., например, [21, 29]).

Для сложно устроенной геометрии тела и при отсутствии ярко выражен-
ных точек максимумов кривизн поверхности (ср. [44]), в частности, в случае
«седловин» (рис. 3, d) асимптотика даже первых собственных пар задачи (1), (2)
с постоянным коэффициентом Робэна остается неизученной.

Как и в плоской ситуации, наличие изолированных точек глобального мак-
симума переменного коэффициента Робэна a существенно упрощает асимпто-
тические конструкции (ср. разд. 4 и разд. 3, а также см. уже упоминавшиеся
статьи [18–22], относящиеся к другим задач задачам, но использующие похо-
жие приемы анализа). Впрочем, если глобальный максимум реализуется на
разомкнутой дуге, построение асимптотики встречает серьезные, пока не пре-
одоленные трудности (см. обсуждение в публикации [29]).
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