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ЗАДАЮЩИХ ЛИПШИЦЕВЫ ГРАФИКИ

НА ДВУХСТУПЕНЧАТЫХ ГРУППАХ КАРНО

М. Б. Карманова

Аннотация. Выведен явный вид субримановых дифференциалов отображений-
графиков, являющихся липшицевыми во внутреннем смысле, на двухступенчатых
группах Карно, и описаны дифференциальные и метрические свойства отображе-
ний, задающих такие графики.
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Статья продолжает исследования [1] о свойствах липшицевых графиков на
двухступенчатых группах Карно. В задачах классического анализа и его обоб-
щений отображения-графики играют существенную роль. Например, классы
минимальных и максимальных поверхностей (см. подробности о таких поверх-
ностях, связанных задачах и применениях в [2–5] и цитируемых источниках)
локально представимы в виде графиков. Кроме того, в начале XXI века бы-
ла найдена связь задач нейробиологии о построении моделей визуализации и
свойств минимальных поверхностей в субримановой геометрии [6–8]. Ряд работ
посвящен исследованию свойств графиков с классическим способом построения
и с согласованным с субримановой структурой (см., например, [9–16] и др.).
Нетрудно проверить, что в силу особенностей строения групп Карно и дру-
гих субримановых структур свойство липшицевости (во внутреннем смысле)
отображения не переносится на его график, и наоборот. В частности, график
липшицевой функции не всегда является таковым даже на модельных случаях
групп Гейзенберга. В связи с этим возникают проблемы при выводе анало-
гов дифференциальных и метрических свойств поверхностей-образов. Автором
предложен новый подход к решению такой проблемы в [17–20] и др. работах.

В [1] (см. также [21], где исследован модельный случай) решается обратный
вопрос: если график некоторого отображения является липшицевым, то какими
свойствами обладает определяющее его отображение? В результате получено
аналитическое описание классов отображений, гарантирующих липшицевость
во внутреннем смысле построенных по ним графиков. С помощью выведенного
в [1] критерия мы в данной работе получаем явный вид субриманова диффе-
ренциала липшицева отображения-графика и формулу для вычисления меры
соответствующей поверхности-образа, а также выводим в явном виде новые
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дифференциальные свойства определяющего такой график отображения. Кро-
ме того, при некоторых дополнительных предположениях установлена формула
площади для образов таких отображений.

Прежде всего опишем основные объекты исследования и их свойства.

Определение 1 [22]. Двухступенчатая группа Карно — это связная одно-
связная стратифицированная группа Ли G, алгебра Ли V которой представима
в виде V = V1 ⊕ V2, [V1, V1] = V2, [V1, V2] = {0}.

Если базисное поле Xl принадлежит Vk, то его степень degXl равна k,
l = 1, . . . , N , k = 1, 2. Здесь и далееN — топологическая размерность группы G.

Поля, степень которых равна единице, называются горизонтальными.

Подчеркнем, что базисные поля на группе Карно выбираются таким обра-
зом, что каждое из них принадлежит только одному из множеств V1 или V2.
Размерность каждого Vk обозначается символом dimVk, k = 1, 2. Групповая
операция определяется формулой Бейкера — Кэмпбелла — Хаусдорфа. Если

x = exp

(
N∑
j=1

xjXj

)
(0), y = exp

(
N∑
j=1

yjXj

)
(0), где 0 — единица группы G, то

x · y = z = exp

(
N∑

j=1

yjXj

)
(x) = exp

(
N∑

j=1

zjXj

)
(0), (1)

где zj = xj + yj для degXj = 1,

zj = xj + yj +
∑

µ,β:degXµ=degXβ=1

F jµ,βxµyβ (2)

при degXj = 2. Значения
{
F jµ,β

}
j,µ,β

называются структурными константа-

ми и не зависят от точек.
Аналог расстояния на группе Карно вводится следующим образом.

Определение 2 (см., например, [17]). Пусть w = exp

(
N∑
i=1

wiXi

)
(v), v, w ∈

G. Положим

d2(v, w) = max
{( ∑

j:degXj=1

w2
j

) 1
2

,
( ∑

j:degXj=2

w2
j

) 1
4
}
.

Множество {w ∈ G : d2(v, w) < r} называется шаром относительно d2 радиуса

r > 0 с центром в точке v и обозначается символом Box2(v, r).

С помощью формул групповой операции нетрудно показать, что d2 являет-
ся квазиметрикой: она равна нулю тогда и только тогда, когда точки совпадают,
обладает свойством симметричности, и локально для нее выполняется обобщен-
ное неравенство треугольника.

Определение 3. Рассмотрим точку u ∈ G и (v1, . . . , vN ) ∈ RN . Опреде-
лим отображение θu : RN → G следующим образом:

θu(v1, . . . , vN ) = exp

(
N∑

i=1

viXi

)
(u).

Известно, что θu — гладкий диффеоморфизм. Набор {vi}Ni=1 называется нор-

мальными координатами или координатами первого рода (относительно u ∈
G) точки v = θu(v1, . . . , vN ).



1096 М. Б. Карманова

Определение 4. Пусть G, G̃ — группы Карно, E ⊂ G и ϕ : E → G̃.
Будем говорить, что оно липшицево во внутреннем смысле, или липшицево в

субримановом смысле, если существует константа 0 < L <∞ такая, что

d̃2(ϕ(x), ϕ(y)) < Ld2(x, y),

где d̃2 — квазиметрика на G̃, построенная по такому же принципу, как в опре-
делении 2.

Определение 5 ([23]; см. также [24]). Пусть G и G̃ — группы Карно,

� ⊂ G и ϕ : � → G̃. Отображение ϕ является hc-дифференцируемым, или
дифференцируемым в субримановом смысле, в (предельной) точке x ∈ �, если

существует горизонтальный гомоморфизм Lx : G→ G̃ такой, что

d̃2(ϕ(y),Lx〈y〉) = o(1) · d2(x, y), где o(1)→ 0 при � ∋ y → x.

hc-Дифференциал (или субриманов дифференциал) Lx обозначается символом

D̂ϕ(x).

Хаусдорфова размерность G относительно d2 равна
2∑

k=1

k dimVk и обозна-

чается символом ν.

Определение 6. Значение субримановой меры для A ⊂ G равно

H ν(A) =

2∏

k=1

ωdimVk
· lim
δ→0

inf
{∑

i∈N
rνi :

⋃

i∈N
Box2(xi, ri) ⊃ A, xi ∈ A, ri < δ

}
,

где ωm обозначает объем единичного шара в Rm, а точная нижняя грань берется
по всем покрытиям множества A.

Несмотря на нестандартное определение (в определение H ν(A) добавляет-
ся условие xi ∈ A, i ∈ N), функция множества H ν является мерой. В частности,
она обладает свойством счетной аддитивности на сигма-алгебре борелевских
множеств (см., например, [25]).

Обозначение 7. Пусть G̃ — группа Карно. Обозначим ее топологическую
размерность и размерности составляющих алгебру Ли подпространств, отобра-
жение нормальных координат, а также, определенную аналогично d2 квазимет-
рику теми же символами, что и для G, только со знаком .̃

Опишем условия решения задачи.

Предположение 8. Пусть G и G̃ — двухступенчатые группы Карно с

базисными полями {Xi}Ni=1 и {X̃j}Ñj=1 соответственно, которые являются под-

множествами двухступенчатой группы Карно Ĝ топологической размерности

N̂ = N + Ñ со структурными константами
{
F jµ,β

}
j,µ,β

и квазиметрикой d̂2, за-

данной, как в определении 2. Пусть еще базисные векторные поля {X̂i}N̂i=1 на

Ĝ таковы, что, во-первых, dim V̂k = dimVk + dim Ṽk, k = 1, 2, и, во-вторых,

X̂1|G = X1, . . . , X̂dimV1 |G = XdimV1 ,

X̂
dim V̂1+1

|G = XdimV1+1, . . . , X̂dim V̂1+dimV2
|G = XN

и
X̂dimV1+1|G̃ = X̃1, . . . , X̂dim V̂1

|
G̃

= X̃
dim Ṽ1

,
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X̂
dim V̂1+dimV2+1

|
G̃

= X̃
dim Ṽ1+1

, . . . , X̂
N̂
|
G̃

= X̃
Ñ
.

Обозначение 9. Пусть G и G̃ — двухступенчатые группы Карно, ϕ : G→
G̃ и u,w ∈ G. Обозначим координаты элемента ϕ(w) относительно ϕ(u) симво-

лами {ϕku(w)}Ñk=1. Иными словами,

ϕ(w) = exp

(
Ñ∑

k=1

ϕku(w)X̃k

)
(ϕ(u)).

Обозначение 10. Положим

wH = exp

(
dimV1∑

β=1

wβXβ

)
(u) и wT = exp

(
N∑

λ=dimV1+1

wλXλ

)
(u)

для w = exp

(
N∑
j=1

wjXj

)
(u). Положим также

ϕHu (wH) = exp

(
dim Ṽ1∑

k=1

ϕku(wH)X̃k

)
(ϕ(u))

и

ϕTu (wT ) = exp

(
Ñ∑

k=dim Ṽ1+1

ϕku(wT )X̃k

)
(ϕ(u)).

Следующий результат является основой для решения поставленной задачи
о дифференциальных свойствах.

Теорема 11 [1]. Пусть для двухступенчатых групп Карно G, G̃ и Ĝ выпол-

нены условия предположения 8 и ϕ : G → G̃ — некоторое отображение. Тогда

график ϕ� : G→ Ĝ, построенный как

G ∋ w 7→ exp

(
dim V̂1∑

j=dimV1+1

ϕj−dimV1(w)X̂j +

N̂∑

j=dim V̂1+dimV2+1

ϕj−N (w)X̂j

)
(w),

где

ϕ(w) = exp

(
Ñ∑

j=1

ϕj(w)X̃j

)
(0),

является липшицевым относительно d2 и d̂2 тогда и только тогда, когда выпол-
нены следующие условия.

1. Координатные функции ϕj липшицевы во внутреннем смысле, если j ≤
dim Ṽ1.

2. Если k = dim V̂1 + 1, . . . , dim V̂1 + dimV2, то верно

∑

µ:µ∈[dimV1+1,dim V̂1]

F kµ,βϕµ−dimV1(u) = 0 (3)

для всех β = 1, . . . , dimV1 и u ∈ G.
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3. Для k > dim V̂1 + dimV2 и точек u,wH ∈ G таких, что

wH = exp

(
dimV1∑

β=1

wβXβ

)
(u),

функция wH 7→ ϕk−Nu (wH) дифференцируема (в классическом смысле) в u, ее
дифференциал равен

dimV1∑

β=1

( ∑

µ:µ∈[dimV1+1,dim V̂1]

2F kµ,βϕµ−dimV1(u)
)
wβ ,

а величина o(1) из определения дифференцируемости не превосходит

Q ·
√

dimV1∑
β=1

(wβ)2, где константа 0 < Q <∞ не зависит от u.

Если же

wT = exp

(
N∑

λ=dimV1+1

wλXλ

)
(u),

то

∣∣ϕk−Nu (wT )
∣∣ ≤ C ·

√√√√
N∑

λ=dimV1+1

(wλ)2, C <∞.

Перейдем к описанию и доказательству основного результата работы.

Теорема 12. Пусть для двухступенчатых групп Карно G, G̃ и Ĝ выполне-

ны условия предположения 8 и ϕ : G→ G̃ — такое отображение, что его график

ϕ� : G → Ĝ является липшицевым во внутреннем смысле, а u ∈ G — произ-

вольная точка области определения ϕ. Тогда функции {ϕku(w)}Ñk=1 обладают
следующими свойствами.

1. Если k = 1, . . . , dim Ṽ1, то каждая функция w 7→ ϕku(w) является hc-диф-
ференцируемой в точках hc-дифференцируемости ϕ� и значение ее hc-диффе-

ренциала в точке u ∈ G на элементе w совпадает с (D̂ϕ� (u)〈wH〉)k+dimV1 .

2. Если k = dim Ṽ1+1, . . . , Ñ , то каждая функция wH 7→ ϕku(wH) дифферен-
цируема по w1, . . . , wdimV1 дважды, причем значение второго дифференциала
в точке u на элементе wH равно

∑

µ,β:β∈[1,dimV1],

µ∈[dimV1+1,dim V̂1]

F k+Nµ,β (D̂ϕ� (u)〈wH〉)µwβ .

3. Если k = dim Ṽ1 + 1, . . . , Ñ , то функция wT 7→ ϕku(wT ) дифференци-
руема по wdimV1+1, . . . , wN в точках u hc-дифференцируемости отображения-
графика ϕ� . Кроме того, значение дифференциала каждой такой функции в

точке u ∈ G на элементе wT равно (D̂ϕ� (u)〈w〉)k+N = (D̂ϕ� (u)〈wT 〉)k+N .
Кроме того, субриманов дифференциал липшицева отображения-графика

в точках, где он существует, имеет вид


EdimV1 0
DϕHu (u) 0

0 EdimV2

0 DϕTu (u)


 ,
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где El — единичная матрица размера l.

Доказательство. Пусть u,w ∈ G, где w = exp

(
N∑
i=1

wiXi

)
(u). Тогда [1]

ϕ� (w) = exp

(
N̂∑

k=1

skX̂k

)
(ϕ� (u)),

где sk = wk, если k = 1, . . . , dimV1, и sk = ϕk−dim V1(w) − ϕk−dimV1(u) =

ϕk−dimV1
u (w), если k = dimV1 + 1, . . . , dim V̂1. Тогда, так как

sk = (D̂ϕ� (u)〈w〉)k + o(d2(u,w)),

то

ϕk−dimV1
u (w) = (D̂ϕ� (u)〈w〉)k + o(d2(u,w)) = (D̂ϕ� (u)〈wH〉)k + o(d2(u,w)),

где

wH = exp

(
dimV1∑

i=1

wiXi

)
(u), k = dim V1 + 1, . . . , dim V̂1.

Иными словами, каждая функция ϕk−dimV1
u (w) дифференцируема в субримано-

вом смысле в точках субримановой дифференцируемости ϕ� , и значение ее hc-

дифференциала на элементе w равно (D̂ϕ� (u)〈wH〉)k, k = dimV1 +1, . . . , dim V̂1.
Кроме того, полагая w = wH , выводим

ϕk−dimV1
u (wH) = (D̂ϕ� (u)〈wH〉)k + o(d2(u,wH)),

где d2(u,wH) =

√
dimV1∑
i=1

(wi)2. Отсюда следует, что отображение wH 7→ ϕHu (wH)

дифференцируемо в точке u и поэтому первый блок матрицы субриманова диф-

ференциала ϕ� размера dim V̂1 × dim V1 равен
(
EdimV1

DϕHu (u)

)
.

Если же k = dim V̂1 + 1, . . . , dim V̂1 + dimV2, то

sk = w
k−dim Ṽ1

−
∑

µ,β:β∈[1,dimV1],

µ∈[dimV1+1,dim V̂1]

F kµ,β(ϕµ−dimV1(w) − ϕµ−dimV1(u))wβ .

Но так как для этих значений k верно (3), то справедливо и
∑

µ:µ∈[dimV1+1,dim V̂1]

F kµ,βϕµ−dimV1(w) = 0

для всех β = 1, . . . , dimV1, поэтому sk = w
k−dim Ṽ1

для k = dim V̂1+1, . . . , dim V̂1+

dimV2.
Пусть теперь k > dim V̂1 + dimV2. Тогда

sk = ϕk−Nu (w)−
∑

µ,β:β∈[1,dimV1],

µ∈[dimV1+1,dim V̂1]

F kµ,β(ϕµ−dimV1(w)− ϕµ−dimV1(u))wβ

− 2
∑

µ,β:β∈[1,dimV1],

µ∈[dimV1+1,dim V̂1]

F kµ,βϕµ−dimV1(u)wβ . (4)
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Тогда для w и wH в силу (2) верно w = exp

(
N∑

i=dimV1+1

wiXi

)
(wH). Преобразуем

(4) через значения ϕ(wH). Так как

ϕk−Nu (w) = ϕk−Nu (wH) + ϕk−NwH
(w)

+
∑

µ,λ:

µ,λ∈[dimV1+1,dim V̂1]

F kµ,λϕ
µ−dimV1
u (wH)ϕλ−dimV1

wH
(w), (5)

то выводим

sk = ϕk−Nu (wH)+ϕk−NwH
(w)+

∑

µ,λ:

µ,λ∈[dimV1+1,dim V̂1]

F kµ,λϕ
µ−dimV1
u (wH)ϕλ−dimV1

wH
(w)

−
∑

µ,β:β∈[1,dimV1],

µ∈[dimV1+1,dim V̂1]

F kµ,βϕ
µ−dimV1
u (wH)wβ −

∑

µ,β:β∈[1,dimV1],

µ∈[dimV1+1,dim V̂1]

F kµ,βϕ
µ−dimV1
wH

(w)wβ

− 2
∑

µ,β:β∈[1,dimV1],

µ∈[dimV1+1,dim V̂1]

F kµ,βϕµ−dimV1(u)wβ .

Предположим, что u — точка, в которой существует субриманов диффе-

ренциал D̂ϕ� (u). Тогда из определения 5 и из (2) следует, что

|sk − (D̂ϕ� (u)〈w〉)k| = o(d2(u,w)2).

Полагая w = wH , получаем d2(u,wH)2 =
dimV1∑
i=1

(wi)
2, и (D̂ϕ� (u)〈w〉)k = 0 для

всех k > dim V̂1 + dimV2, поэтому

ϕk−Nu (wH)− 2
∑

µ,β:β∈[1,dimV1],

µ∈[dimV1+1,dim V̂1]

F kµ,βϕµ−dimV1(u)wβ

−
∑

µ,β:β∈[1,dimV1],

µ∈[dimV1+1,dim V̂1]

F kµ,βϕ
µ−dimV1
u (wH)wβ = o

(
dimV1∑

i=1

(wi)
2

)
. (6)

Так как ∑

µ,β:β∈[1,dimV1],

µ∈[dimV1+1,dim V̂1]

F kµ,βϕ
µ−dimV1
u (wH)wβ

=
∑

µ,β:β∈[1,dimV1],

µ∈[dimV1+1,dim V̂1]

F kµ,β((D̂ϕ� (u)〈wH〉)µ + o(d2(u,wH)))wβ

=
∑

µ,β:β∈[1,dimV1],

µ∈[dimV1+1,dim V̂1]

F kµ,β(D̂ϕ� (u)〈wH〉)µwβ + o(d2(u,wH)2), (7)

то из (6) выводим усиление теоремы 11, а именно, что каждая функция wH 7→
ϕk−Nu (wH) дифференцируема по w1, . . . , wdimV1 дважды, причем значение вто-
рого дифференциала в точке u на элементе wH равно∑

µ,β:β∈[1,dimV1],

µ∈[dimV1+1,dim V̂1]

F kµ,β(D̂ϕ� (u)〈wH〉)µwβ
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для всех k > dim V̂1 + dimV2.
Далее, имеем

sk = ϕk−NwH
(w) +

∑

µ,λ:

µ,λ∈[dimV1+1,dim V̂1]

F kµ,λϕ
µ−dimV1
u (wH)ϕλ−dimV1

wH
(w)

−
∑

µ,β:β∈[1,dimV1],

µ∈[dimV1+1,dim V̂1]

F kµ,βϕ
µ−dimV1
wH

(w)wβ + o

(
dimV1∑

i=1

(wi)
2

)

= (D̂ϕ� (u)〈w〉)k + o(d2(u,w)2).

В полученном соотношении (D̂ϕ� (u)〈w〉)k не зависит от координат элемента wH .
Поэтому рассмотрим случай, когда все эти координаты равны нулю. Тогда
получим wH = u, w = wT и поэтому

(D̂ϕ� (u)〈w〉)k + o(d2(u,wT )2) = ϕk−Nu (wT ), (8)

где wT = exp

(
N∑

λ=dimV1+1

wλXλ

)
(u) (см. также теорему 11). Так как d2(u,wT )2

=

√
N∑

λ=dimV1+1

(wλ)2, то (8) означает, что функция

wT 7→ ϕk−Nu (wT )

дифференцируема по wdimV1+1, . . . , wN в точках u субримановой дифференци-

руемости отображения-графика ϕ� для всех k > dim V̂1 + dimV2. Кроме того,

значение ее дифференциала в точке u на элементе wT равно (D̂ϕ� (u)〈w〉)k =

(D̂ϕ� (u)〈wT 〉)k, k = dim V̂1 + dimV2, . . . , N̂ .
Отсюда и из (2) следует, что отображение wT 7→ ϕTu (wT ) является диффе-

ренцируемым в точке u, и поэтому второй блок матрицы субриманова диффе-

ренциала ϕ� размера dim V̂2 × dimV2 равен
(
EdimV2

DϕTu (u)

)
.

Таким образом, мы вывели дифференциальные свойства функций {ϕku(w)}Ñk=1,
и получили вид субриманова дифференциала отображения-графикаϕ� в точках
u ∈ G его hc-дифференцируемости:



EdimV1 0
DϕHu (u) 0

0 EdimV2

0 DϕTu (u)


 . (9)

Теорема доказана.

Пример 13. Пусть G, G̃ ⊂ Ĝ таковы, что [X̂i, X̂j ] = 0, если i = 1, . . . ,

dimV1 и j = dimV1 + 1, . . . , dim V̂1, а ϕ : G → G̃ липшицево во внутреннем
смысле. Тогда (6) имеет вид

ϕk−Nu (wH) = o

(
dimV1∑

i=1

(wi)
2

)
.
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Пример 14. Пусть G, G̃ ⊂ Ĝ таковы, что существует ненулевое решение
(tdimV1+1, . . . , tdim V̂1

) у системы уравнений

dim V̂1∑

µ=dimV1+1

F kµ,βtµ = 0, k = dim V̂1 + 1, . . . , dim V̂1 + dimV2, β = 1, . . . , dimV1.

Для µ = dimV1 + 1, . . . , dim V̂1 положим ϕµ−dimV1 ≡ tµ. Если же µ = dim V̂1 +

dimV2 + 1, . . . , N̂ , то для w = exp

(
N∑
i=1

wiXi

)
(0) определим

ϕµ−N (w) =

dimV1∑

β=1

( ∑

λ:λ∈[dimV1+1,dim V̂1]

2Fµλ,βϕλ−dimV1

)
wβ .

для всех k > dim V̂1 + dim V2. Тогда вторые производные ϕµ−N (w) по w1, . . . ,
wdimV1 и первые производные ϕµ−N (w) по wdimV1+1, . . . , wN равны нулю.

Из теоремы 12 в качестве следствия получаем формулу площади для лип-
шицевых отображений-графиков. Обратим внимание, что ее вид является ана-
логичным классическому.

Теорема 15. В условиях теоремы 12 справедлива формула площади для
отображений-графиков

∫

A

J (ϕ� , x) dH
ν(x) = H ν(ϕ� (A)),

где A ⊂ G — измеримое множество, J (ϕ� , x) совпадает со значением

√
det
(
EdimV1 + (DϕHx )∗(x)DϕHx (x)

)
·
(
EdimV2 +

(
DϕTx

)∗
(x)DϕTx (x)

)
,

а H ν на ϕ� (G) задается аналогично определению 6 и является мерой.

Для получения второго основного результата нам потребуется следующее

Определение 16 [26]. Пусть G, G̃ — группы Карно и ξ : G → G̃. Пусть
еще d : ξ(G)→ R+. Будем говорить, что ξ полиномиально субриманово диффе-

ренцируемо, или полиномиально hc-дифференцируемо в x ∈ G, если существует

отображение Lx : G→ G̃ такое, что
1) d(ξ(y),Lx〈y〉) = o(d2(x, y)) при y → x;
2) Lx〈y〉 = θξ(x) ◦ Lx ◦ θ−1

x (y), где Lx — оператор с полиномиальными по
y1, . . . , yN коэффициентами, а y = θx(y1, . . . , yN).

Отображение Lx называется полиномиальным субримановым дифференци-

алом, или полиномиальным hc-дифференциалом, отображения ξ в точке x и

обозначается символом D̂P ξ(x).

Предположим теперь, что отображение-график ϕ� является контактным
отображением класса C1

H и липшицевым, т. е. производные ϕ� вдоль гори-
зонтальных полей существуют и непрерывны и, кроме того, span

{
X1ϕ� , . . . ,

XdimV1ϕ�
}
⊂ V̂1. Такие отображения являются непрерывно hc-дифференцируе-

мыми всюду [24]. В этом случае аналог дифференциальных свойств ϕ можно
описать в явном виде.
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Теорема 17. Пусть выполнены условия теоремы 12 и отображение-график
ϕ� является контактным отображением класса C1

H и липшицевым.
Тогда ϕ является полиномиально субриманово дифференцируемым всюду,

и для u ∈ G и w из окрестности точки u верно

D̂Pϕ(u)〈w〉 = exp

(
Ñ∑

k=1

P ku (w)X̃k

)
(ϕ(u)),

где
P ku (w) = (D̂ϕ� (u)〈w〉)k+dim V1 , если k = 1, . . . , dim Ṽ1,

и

P ku (w) = 2
∑

µ,β:β∈[1,dimV1],

µ∈[1,dim Ṽ1]

F k+Nµ+dimV1,β
ϕµ(u)wβ

+
∑

µ,β:β∈[1,dimV1],

µ∈[dimV1+1,dim V̂1]

F k+Nµ,β (D̂ϕ� (u)〈w〉)µwβ + (D̂ϕ� (u)〈w〉)k+N ,

если k = dim Ṽ1 + 1, . . . , Ñ .

Доказательство. Пусть u,w ∈ G, где w = exp

(
N∑
i=1

wiXi

)
(u). В теоре-

ме 12 установлено, что

ϕku(w) = (D̂ϕ� (u)〈w〉)k+dim V1 + o(d2(u,w)) (10)

для k = 1, . . . , dim Ṽ1. Обозначим

P ku (w) = (D̂ϕ� (u)〈w〉)k+dim V1 . (11)

Заметим, что для всех k = 1, . . . , dim Ṽ1 верно P ku (wH) = P ku (w), где wH =

exp

(
dimV1∑
i=1

wiXi

)
(u).

Пусть теперь k = dim Ṽ1 + 1, . . . , Ñ . Из (6) и (7) следует, что для wH
выполняется

ϕku(wH) = 2
∑

µ,β:β∈[1,dimV1],

µ∈[1,dim Ṽ1]

F k+Nµ+dimV1,β
ϕµ(u)wβ

+
∑

µ,β:β∈[1,dimV1],

µ∈[dimV1+1,dim V̂1]

F k+Nµ,β (D̂ϕ� (u)〈wH〉)µwβ + o

(
dimV1∑

i=1

(wi)
2

)
,

причем D̂ϕ� (u)〈wH〉 = D̂ϕ� (u)〈w〉. Положим

P k,1u (w) = 2
∑

µ,β:β∈[1,dimV1],

µ∈[1,dim Ṽ1]

F k+Nµ+dimV1,β
ϕµ(u)wβ

+
∑

µ,β:β∈[1,dimV1],

µ∈[dimV1+1,dim V̂1]

F k+Nµ,β (D̂ϕ� (u)〈w〉)µwβ . (12)
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Из (5) выводим

ϕku(w) = P k,1u (w) + ϕkwH
(w)

+
∑

µ,λ:

µ,λ∈[1,dim Ṽ1]

F k+Nµ+dimV1,λ+dimV1
Pµu (wH)PλwH

(w) + o(d2(u,w)2).

Так как PλwH
(w) = (D̂ϕ� (wH)〈w〉)λ+dim V1 , то PλwH

(w) = 0. Тогда

ϕku(w) = P k,1u (w) + ϕkwH
(w) + o(d2(u,w)2). (13)

Далее, из (8) следует, что

ϕkwH
(w) = (D̂ϕ� (wH)〈w〉)k+N + o(d2(wH , w)2). (14)

По предположению значения D̂ϕ� (s) непрерывны по s ∈ G, поэтому для вся-
кого элемента v такого, что d2(0, v) = 1, верно (см. обозначение и описание
умножения в (1))

d̃R(D̂ϕ� (s)〈s · v〉, D̂ϕ� (s′)〈s′ · v〉) = o(1),

где d̃R — расстояние, построенное по риманову тензору на G̃, и o(1) → 0 при
s′ → s равномерно на компактных подмножествах G. Следовательно, для wT =

exp

(
N∑

λ=dimV1+1

wλXλ

)
(u) верно

dR(D̂ϕ� (wH)〈w〉, D̂ϕ� (u)〈wT 〉) = o(1) · dR(u,wT ),

где o(1) равномерно на компактных подмножествах G. Так как dR(u,wT ) ≤
K · (d2(u,wT )2) для K <∞ на компактных подмножествах G, то

|(D̂ϕ� (wH)〈w〉)k+N − (D̂ϕ� (u)〈wT 〉)k+N | = o(1) · d2(u,wT )2 (15)

для k = dim Ṽ1 + 1, . . . , Ñ . Из (14) и (15) выводим

ϕkwH
(w) = (D̂ϕ� (u)〈wT 〉)k+N + o(d2(u,w)2) = (D̂ϕ� (u)〈w〉)k+N + o(d2(u,w)2).

Полагая
P k,2u (w) = (D̂ϕ� (u)〈w〉)k+N (16)

и P ku (w) = P k,1u (w) + P k,2u (w), с учетом (13) получаем

ϕku(w) = P ku (w) + o(d2(u,w)2) (17)

для всех k = dim Ṽ1 + 1, . . . , Ñ .

Таким образом, мы получили аппроксимацию функций {ϕku(w)}Ñk=1 для
произвольных u ∈ G и w из окрестности u. Осталось показать, что отобра-

жение w 7→ D̂Pϕ(u)〈w〉, определенное как

G ∋ w 7→ exp

(
Ñ∑

k=1

P ku (w)X̃k

)
(ϕ(u)), (18)

аппроксимирует значение ϕ(w) относительно d̃2, т. е. что

d̃2(ϕ(w), D̂Pϕ(u)〈w〉) = o(d2(u,w)),
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где o(1) → 0 при w → u. Для этого воспользуемся формулами групповой опе-
рации (см. (2)) и применим их к выражениям (11), (12) и (16).

Пусть

ϕ(w) = exp

(
Ñ∑

l=1

δlX̃l

)
(D̂Pϕ(u)〈w〉).

Тогда если l = 1, . . . , dim Ṽ1, то из (10) и (11) следует, что |δl| = o(d2(u,w)).

Пусть теперь l = dim Ṽ1 + 1, . . . , Ñ . Тогда

δl = ϕlu(w) − P lu(w)−
∑

µ,λ:

µ,λ∈[1,dim Ṽ1]

F l+Nµ+dimV1,λ+dimV1
ϕµu(w)Pλu (w).

Из (17) следует, что
∣∣ϕlu(w) − P lu(w)

∣∣ = o(d2(u,w)2). Далее, из (10), (11), анти-

симметричности F jα,β = −F jβ,α всех структурных констант и того, что в силу
теоремы 11

max
{
|ϕµu(w)|, |Pλu (w)|

}
≤ L · d2(u,w)

для всех µ, λ = 1, . . . , dim Ṽ1 и некоторого L <∞, вытекает
∣∣∣

∑

µ,λ:

µ,λ∈[1,dim Ṽ1]

F l+Nµ+dimV1,λ+dimV1
ϕµu(w)Pλu (w)

∣∣∣ = o(d2(u,w)2).

Поэтому и |δl| = o(d2(u,w)2) для l = dim Ṽ1 + 1, . . . , Ñ .
Таким образом, отображение ϕ является полиномиально субриманово диф-

ференцируемым всюду. Явный вид описан в (11), (12), (16), а также в (10), (17)
и (18). Теорема доказана.

Замечание 18. Как видно из доказательства теоремы 17, липшицевость
во внутреннем смысле координатных функций ϕ при горизонтальных полях
существенна для полиномиальной субримановой дифференцируемости.

Из результатов теоремы 17 следует, что для Ñ ≥ N при дополнитель-
ных предположениях гладкости класса C2 по w1, . . . , wdimV1 и класса C1 по

wdimV1+1, . . . , wN функций ϕku(w), k = 1, . . . , dim Ṽ1, а также биективности на
свой образ отображения ϕ, выполняются условия работы [26]. Поэтому для ϕ
применимы результаты об адаптированном базисе и формуле площади.

Определение 19 [26]. Пусть G и G̃ — группы Карно и ξ : G → G̃, x ∈
G. Если координаты {κi}Ñi=1 полиномиального субриманова дифференциала

D̂P ξ(x)〈y〉, рассмотренные относительно ξ(x), в некотором базисе {Yk}Ñk=1 обла-

дают свойством |κi| = O(ρ2(x, y)
degXi), то базис {Yk}Ñk=1 называется внутрен-

ним, или адаптированным, в точке x ∈ G.

Из результатов [26] вытекает

Предложение 20. Пусть выполнены условия теоремы 12 и отображе-
ние-график ϕ� является контактным отображением класса C1

H и липшицевым.

Предположим дополнительно, что Ñ ≥ N , а функции ϕku(w) принадлежат клас-

су C2 по w1, . . . , wdimV1 и классу C1 по wdimV1+1, . . . , wN , k = 1, . . . , dim Ṽ1 для
всех u ∈ G, а ϕ биективно на свой образ. Тогда верны следующие утверждения.
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1. В окрестности образа каждой точки u ∈ G существует такой адаптиро-

ванный базис {X̃u
l }Ñl=1, что полиномиальный субриманов дифференциал отоб-

ражения ϕ имеет вид (
DϕHu (u) 0

0 DϕTu (u)

)

(ср. (9)).
2. Функция множества, определяемая как G ⊃ A 7→ H ν

ϕ (ϕ(A)), является
мерой.

Здесь значение H ν
ϕ (D), D = ϕ(A), равно

ωG lim
δ→0

inf
{∑

i∈N
rνi :

⋃

i∈N
Box

ϕ−1(wi)
2 (wi, ri) ⊃ D, wi ∈ D, ri < δ

}
, (19)

ωG = ωdimV1ωdimV2 , Box
ϕ−1(w)
2 (w, r) = {v ∈ G̃ : d̃

ϕ−1(w)
2 (v, w) < r}, величина

d̃
ϕ−1(w)
2 построена так же, как в определении 2, с заменой исходного базиса

на {X̃ϕ−1(w)
l }Ñl=1, а точная нижняя грань берется по всем покрытиям множе-

ства D = ϕ(A).

Также [26] для ϕ верна формула площади для адаптированной меры, опре-
деленной в (19).

Теорема 21. В условиях предложения 20 справедлива формула площади
∫

A

√
det
((
DϕHx

)∗
(x)DϕHx (x)

)
·
√

det
((
DϕTx

)∗
(x)DϕTx (x)

)
dH ν(x) = H ν

ϕ (ϕ(A)).

Здесь DϕHx (x) и DϕTx (x) такие же, как в (9).
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