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Аннотация. Доказано, что любая дискретная параболическая функция, опреде-
ленная в положительном квадранте гауссовой плоскости, допускает разложение в
абсолютно сходящийся ряд Тейлора по системе псевдостепеней.
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§ 1. История вопроса

1.1. Основные понятия. Обозначим через G гауссову плоскость G =
{z = x + iy : x, y ∈ Z} и через G+ — положительный квадрант гауссовой
плоскости G+ = {z ∈ G : x ≥ 0, y ≥ 0}. Комплекснозначная функция f :
G→ C называется дискретной аналитической функцией первого рода на тройке
{z; z + 1; z + i}, если справедливо соотношение

f(z + i)− f(z)

i
= f(z + 1)− f(z). (1)

Если соотношение (1) верно для любой тройки {z; z+1; z+i} ⊂ E для некоторого
множества E ⊂ G, то f является дискретной аналитической функцией первого

рода на E. Множество всех таких функций обозначим через D1(E).
Соотношение (1) является дискретным аналогом уравнений Коши — Рима-

на для классических аналитических функций.
Действительно, для векторов z1 = (z + 1) − z = 1, z2 = (z + i) − z = i,

w1 = f(z + 1)− f(z) и w2 = f(z + i)− f(z) из равенства (1) получим

w2

w1
=
f(z + i)− f(z)

f(z + 1)− f(z)
=
i

1
=
z2
z1
. (2)

Так как |z2| = |z1| = 1, из (2) следует

|w2| = |w1|, w2 = iw1, (3)

откуда

ŵ1, w2 =
π

2
= ẑ1, z2. (4)
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Равенства (3) и (4) утверждают постоянство искажения масштаба отображени-
ем f и свойство консерватизма углов на тройке {z; z + 1; z + i}. Это аналог
конформности для классических аналитических функций.

Комплекснозначная функция f :G→ C называется дискретной аналитиче-

ской функцией второго рода на квадрате {z; z+1; z+1+i; z+i} если справедливо
равенство

f(z + 1 + i)− f(z)

1 + i
=
f(z + i)− f(z + 1)

i− 1
(5)

или, что то же самое,

∂f(z) = f(z) + if(z + 1) + i2f(z + 1 + i) + i3f(z + i) = 0. (6)

Если соотношение (5) верно на любом квадрате {z; z+1; z+1+ i; z+ i} ⊂ E
для некоторого множества E ⊂ G, то f называется дискретной аналитической

функцией второго рода на E. Множество всех таких функций обозначим через
D2(E).

Соотношение (5) также является дискретным аналогом уравнений Коши —
Римана.

Для векторов

z1 = (z + 1 + i)− z = 1 + i, z2 = (z + i)− (z + 1) = i− 1,

w1 = f(z + 1 + i)− f(z), w2 = f(z + i)− f(z + 1)

из (5) имеем равенство
w2

w1
=
z2
z1

=
i− 1

1 + i
= i. (7)

Так как |z2| = |z1| =
√

2, получаем из (7), что

|w2| = |w1|, w2 = iw1, (8)

откуда

ŵ1, w2 =
π

2
= ẑ1, z2. (9)

И в этом случае из равенств (8) и (9) получается свойство постоянства иска-
жения масштаба отображения f и свойство консерватизма углов на четверке
{z; z + 1; z + 1 + i; z + i}.

1.2. Линейная теория. Теория дискретных аналитических функций вос-
ходит к работам Айзекса 40-х гг. прошлого столетия. В своих исследованиях
Айзекс [1] ввел дискретные аналитические функции первого и второго рода и
исследовал функции первого рода. Все работы, основанные на линейных соот-
ношениях (1) и (5), получили название «линейная теория дискретных аналити-
ческих функций».

Далее, в 1944 г. Ферран [2] начала исследовать дискретные аналитиче-
ские функции второго рода. Базисные свойства для дискретных аналитических
функций второго рода, аналогичные свойствам классических аналитических
функций, были установлены в работе Даффина [3]. С. Л. Соболев [4] полу-
чил важные результаты, связанные с поведением дискретных аналитических и
гармонических функций на бесконечности.

Новые комбинаторные и аналитические идеи Цайльбергера [5] дали им-
пульс к развитию теории. Эти идеи развил и обобщил А. Д. Медных в иссле-
довании [6].
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Новое понимание природы дискретных аналитических функций было пред-
ложено Даффиным в [7] Здесь гауссова решетка G была заменена графом с ром-
бическими гранями. Эти идеи далеко продвинул Мерка [8], где линейная теория
дискретных аналитических функций была распространена на случай дискрет-
ных римановых поверхностей. Кэниён [9] построил функцию Грина для опера-
тора Дирака на ромбических графах. Этот подход позволил получить важные
результаты в теории кодирования Идальго [10]. В работах И. А. Дынникова и
C. П. Новикова [11] изучены дискретные аналитические функции на треуголь-
ных и шестиугольных решетках.

1.3. Нелинейная теория. Помимо дискретных аналитических функций
первого и второго рода, определенных формулами (1) и (5), развивалась нели-
нейная теория, основанная на идеях Тёрстона [12] и его учеников.

Пусть f : G → C — функция, удовлетворяющая на каждой четверке
{z; z + 1; z + 1 + i; z + i} соотношению

(f(z + 1)− f(z))(f(z + 1 + i)− f(z + i))

(f(z + i)− f(z))(f(z + 1 + i)− f(z + 1))
= −1. (10)

Нелинейное соотношение (10) введено в работе [13] и определяет шаровые упа-
ковки. Более глубокие комбинаторные идеи и обобщения шаровых упаковок на
произвольные четырехугольные графы даны в работе [14]. Этот подход пока-
зывает, что шаровые упаковки являются естественным дискретным аналогом
аналитических функций [15–18].

Одним из важнейших результатов в этом направлении является доказа-
тельство того, что голоморфное отображение в классической теореме Римана
может быть аппроксимировано шаровыми упаковками [19–21].

Вариационный подход к шаровым упаковкам обсуждается в работе [22].
До недавнего времени линейная и нелинейная теории развивались раздель-

но. В [23] показано, что в некотором точном смысле первая теория является
линеаризацией второй теории.

После 2000-х число работ в области дискретных аналитических функций
значительно выросло, поэтому очень трудно упомянуть все замечательные ре-
зультаты с этого момента.

В 2010 г. С. Смирнов получил медаль Филдса. В своих исследованиях он
активно использовал идеи и методы теории дискретных аналитических функ-
ций.

1.4. Применение в численных методах. История развития числен-
ных методов решения уравнения теплопроводности начинается с первой рабо-
ты немецкого математика Рунге [24], вышедшей в 1908 г. В ней был описан
метод сеток, основанный на замене производных, входящих в дифференциаль-
ное уравнение, разностными отношениями.

Одной из важнейших работ в этой области стала монография советского
математика Ш. Е. Микеладзе [25], вышедшая в свет в 1936 г. С 1932 г. нача-
ли печататься работы Д. Ю. Панова, а в 1938 г. вышла его книга, в которой
собраны ценные практические результаты [26]. С появлением этих работ за-
дача численного интегрирования уравнений в частных производных получила
твердые основания для своего теоретического и практического развития.

1.5. Основные результаты. Пусть A (C) — пространство целых анали-
тических функций, а D(G+) — пространство дискретных параболических функ-
ций, определенное ниже.
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В § 2 введены псевдостепени πk(z) в пространстве D(G+). Установлено, что
для них выполнены свойства (A1)–(A3) (теоремы 1 и 2).

В § 3 доказано, что оператор � : A (C) → D(G+) корректно определен,
удовлетворяет свойству (A4) и таким образом является оператором эволюции
(теоремы 3 и 4).

Теорема 5 устанавливает сюръективность отображения � : A (C)→ D(G+),
откуда следует существование разложения в ряд Тейлора произвольной дис-
кретной параболической функции.

Теорема 6 дает описание ядра отображения � : A (C)→ D(G+).

§ 2. Дискретные параболические функции

2.1. Определение. Пусть G — гауссова плоскость, f(z) = f(x, y) — ком-
плекснозначная функция, определенная на G. Тогда f — дискретная параболи-

ческая функция на G, если для любой четверки

� = {z + i, z, z + 1, z + 2} ∈ G
справедливо соотношение

f(z + i)− f(z) = f(z + 2)− 2f(z + 1) + f(z) (11)

или, что то же самое,

Lf(z) = −f(z + i) + f(z + 2)− 2f(z + 1) + 2f(z) = 0. (12)

Если соотношение (11) верно для любой четверки � = {z + i; z; z + 1; z + 2},
принадлежащей некоторому подмножеству E ⊂ G, то f — дискретная парабо-

лическая функция на E ⊂ G. Обозначим множества всех дискретных парабо-
лических функций на E и G через D(E) и D(G) соответственно. Оператор L,
определенный формулой (12), является дискретным аналогом оператора тепло-

проводности ∂
∂t − ∂2

∂x2 , определенного на классических гладких функциях.
Интересен случай схемы, которая определяется уравнением f(z+1)−2f(z)+

f(z−1) = f(z+ i)− f(z). Он приводит к изучению дискретных параболических
функций, заданных в нижней половине положительного квадранта гауссовой
плоскости. Однако в такой ситуации не получается корректно определить опе-
ратор эволюции и восстановить на положительном квадранте дискретную па-
раболическую функцию по начальным значениям, заданным на положительной
полуоси.

2.2. От разностного уравнения к экспоненте. Воспользуемся фунда-
ментальным фактом (см. [27]), что решение большинства разностных уравне-
ний является линейной комбинацией экспонент. Покажем, как естественным
образом прийти к понятию экспоненты разностного уравнения. Будем искать
решение уравнения (12) в виде

f(ζ, z) = ax(ζ) · by(ζ) (13)

для некоторых аналитических функций a(ζ), b(ζ), где ζ ∈ U (0, r) для некото-
рого r > 0, z = x+ iy ∈ G+. Подставив выражение из (13) для f(ζ, z) в формулу
(12), получим

Lf(z) = axby(−b+ a2 − 2a+ 2) = 0 (14)

при всех z = x+ iy ∈ G+. Отсюда следует, что

b(ζ) = a2(ζ) − 2a(ζ) + 2 = (a(ζ) − 1)2 + 1. (15)
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Потребуем дополнительно, чтобы

a(ζ) ∼ 1 + ζ при ζ → 0.

В частности, подходит a(ζ) = eζ . Тогда из формулы (15)

b(ζ) = (eζ − 1)2 + 1 = e2ζ − 2eζ + 2 (16)

и, значит, в качестве f(ζ, z) подходит функция

f(ζ, z) = e(ζ, z) = e(ζ, x, y) = eζx((eζ − 1)2 + 1)y. (17)

Функция e(ζ, z), определяемая формулой (17), называется экспонентой раз-

ностного уравнения (12). Для нее при всех z1, z2 ∈ G+ и ζ ∈ C верно соот-
ношение

e(ζ, z1 + z2) = e(ζ, z1) · e(ζ, z2). (18)

2.3. Псевдостепени {πk(z)}∞k=0 и их свойства.
2.3.1. Определение функций {πk(z)}∞k=0. Пусть ζ ∈ C, z ∈ G+. Положим

∂k0 e(ζ, z) =
dke(ζ, z)

dζk

∣∣∣∣
ζ=0

, k = 1, 2, . . . , ∂0
0e(ζ, z) = e(0, z), k = 0.

Рассмотрим разложение функции e(ζ, z) с центром в ζ0 = 0 по степеням ζ, где
ζ ∈ C:

e(ζ, z) = e(ζ, x, y) = eζx((eζ − 1)2 + 1)y =

∞∑

k=0

πk(z)

k!
ζk, где πk(x, y) := πk(x+ iy).

(19)
Очевидно, что верны равенства

πk(z) = ∂k0 e(ζ, z), k = 1, 2, . . . , π0(z) = ∂0
0e(ζ, z) = e(0, z) ≡ 1. (20)

В частности, для k = 0, 1, 2 имеем π0(z) = 1, π1(z) = x, π2(z) = x2 + 2y.

Замечание 1. Для экспоненты

e1(ζ, z) = e1(ζ, x, y) = ((1 + i)e
ζ

1+i − i)x · ((1− i)
−ζ
1+i + i)y, (21)

где ζ ∈ C, z ∈ G+, многочлены pk(z), определенные по формулам

pk(z) = ∂k0 e1(ζ, z), k = 1, 2, . . . , p0(z) = ∂0
0e1(ζ, z) = e(0, z) ≡ 1, (22)

введены в [5].

2.3.2. Рекуррентные соотношения для псевдостепеней {πk(z)}∞k=0.

Теорема 1. Для функций {πk(z)}∞k=0, определенных формулой (20), спра-
ведливо рекуррентное соотношение

πk+1(x, y) = xπk(x, y) + 2yπk(x, y) + 2yπk(x+ 1, y − 1)− 4yπk(x, y − 1). (23)

Доказательство. Выполним цепочку преобразований при k = 0, 1, 2, . . .
по формуле (20):

πk+1(z) = ∂k+1
0 e(ζ, z) = ∂k0

(
∂

∂ζ
e(ζ, z)

)
= ∂k0 ((eζx · (e2ζ − 2eζ + 2)y)′ζ)
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= ∂k0 (xeζx(e2ζ − 2eζ + 2)y + eζx · y(e2ζ − 2eζ + 2)y−1 · (2e2ζ − 2eζ))

= ∂k0 (xe(ζ, z) + 2yeζx(e2ζ − 2eζ + 2)y−1 · (e2ζ − 2eζ + eζ + 2− 2))

= x∂k0 e(ζ, z) + 2y∂k0e(ζ, z) + 2y∂k0 (eζx(e2ζ − 2eζ + 2)y−1 · (eζ − 2))

= xπk(z)+2yπk(z)+2y∂k0 (eζ(x+1) · (e2ζ−2eζ+2)y−1)−4y∂k0 (eζx(e2ζ−2eζ+2)y−1)

= xπk(z) + 2yπk(z) + 2yπk(x+ 1, y − 1)− 4yπk(x, y − 1).

Замечание 2. Из теоремы 1 по индукции получим равенства πk(x, 0) = xk,
k = 0, 1, 2, . . . .

2.3.3. Свойства системы функций {πk(z)}∞k=0. В этом пункте устано-
вим основные свойства системы функций {πk(z)}∞k=0.

Теорема 2. Для системы функций {πk(z)}∞k=0, определенной формулой
(20), справедливы следующие утверждения:

(A1) πk(0) = 0 при k = 1, 2, . . . ;
(A2) для любых z1 = x1 + iy1, z2 = x2 + iy2, z1, z2 ∈ G+, при любом целом

неотрицательном k

πk(z1 + z2) =
k∑

s=0

(
k

s

)
πs(z1)πk−s(z2); (24)

(A3) π0(z) = 1, πk(z) — многочлен, для которого верно следующее равен-
ство:

πk(z) = πk(x, y) = xk + σk−1(x, y), (25)

где σk−1(x, y) — многочлен степени ≤ k − 1.

Доказательство. Свойство (A1) очевидно. При вычислении производ-
ных ∂ke(ζ, z) получим слагаемые, содержащие x и y, которые при x = 0 и y = 0
обращаются в нуль.

Свойство (A2) установим по формуле Лейбница:

πk(z1 + z2) = ∂k0 e(ζ, z1 + z2) = ∂k0 [e(ζ, z1) · e(ζ, z2)]

=

k∑

s=0

(
k

s

)
∂s0e(ζ, z1) · ∂k−s0 e(ζ, z2) =

k∑

s=0

(
k

s

)
πs(z1) · πk−s(z2).

Методом математической индукции установим свойство (A3). Имеем π0(z)
= e(0, z) = 1.

База. Для k = 1 по формуле (23) получим

π1(x, y) = xπ0(x, y) + 2yπ0(x, y) + 2yπ0(x+ 1, y − 1)− 4yπ0(x, y − 1)

= x · 1 + 2y · 1 + 2y · 1− 4y · 1 = x.

Предположим, что для k ∈ N верно

πk(x, y) = xk + σk−1(x, y).

Тогда для k + 1 из формулы (23) следует:

πk+1(x, y) = xπk(x, y) + 2yπk(x, y) + 2yπk(x + 1, y − 1)− 4yπk(x, y − 1)

= x(xk + σk−1(x, y)) + 2y(xk + σk−1(x, y)) + 2y((x+ 1)k + σ′k−1(x, y))

− 4y(xk + σ′′k−1(x, y)) = xk+1 + 2yxk + 2yxk − 4yxk + σ̃k(x, y) = xk+1 + σ̃k(x, y),
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где

σ̃k(x, y) = x ·πk−1(x, y)+2yσk−1(x, y)+2yσ′k−1(x, y)−4yσ′′k−1(x, y)+2y ·k ·xk−1

+ слагаемые степени ≤ k − 1.

Таким образом, свойство (A3) доказано.

Теоремы 1, 2 аналогичны лемме 1 работы [28].

2.3.4. Определение. Пусть B = {pk(z)}∞k=0 — система полиномов pk(z) ∈
D(G+). k = 0, 1, 2, . . . . Система B называется системой псевдостепеней, если
для нее выполнены свойства (A1), (A2), (A3).

Замечание 3. В частности, система {πk(z)}∞k=0 является системой псев-
достепеней. Псевдостепени {pk(z)}∞k=0 являются дискретным аналогом клас-
сических аналитических функций {ζk}∞k=0 и будут активно использоваться в
дальнейшем.

§ 3. Соотношения между классическими
аналитическими и дискретными

аналитическими функциями

3.1. Определение. Пусть f(z) ∈ D(G+), pk(z) — некоторая система псев-
достепеней. По аналогии с классической теорией равенство

f(z) =

∞∑

k=0

akpk(z) (26)

называется тейлоровским разложением функции f(z) на G+, если оно выпол-
нено для всех z ∈ G+ и ряд, стоящий в правой части (26), сходится абсолютно.

Цайльбергер [5] поставил следующие два вопроса.
(Q1) Всякая ли дискретная аналитическая функция второго рода разлага-

ется в абсолютно сходящийся ряд по псевдостепеням pk(z) на G+?
(Q2) Является ли данное разложение однозначным?
Ответ дан А. Д. Медных в работе [6]. Оказалось, что для дискретных

аналитических функций 2-го рода формула (26) имеет место, однако само раз-
ложение не является однозначным. Там же в [6] указана степень неединственно-
сти. Всякая тождественно нулевая дискретная аналитическая функция f(z) ≡ 0
представима нетривиальным рядом

f(z) =
∞∑

k=0

akpk(z),

где {ak}∞k=0 — коэффициенты тейлоровского разложения аналитической функ-
ции

F (ζ) =

∞∑

k=0

ak

(
ζ

1 + i

)k

такой, что F (s) = 0 при всех s ∈ Z. Такие функции F (ζ) принадлежат идеалу
I, порожденному функцией sinπζ(1 + i) на множестве целых аналитических
функций.

Аналогичные результаты были получены О. А. Даниловым в работе [28]
для случая дискретных аналитических функций второго рода, определенных
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на дискретных квадратах QR, R > 0. Цель данной статьи — установить соот-
ветствующие результаты для дискретных параболических функций.

3.2. Каноническое отображение. Приведем следующее определение.
Целая функция

F (ζ) =

∞∑

k=0

akζ
k

является функцией экспоненциального типа, если для некоторого действитель-
ного v > 0 найдется действительное r0 > 0 такое, что для каждого действитель-
ного r ≥ r0 выполнено неравенство MF (r) < evr, где MF (r) = sup

|ζ|≤r
|F (ζ)|.

Заметим, что для функции e(ζ, z) = eζx(e2ζ − 2eζ + 2)y при ζ ∈ C, z ∈ G+,
r0 = 2, r ≥ r0 выполнена цепочка неравенств

Me(ζ,z) = sup
|ζ|≤r

|eζx(e2ζ − 2eζ + 2)y| ≤ sup
|ζ|≤r

|eζ |x · sup
|ζ|≤r

|e2ζ − 2eζ + 2|y

≤ erx(e2r + 2er + 2)y ≤ erx(e2r + 3er)y ≤ erx(e2r + e2r)y ≤ erx · e3ry = er(x+3y).

Таким образом, доказано, что экспонента e(ζ, z) является целой функцией
экспоненциального типа переменной ζ. Для оценки ее тейлоровских коэффи-
циентов нам понадобится следующая

Лемма 1 [29, лемма 1, с. 264]. Пусть F (ζ) =
∞∑
k=0

ckζ
k и MF (r) = sup

|ζ|≤r
|F (ζ)|.

Если найдется действительное r0 > 0 такое, что для каждого действительного
r ≥ r0 выполнено неравенство MF (r) < evr для некоторого положительного
v ∈ R, то для коэффициентов ck ее тейлоровского разложения найдется целое
k0 такое, что для всех целых k ≥ k0 справедлива оценка

|ck| <
(
ev

k

)k
. (27)

Зададим отображение � : F (ζ) 7→ f(z) формулой

�

( ∞∑

k=0

akζ
k

)
=

∞∑

k=0

akπk(z). (28)

Теорема 3. Отображение � обладает свойством
(A4) для любой целой функции

F (ζ) =

∞∑

k=0

akζ
k

ассоциированный с ней дискретный ряд

f(z) =

∞∑

k=0

akπk(z)

сходится абсолютно на множестве G+.

Доказательство. По лемме 1 для функции e(ζ, z) в качестве v годится
v = x+ 3y. Значит, из равенства

e(ζ, z) =

∞∑

k=0

ckζ
k =

∞∑

k=0

πk(z)

k!
ζk
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следует оценка

|ck| =
|πk(z)|
k!

≤
(
e(x+ 3y)

k

)k
(29)

при всех целых k ≥ k0. Из асимптотической формулы Стирлинга k! ∼
√

2πk
(
k
e

)k
при k→∞ получим из (29) неравенство

|ck| ≤
(x + 3y)k
√

2πk
(
k
e

)k ·
√

2πk.

Отсюда при k ≥ k1 для некоторого k1 ∈ Z+ получим

|ck| ≤
√

2πk(x+ 3y)k

k!
⇒ |πk(z)|

k!
≤
√

2πk(x+ 3y)k

k!
,

|πk(z)| ≤
√

2πk(x + 3y)k. (30)

Так как F (ζ) =
∑
akζ

k целая, то lim
k→∞

k
√
|ak| = 0, откуда для дискретного ряда

f(z) верна оценка

|f(z)| ≤
∞∑

k=0

|ak||πk(z)| ≤
∞∑

k=0

|ak|
√

2πk(x + 3y)k.

Отсюда по признаку Коши получим сходимость ряда f(z):

0 ≤ k
√
|ak||πk(z)| ≤ k

√
|ak| 2k

√
2πk(x + 3y). (31)

Правая часть k
√
|ak| 2k

√
2πk(x + 3y) стремится к нулю при k → ∞ для любого

z ∈ G+, значит, ряд
∞∑
k=0

|ak|
√

2πk(x+3y)k сходится, откуда вытекает сходимость

дискретного ряда f(z).

Замечание 4. В силу линейности оператора � и абсолютной сходимо-
сти ряда (�F )(z) при z ∈ G+ можно утверждать, что � является операто-
ром эволюции на G+, т. е. f(z) = (�F )(z) является решением разностного
уравнения f(z + i) − f(z) = f(z + 2) − 2f(z + 1) + f(z) с начальным условием

f(x, 0) = (�F )(x, 0) = F (x), где x ∈ Z+, а F (ζ) =
∞∑
k=0

akζ
k — целая функция.

Действительно, из абсолютной сходимости ряда

F (ζ) =

∞∑

k=0

akζ
k, ζ ∈ C,

имеем абсолютную сходимость ряда

f(x) =

∞∑

k=0

akπk(x) =

∞∑

k=0

akx
k

при x = 0, 1, . . . . Следовательно,

Lf(z) = −f(z + i) + f(z + 2)− 2f(z + 1) + 2f(z)

= −
∞∑

k=0

akπk(z + i) +

∞∑

k=0

akπk(z + 2)− 2

∞∑

k=0

akπk(z + 1) + 2

∞∑

k=0

akπk(z)

=

∞∑

k=0

ak(−πk(z + i) + πk(z + 2)− 2πk(z + 1) + 2πk(z)) =

∞∑

k=0

akLπk(z) = 0,
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поскольку Lπk(z) = 0.

Замечание 5. Следующее замечание принадлежит рецензенту. Абсолют-
ную сходимость функции (�F )(z) при z ∈ G+ можно показать следующим об-
разом. Повторно применяя формулу f(z+ i)− f(z) = f(z+2)−2f(z+1)+ f(z),
представим f(x, y) в виде

f(x, y) =

2y∑

k=0

αkf(x+ k, 0),

где αk — некоторые константы, не зависящие от x.
В силу абсолютной сходимости ряда

f(x) =

∞∑

k=0

akπk(x) =

∞∑

k=0

akx
k

при x = 0, 1, . . . получим, что ряд

f(x, y) =

∞∑

k=0

akπk(x, y)

абсолютно сходится как конечная сумма абсолютно сходящихся рядов.

3.3. Соотношение между классическими аналитическими и дис-
кретными параболическими функциями. Обозначим через A (C) множе-
ство целых функций. Свойство (A4) теоремы 3, установленное для каноническо-
го отображения � из множества A (C) в множество дискретных рядов, является
ключевым в дальнейшем изложении. Оно позволяет установить соотношение
между значениями функций {F (ζ), ζ = 0, 1, . . .} и {f(z), z = 0, 1, . . .}.

Теорема 4. Пусть F (ζ) ∈ A (C),

F (ζ) =
∞∑

k=0

akζ
k, f(z) =

∞∑

k=0

akπk(z), z ∈ G+,

— ассоциированный с F (ζ) дискретный ряд. Тогда справедливы следующие
утверждения:

1) имеет место равенство

f(z) = f(x+ iy) =

x+2y∑

s=0

c(x, y, s)F (s), (32)

где

c(x, y, s) =
1

2πi

∮

�

ξx(ξ2 − 2ξ + 2)y

ξs+1
dξ, (33)

a � — контур, содержащий внутри себя 0;
2) f(z) ∈ D(G+).

Доказательство. Рассмотрим тейлоровское разложение для функции
e(ζ, z) = eζx(e2ζ − 2eζ + 2)y по степеням ξ = eζ. Получим равенство

e(ξ, z) = ξx(ξ2 − 2ξ + 2)y =

x+2y∑

s=0

c(x, y, s)ξs, (34)
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где

c(x, y, s) =
1

2πi

∮

�

ξx(ξ2 − 2ξ + 2)y

ξs+1
dξ,

а � — контур, содержащий внутри ξ = 0. По формуле (20) с помощью равенства
(34) получим

πk(z) = ∂k0 e(ζ, z) =

x+2y∑

s=0

c(x, y, s)∂k0 (eζs) =

x+2y∑

s=0

c(x, y, s)sk.

Отсюда

f(z) =

∞∑

k=0

akπk(z) =

∞∑

k=0

ak

x+2y∑

s=0

c(x, y, s)sk

=

x+2y∑

s=0

c(x, y, s)
∞∑

k=0

aks
k =

x+2y∑

s=0

c(x, y, s)F (s).

Этот ряд сходится как конечная сумма сходящихся рядов для любого z ∈ G+,
поскольку F (ζ) — целая функция.

Докажем утверждение 2. Имеем

Lf(z) = −f(z + i) + f(z + 2)− 2f(z + 1) + 2f(z)

= −
∞∑

k=0

akπk(z + i) +
∞∑

k=0

akπk(z + 2)− 2
∞∑

k=0

akπk(z + 1) + 2
∞∑

k=0

akπk(z)

=

∞∑

k=0

ak(−πk(z + i) + πk(z + 2)− 2πk(z + 1) + 2πk(z)) =

∞∑

k=0

akLπk(z) = 0,

поскольку Lπk(z) = 0.

3.3.1. Отметим следующее важное следствие теоремы 4.

Следствие 1. Пусть верны условия теоремы 4. Тогда для всех целых
неотрицательных k верны соотношения

f(k) = F (k). (35)

Доказательство. Поскольку ряд F (ζ) =
∞∑
k=0

akζ
k абсолютно сходится

при любом ζ ∈ C и по замечанию 2 πk(x, 0) = xk, имеем

F (s) =
∞∑

k=0

aks
k = f(s)

для всех s = 0, 1, 2, . . . .

Теорема 4 дает регулярный способ получения функций f(z) ∈ D(G+). Для
этого достаточно взять произвольную функцию

F (ζ) =

∞∑

k=0

akζ
k ∈ A (C)
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и с помощью отображения � получить

f(z) = (�F )(z) =

∞∑

k=0

akπk(z).

Полученный дискретный ряд принадлежит D(G+) по теореме 4.
Возникает вопрос: всякая ли функция f(z) ∈ D(G+) может быть образом

(�F )(z) при некоторой целой функции F (ζ), т. е. является ли отображение

�: A (C)→ D(G+)

сюръективным?

3.4. Сюръективность отображения � : A (C)→ D(G+).

3.4.1. Заметим, что всякая функция f ∈ D(G+) однозначно восстанав-
ливается по своим значениям на множестве z = 0, 1, 2, . . . . Действительно, по
формуле (12), зная f(k), f(k+1), f(k+2), последовательно вычисляем f(k+ i),
k = 0, 1, 2, . . . . Аналогично по значениям f(k + i), f(k + 1 + i), f(k + 2 + i)
вычисляем f(k + 2i), k = 0, 1, 2, . . . , и т. д. Поэтому если f(z) и g(z) ∈ D(G+) и
f(z) = g(z) при z = 0, 1, 2, . . . , получим совпадение f(z) = g(z) при всех z ∈ G+.

Для доказательства утверждения, что отображение �: A (C) → D(G+)
сюръективно, нам понадобится следующая теорема 1 из [30, с. 335]. Анало-
гичный результат есть в [31, с. 202].

Теорема Гельфонда — Шеффера. Для любой последовательности чи-
сел al ∈ C, l = 0, 1, 2, . . . , существует бесконечное множество целых функций
ϕ(ζ) таких, что ϕ(l) = al, l = 0, 1, 2, . . . .

3.4.2. Основные результаты.

Теорема 5. Отображение � : A (C) → D(G+), определенное формулой
(28), сюръективно.

Доказательство. Пусть f(z) ∈ D(G+). Рассмотрим множество значений
{f(0), f(1), f(2), . . .}. По теореме Гельфонда — Шеффера найдется целая функ-

ция F (ζ) =
∞∑
k=0

akζ
k такая, что F (k) = f(k) при k = 0, 1, 2, . . . . По следствию 1

из п. 3.3.1 для функции

f̃(z) = (�F )(z) =

∞∑

k=0

akπk(z)

из (23) получим равенства f̃(k) = F (k) при k = 0, 1, 2, . . . . Функция f̃(z) при-

надлежит D(G+) по теореме 4 и, значит, f(k) = f̃(k) при k = 0, 1, 2, . . . , т. е.

функции f(k) и f̃(k) совпадают при всех z ∈ G+. �

Замечание 6. Пусть

F (ζ) =

∞∑

k=0

akζ
k ∈ A (C), f(z) = (�F )(z) =

∞∑

k=0

akπk(z).

Соотношение (35) и теорема 5 показывают, что f(z) = (�F )(z) ≡ 0 при z ∈ G+

тогда и только тогда, когда F (s) = 0 при s = 0, 1, 2, . . . .

Для линейного отображения � : A (C) → D(G+) дадим полное описание

ядра Ker�. Воспользуемся классической функцией � (ζ) =
+∞∫
0

tζ−1e−t dt. Тогда

функция 1
� (−ζ) целая и имеет простые нули только в точках ζ = 0, 1, 2, . . . .
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Теорема 6. Ядро Ker� отображения � : A (C) → D(G+), определенного
формулой (28), состоит из целых функций F (ζ), имеющих вид

F (ζ) =
H(ζ)

� (−ζ) , (36)

где H(ζ) — произвольная целая функция.

Доказательство. Если F (ζ) = H(ζ)
� (−ζ) , то очевидно, что F (k) = 0 при k =

0, 1, 2, . . . и по (35) (�F )(k) = 0 при k = 0, 1, 2, . . . , следовательно, (�F )(z) ≡ 0
при z ∈ G+.

Обратно, пусть F (ζ) ∈ A (C) такова, что F (k) = 0, k = 0, 1, 2, . . . . Положим

H(ζ) = F (ζ) · � (−ζ). (37)

В точках ζ = k, k = 0, 1, 2, . . . , функция H(ζ) имеет устранимые особенности.
Положим H(k) = lim

ζ→k
F (ζ) · � (−ζ), k = 0, 1, 2, . . . . Функция H(ζ) принадлежит

A (C) и тем самым F (ζ) = H(ζ)
� (−ζ) , где H(ζ) ∈ A (C). �

Таким образом, ядро Ker� можно записать в виде

Ker� =
1

� (−ζ) A (C). (38)

3.5. Примеры тейлоровского разложения в D(G+).

3.5.1. Пусть

F (ζ) = sinπζ =

∞∑

k=0

(−1)k
(πζ)2k+1

(2k + 1)!
.

Поскольку sinπk = 0 при k = 0, 1, 2, . . . , то (�(sin πζ))(z) ≡ 0 при z ∈ G+.
Следовательно,

0 ≡ (�F )(z) =

∞∑

k=0

(−1)kπ2k+1

(2k + 1)!
· π2k+1(z). (39)

Формула (39) дает пример функции f(z) ≡ 0, z ∈ G+, имеющей нетривиальное
разложение Тейлора.

3.5.2. Определим f(k) = (−1)k, k = 0, 1, 2, . . . , и построим ее продолжение
на G+ по формуле (12). Тогда

f(k + i) = 5(−1)k, k = 0, 1, 2, . . . , f(k + 2i) = 52(−1)k, k = 0, 1, 2, . . . ,

и аналогично для других слоев.
Для функции F (ζ) = eiπζ , очевидно, F (k) = eiπk = (−1)k, k = 0, 1, 2, . . . .

Поскольку

F (ζ) = eiπζ =

∞∑

k=0

(iπζ)k

k!
=

∞∑

k=0

(iπ)kζk

k!
,

имеем

f(z) = (�F )(z) =

∞∑

k=0

(iπ)k

k!
· πk(z).
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