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ШВАРЦИАН И КРИТИЧЕСКИЕ ЗНАЧЕНИЯ

ПОЛИНОМА С ВЕЩЕСТВЕННЫМИ

КРИТИЧЕСКИМИ ТОЧКАМИ

В. Н. Дубинин

Аннотация. Для комплексного полинома степени не меньше двух, сохраняющего
начало координат и имеющего все свои критические точки на вещественной поло-
жительной либо отрицательной полуоси, устанавливается точная нижняя граница
для наибольшего модуля критических значений. Данная оценка включает произ-
водную Шварца этого полинома в начале координат и не зависит от степени по-
линома. Аналогичная оценка приводится в случае, когда все критические точки
полинома вещественные и расположены по разные стороны от начала координат.
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§ 1. Введение и формулировка результатов

Исследование неравенств для критических точек и критических значений
комплексных полиномов во многом инициировала известная статья Смейла [1].
К настоящему времени этой тематике посвящено немало публикаций (см., на-
пример, библиографию в обзорах [2, 3]). В частности, в работе [4] (см. также
[5]) показано, что для любого полинома вида P (z) = c1z + · · · + cnz

n, c1cn 6= 0,
n ≥ 2, справедливо неравенство

max{|P (ζ)| : P ′(ζ) = 0} ≥ 2

(
1

n
sin

π

2n

) n
n−1

∣∣∣∣
cn1
cn

∣∣∣∣
1

n−1

.

Равенство достигается в случае P (z) = aTn(bz − cos(π/(2n))) при подходящих
комплексных значениях a и b, зависящих от c1 и cn, где Tn(z) = 2n−1zn + . . .
— полином Чебышева первого рода. Естественно поставить вопрос о нижней
оценке модуля критического значения, не зависящей от степени полинома P.
Впервые неравенства для модулей критических значений, не зависящие от сте-
пени полинома, появились в работе Хинкканена и Каюмова [6]. Следуя [6],
ограничимся полиномами с вещественными критическими точками. Такие по-
линомы представляют интерес при решении различных задач теории функций
[6–10].

Исследование выполнено в рамках государственного задания ИПМ ДВО РАН № 075-
00459-25-00.

c© 2025 Дубинин В. Н.



Шварциан и критические значения полинома 1075

Всюду ниже рассматриваются полиномы вида

P (z) = z + c2z
2 + c3z

3 + · · ·+ cnz
n, n ≥ 2. (1)

Полученные в данной статье точные оценки модуля |P (ζ)| в критической точ-
ке ζ, т. е. точке, где P ′(ζ) = 0, являются одновременно неравенствами для
производной Шварца (шварциана) SP (0) полинома P, вычисленной в начале
координат:

SP (0) = 6
(
c3 − c22

)
.

Справедливы следующие утверждения.

Теорема 1. Предположим, что все критические точки полинома (1) сте-
пени n ≥ 2 расположены на вещественной положительной либо отрицательной
полуоси. Тогда SP (0) < 0 и существует критическая точка ζ такая, что

|P (ζ)| ≥
(
−2

2

3
SP (0)

)−1/2

. (2)

Равенство в (2) достигается для полинома P (z) = z− cz2 при любом веществен-
ном c 6= 0.

Теорема 2. Если все критические точки полинома (1) степени n ≥ 3 веще-
ственные и расположены по разные стороны от начала координат, то SP (0) < 0
и существует критическая точка ζ, для которой

|P (ζ)| ≥
(
−1

1

8
SP (0)

)−1/2

. (3)

Равенство в (3) имеет место при P (z) = z − cz3 при любом c > 0.

Ранее [11] нами было показано, что в условиях теоремы 1 либо теоремы 2
справедливо неравенство

SP (0) ≤ 0.

Заметим, что неравенства для шварциана во внутренних точках области
определения голоморфной неоднолистной функции появились сравнительно
недавно [12], а неравенства для производной Шварца с учетом критического
значения в литературе не рассматривались.

§ 2. Доказательство теоремы 1

Поскольку все критические точки полинома (1) вещественные, значения
P (z) также вещественные при всех вещественных z. Обозначим через R(P )
риманову поверхность функции P, обратной заданному полиному P. Мы рас-
сматриваем P как отображение поверхности R(P ) на комплексную сферу Cz.
Всевозможные радиальные лучи на поверхности R(P ), соединяющие ее точки
разветвления с бесконечностью, разбивают эту поверхность на конечное число
листов {U}. Пусть U0, U0 ∈ {U}, — тот лист, который содержит прообраз точки
z = 0 при отображении P. Полагая, что все критические точки полинома P
отрицательные, обозначим через ζ наибольшую критическую точку. Из сообра-
жений непрерывности можно считать, что P ′′(ζ) 6= 0. В силу P (0) = 0, P ′(0) > 0
выполняется P (ζ) < 0 и вещественная функция P отображает луч [ζ,+∞] в
луч [P (ζ),+∞]. Отсюда следует, что проекция области U0 есть w-плоскость с
разрезом L := [−∞, P (ζ)].
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Покажем, что на границе области P(U0) нет критических точек полинома
P, отличных от ζ. Предположим противное. Тогда найдется критическая точка
ζ′ ∈ ∂P(U0), ζ

′ < ζ (пусть ζ′ — ближайшая к ζ такая точка), и соответствующая
точка разветвления P−1(ζ′) принадлежит ∂U0. Замкнутая жорданова кривая
на поверхности R(P ) вида P−1([ζ′, ζ])∪ [P−1(ζ′),P−1(ζ)] разбивает эту по-
верхность на две области, каждая из которых содержит бесконечно удаленную
точку. Здесь [P−1(ζ′),P−1(ζ)] — отрезок на границе области U0. Получен-
ное противоречие показывает, что точка ζ является единственной критической
точкой на границе P(U0).

В силу вышесказанного и условия P ′′(ζ) 6= 0 определен единственный лист
из совокупности {U}, пусть U ′, который имеет с U0 общие берега разрезов над
лучом L и на границе которого лежит точка P−1(ζ). Кроме того, у листов U0

и U ′ нет других примыкающих к ним общих точек разветвления, лежащих над
L, исключая точку P−1(ζ).

Обозначим через G1 риманову область на R(P ), полученную склеиванием
листов U0 и U ′ крест-накрест по берегам разрезов над L с последующим разреза-
нием приклеенного листа U ′ вдоль радиального луча, лежащего над [P (ζ),+∞].
Положим

Q1(z) := z − 1

4P (ζ)
z2.

Непосредственно из определения видно, что функция w = Q1(z) отображает
полуплоскость Re z > 2P (ζ) (Re z < 2P (ζ)) на w-плоскость с разрезом по лучу
L. Таким образом, Q1 отображает сферу Cz на риманову поверхность R(Q1),
образованную склеиванием двух экземпляров области Cw \ L крест-накрест по
берегам разреза L. Построенную выше область G1 можно рассматривать как
подмножество поверхности R(Q1). Функция Q1 отображает область

H = Cz \ {z : Re z ≤ 2P (ζ), Im z = 0}

конформно и однолистно на областьG1. Следовательно, суперпозиция функций

f1 := P ◦Q1

является однолистной в области H, f1(0) = 0. Применение к функции f1 теоре-
мы 3 работы [11], где g(z) ≡ z, ведет к неравенству

ReSf1(0) ≥ 0. (4)

Для вычисления шварциана от суперпозиции f1 удобно воспользоваться фор-
мулой

Sα◦β = (Sα ◦ β)(β′)2 + Sβ .

После элементарных преобразований неравенство (4) перепишется так:

3

8P 2(ζ)
≤ −SP (0).

Отсюда вытекает, что SP (0) < 0, и справедливо неравенство (2).
Достижимость равенства в (2) проверяется непосредственно либо простым

замечанием, что при P (z) = z− cz2 будет f1(z) ≡ z и, следовательно, в (4) и (2)
имеет место знак равенства.

Случай, когда все критические точки полинома P положительные, сводится
к предыдущему рассмотрением полинома −P (−z). Теорема 1 доказана.
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§ 3. Доказательство теоремы 2

Пусть ζ1 и ζ2 — ближайшие к началу координат критические точки по-
линома P , ζ1 < 0 < ζ2. Можно считать, что P ′′(ζk) 6= 0, k = 1, 2. Тогда
P (ζ1) < 0 < P (ζ2) и вещественная функция P отображает отрезок [ζ1, ζ2] в
[P (ζ1), P (ζ2)]. Отсюда следует, что проекция области U0 есть w-плоскость с
разрезами L1 = [−∞, P (ζ1)] и L2 = [P (ζ2),+∞]. Здесь вновь используются обо-
значения U0, R(P ), P и разбиение поверхности R(P ) на листы радиальными
разрезами из § 2. Повторяя соответствующую часть доказательства теоремы 1
(где L = L1, ζ = ζ1), убеждаемся в существовании единственного листа (пусть
U ′), который имеет с U0 общие берега разрезов над L1 и на границе которого нет
других точек разветвления поверхности R(P ), отличных от P−1(ζ1). Анало-
гично существует лист U ′′, который имеет с U0 общие берега разрезов над L2 и
на границе которого нет точек разветвления R(P ), кроме P−1(ζ2). Обозначим
через G2 риманову область на R(P ), полученную склеиванием листов U0 и U ′

крест-накрест по берегам разрезов над L1 с последующим разрезанием по листу
U ′ вдоль луча, лежащего над [P (ζ1),+∞], а затем приклеиванием к U0 листа
U ′′ крест-накрест по берегам разрезов над L2 с последующим разрезанием по
листу U ′′ вдоль луча, лежащего над [−∞, P (ζ2)].

Положим

Q2(z) :=
1

ab

z∫

0

(u− a)(u− b) du = z − a+ b

2ab
z2 +

1

3ab
z3,

где числа a, b заданы условиями a < 0 < b, Q2(a) = P (ζ1), Q2(b) = P (ζ2).
Несложно показать, что риманова поверхность R(Q2), на которую полином Q2

отображает комплексную сферу Cz, образована приклеиванием крест-накрест
к w-плоскости с двумя разрезами L1, L2 двух областей Cw \L1 и Cw \L2 вдоль
берегов разрезов L1 и L2. Построенную выше область G2 можно рассматривать
как подмножество поверхности R(Q2). Функция Q2 отображает область

T = Cz \ {z : Im z = 0, Re z ≤ a либо Re z ≥ b}

конформно и однолистно на область G2. Поэтому суперпозиция функций

f2 := P ◦Q2

однолистна в области T , f2(0) = 0. Применение вновь теоремы 3 работы [11]
приводит к неравенству

ReSf2(0) ≥ 0. (5)

Прямые вычисления дают

ReSf2(0) = Sf2(0) = −SP (0) +
2

ab
− 3

2

(
a+ b

ab

)2

.

Предположим, что |a| ≤ b. Тогда неравенство (5) влечет

−SP (0) ≥ 3

2

(
1

a2
+

1

b2

)
− 1

|ab| =
3

2

1

|ab|

[ |a|
b

+
b

|a| −
2

3

]
≥ 2

b2
.

С другой стороны,

P (ζ2) = Q2(b) =
b

2
− b2

6a
=
b

2

[
1 +

b

3|a|

]
≥ 2

3
b.
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Следовательно,

−SP (0) ≥ 8

9

1

(P (ζ2))2
.

Отсюда вытекает, что SP (0) < 0 и справедливо неравенство (3) при ζ = ζ2.
Случай |a| ≥ b рассматривается аналогично.
Утверждение о знаке равенства в (3) проверяется прямым вычислением.

Теорема 2 доказана.
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