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Аннотация. Доказано, что среди всех прямоугольных групп Коксетера в трехмер-
ном гиперболическом пространстве наименьший кообъем имеет группа, порожден-
ная отражениями в гранях прямоугольной треугольной бипирамиды. Эта бипира-
мида имеет три идеальные и две конечные вершины. Группа является арифмети-
ческой и кообъем равен константе Каталана G = 0,915965 . . . .
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§ 1. Введение

Фундаментальной проблемой в гиперболической геометрии является изу-

чение дискретных подгрупп группы Isom(Hn) изометрий n-мерного гипербо-

лического пространства Hn, в частности, групп, порожденных отражениями.

При этом дискретные группы изометрий, не содержащие кручений, соответ-

ствуют гиперболическим n-мерным многообразиям. Во многих конструкциях

такие группы возникают как подгруппы конечного индекса в группах, порож-

денных отражениями [1–3].

Напомним [4, 5], что группа Коксетера W определяется конечным пред-

ставлением вида W = 〈s ∈ S | (st)mst = 1, ∀s, t ∈ S〉, где mss = 1 и mst ∈
{2, 3, . . . ,∞}, если s 6= t. Здесь mst =∞ означает, что между s и t соотношений

нет. Группа Коксетера W называется прямоугольной, если mst ∈ {2,∞} для

s 6= t.
Выпуклый многогранник P ⊂ Hn с двугранными углами вида π/m для

целого m ≥ 2 при (n−2)-мерных гранях называют гиперболическим многогран-

ником Коксетера. Группа � (P ), порожденная отражениями в (n − 1)-мерных

гранях P , является группой Коксетера. Кообъемом группы � (P ) будем назы-

вать объем многогранника vol(P ). Будем говорить, что группа � (P ) коком-

пактна, если P — компактный многогранник, и что � (P ) конечного кообъема,

если P имеет конечный объем. Как показал Винберг [6], если n ≥ 30, то в Hn

не существует кокомпактных групп Коксетера. Примеры известны только если

n ≤ 8 (см. [7]). Согласно [8, 9], если n > 995, то в Hn не существует групп
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Коксетера конечного кообъема. Примеры известны только для n ≤ 19 [10] и

n = 21 [11]. Как показано в [12], существует бесконечно много групп Коксетера

конечного кообъема (соответственно компактных) в Hn для каждого n ≤ 19

(соответственно n ≤ 6).

В данной работе рассматриваются прямоугольные многогранники конеч-

ного объема в трехмерном гиперболическом пространстве H3 и соответствую-

щие им прямоугольные группы Коксетера. Многогранник P называется прямо-

угольным, если все его двугранные углы равны π/2. В этом случае соответству-

ющая группа отражений � (P ) является прямоугольной группой Коксетера. Из-

вестно, что не существует компактных прямоугольных гиперболических групп

Коксетера, если n > 4 [13], и прямоугольных гиперболических групп Коксетера

конечного кообъема, если n > 12 [14]. В последнем случае примеры известны в

размерностях n ≤ 8 (см. [15]).

Данбар и Мейергофф [16] показали, что множество объемов трехмерных ги-

перболических орбифолдов конечного объема имеет порядковый тип ωω и число

орбифолдов заданного объема конечно. Традиционно объемы многогранников в

трехмерном гиперболическом пространстве вычисляют в терминах следующей

функции Лобачевского (см. [17]):

�(θ) = −
θ∫

0

log |2 sin(t)| dt.

Ниже мы будем использовать величину voct = 8�(π/4) = 3, 663862, равную

объему правильного идеального октаэдра в H3, и величину vtet = 3�(π/3) =

1, 014941, равную объему правильного идеального тетраэдра в H3. Здесь и далее

все приближенные значения функции Лобачевского и значения объемов приво-

дятся с точностью до шести знаков после запятой.

Дискретные группы отражений удобно описывать при помощи схем Коксе-

тера [5, 18]. Каждому многограннику Коксетера, в частности лежащему в H3,

соответствует граф, называемый его схемой Коксетера. Вершины схемы Кок-

сетера соответствуют граням многогранника. Если две грани многогранника

взаимно перпендикулярны, то вершины схемы не соединяются ребром. Если

угол между гранями равен π/m, m ≥ 3, то соответствующие вершины соеди-

няются ребром кратности m− 2 (как правило, если m ∈ {3, 4, 5}) или обычным

ребром с меткой m. Схемы Коксетера также используются для обозначения

групп Коксетера, порожденных отражениями в гранях многогранника Коксе-

тера.

Обозначим через �3,4,4 тетраэдр в H3 с гранями f1, f2, f3, f4, у которого

двугранные углы αi между гранями fi и fi+1, i = 1, 2, 3, имеют значения α1 =

π/3, α2 = π/4, α3 = π/4, а все остальные двугранные углы равны π/2. Схема

Коксетера для группы � (�3,4,4), порожденной отражениями в гранях �3,4,4,

приведена на рис. 1(a), где указаны обозначения граней.

Тетраэдр �3,4,4 имеет три конечные вершины и одну идеальную вершину,

которая принадлежит граням f2, f3 и f4. Под действием диэдральной группы

порядка шесть, порожденной отражениями в гранях f1 и f2, из шести экзем-

пляров �3,4,4 получаем тетраэдр �′3,4,4 на рис. 2(a), у которого три идеальные

вершины лежат в одной плоскости, которая содержит грань f4, а в конечной

вершине встречаются три прямых угла (тетраэдры с таким свойством называют

трипрямоугольными [19]). Схема Коксетера для группы � (�′3,4,4), порожден-

ной отражениями в гранях �′3,4,4, приведена на рис. 1(b). Объединяя тетраэдр
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Рис. 1. Схемы Коксетера для групп � (�3,4,4) и � (�′3,4,4).

(a) (b) (c)

Рис. 2. Тетраэдр �′3,4,4, многогранник P (3,2) и диаграмма Шлегеля для P (3,2).

�′3,4,4 с его зеркальным образом относительно плоскости, содержащей грань f4,
получим треугольную бипирамиду с шестью гранями, у которой все двугранные

углы равны π/2. Поскольку эта бипирамида имеет три идеальных и две конеч-

ные вершины, будем обозначать ее через P(3,2). Многогранник P(3,2) и его

диаграмма Шлегеля приведены на рис. 2(b), (c). Отметим, что многогранник

P(3,2) появлялся в различных контекстах в работах [8, 13, 20, 21].

По построению объем прямоугольного многогранника P(3,2) равен

vol(P(3,2)) = 2 vol(�′3,4,4) = 12 vol(�3,4,4) = 2�
(π

4

)
,

где объем тетраэдра �3,4,4 вычислен через функцию Лобачевского по приведен-

ной ниже формуле (1). Хорошо известно [22], что 2�
(
π
4

)
= G, где

G =

∞∑

n=0

(−1)n

(2n+ 1)2

— константа Каталана, появившаяся в 1867 г. в его работе [23]. С точностью

до шести знаков имеем G = 0,915965. Более точные приближения константы

Каталана G приведены в [24].

Основным результатом данной работы является следующая

Теорема 1.1. Пусть P — прямоугольный многогранник в H3. Тогда имеет
место неравенство vol(P) ≥ G, где G = 2�

(
π
4

)
— константа Каталана. При

этом треугольная бипирамида P(3,2) является единственным прямоугольным
многогранником, для которого достигается равенство.

Хорошо известно, что арифметичность групп трехмерных гиперболических

многообразий и орбифолдов имеет важное значение при изучении их свойств [25].

Вопрос, восходящий к Зигелю [26], состоит в следующем: какие гиперболиче-

ские многообразия и орбифолды имеют наименьший объем в ориентируемом

и неориентируемом случаях? Как отмечено в [27], имеет место фольклорная
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гипотеза, состоящая в том, что минимальные объемы всегда достигаются на

арифметических многообразиях или орбифолдах. К настоящему времени эта

гипотеза полностью подтверждена для n = 3 (см. [28–34]). Отметим, что ана-

логичное свойство арифметичности минимальных объемов имеет место и для

прямоугольных групп Коксетера. А именно, минимальная кокомпактная пря-

моугольная гиперболическая группа Коксетера арифметична в силу [35, 36].

Минимальная прямоугольная гиперболическая группа Коксетера конечного ко-

объема также арифметична, что следует из теоремы 1.1.

Следствие 1.1. Прямоугольная гиперболическая группа Коксетера в H3

минимального кообъема является арифметической.

Статья имеет следующую структуру. В § 2 напомним некоторые резуль-

таты о прямоугольных многогранниках в пространстве H3 и их объемах. Бо-

лее подробную информацию о геометрии пространства H3 и о гиперболических

многообразиях и орбифолдах можно найти в [3]. В § 3 приведем доказательство

теоремы 1.1, представленное последовательностью лемм 3.1–3.4. В § 4 обсудим

арифметичность прямоугольных групп отражений, появившихся при доказа-

тельстве теоремы 1.1. Завершим статью некоторыми открытыми вопросами,

сформулированными в § 5.

§ 2. Предварительные сведения

2.1. Cуществование прямоугольных гиперболических многогран-

ников. Обозначим через Rn,1 векторное пространство Rn+1, снабженное ска-

лярным произведением 〈·, ·〉 сигнатуры (n, 1), а через fn — ассоциированную

с этим произведением квадратичную форму. В подходящем базисе эта форма

выражается следующим образом:

fn(x) = −x2
0 + x2

1 + · · ·+ x2
n.

Пространством Лобачевского Hn размерности n называется верхняя связная

компонента гиперболоида, заданного уравнением fn(x) = −1:

Hn = {x ∈ Rn,1 | fn(x) = −1 и x0 > 0}.

В данной модели точки на абсолюте соответствуют изотропным векторам:

∂Hn = {x ∈ Rn,1 | fn(x) = 0 и x0 > 0}/R+.

Выпуклым гиперболическим многогранником размерности n называется пе-

ресечение конечного семейства замкнутых полупространств в Hn, которое со-

держит непустое открытое множество. Выпуклый гиперболический многогран-

ник называется гиперболическим многогранником Кокстера, если все его дву-

гранные углы являются целыми частями π, т. е. имеют вид π/m для некоторого

целого m ≥ 2. Гиперболический многогранник Кокстера называется прямо-

угольным, если все его двугранные углы равны π/2. Если все двугранные углы

обобщенного1) многогранника не превосходят π/2, то говорят, что этот много-

гранник остроугольный.

1)Обобщенным выпуклым многогранником P называется пересечение (с непустой внут-
ренностью), возможно бесконечного числа, полупространств в Hn, такое, что каждый замкну-
тый шар пересекает лишь конечное число граничных гиперплоскостей, задающих P .
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Известно, что обобщенные многогранники Кокстера являются естествен-

ными фундаментальными областями для дискретных групп, порожденных от-

ражениями в пространствах постоянной кривизны (см. [18]).

Выпуклый n-мерный многогранник имеет конечный объем тогда и только

тогда, когда он является выпуклой оболочкой конечного числа точек в компак-

тификации Hn = Hn ∪ ∂Hn. Многогранник размерности n компактен тогда и

только тогда, когда он является выпуклой оболочкой конечного числа точек

пространства Hn, которые называются конечными. Выпуклый многогранник

называется идеальным, если все его вершины лежат на абсолюте ∂Hn (такие

вершины называются идеальными). Известно [37, теорема 1] что для компакт-

ного остроугольного многогранника конечного объема P ⊂ H3 каждая вершина

имеет симплициальный тип.

Говорят, что два многогранника P и P ′ в евклидовом пространстве En

комбинаторно эквивалентны, если существует биекция между множествами

их граней, которая сохраняет отношение инцидентности. Класс комбинаторно

эквивалентных многогранников называется комбинаторным типом многогран-

ника. Отметим, что если гиперболический многогранник P ⊂ Hn имеет конеч-

ный объем, то его замыкание P ⊂ Hn комбинаторно эквивалентно некоторому

компактному многограннику в En.
Следующая теорема является частным случаем теорем Андреева для ком-

пактного случая [38] и случая конечного объема [37], см. также [39]. Теоремы

Андреева дают необходимые и достаточные условия для реализации в простран-

стве Лобачевского абстрактного многогранника заданного комбинаторного ти-

па с предписанными двугранными углами. Мы сформулируем эти условия для

прямоугольных многоугольников, следуя [40, теорема 2.1]. Обозначим через P ∗

плоский граф, двойственный одномерному скелету P (1) многогранника P .

Теорема 2.1 [38, 37]. Абстрактный многогранник P реализуется как пря-
моугольный многогранник P в H3 тогда и только тогда, когда выполнены сле-
дующие условия:

(1) P имеет не менее шести граней;

(2) в каждой вершине P сходятся три или четыре грани;

(3) для любой тройки граней (Fi, Fj , Fk) такой, что Fi ∩ Fj и Fj ∩ Fk —
ребра в P с различными концами, выполняется Fi ∩ Fk = ∅;

(4) двойственный граф P ∗ не содержит призматических k-обходов, где
k ≤ 4.

При этом каждая вершина валентности три в P соответствует конечной
вершине в P, каждая вершина валентности четыре в P соответствует идеаль-
ной вершине в P, и реализация P единственна с точностью до изометрии.

Здесь для плоского графa G и двойственного ему графа G∗ k-обходом на-

зывается простая замкнутая кривая, состоящая из k ребер в графе G∗. Призма-

тическим k-обходом называется такой k-обход γ, в котором никакие два ребра

графа G, соответствующие ребрам, через которые проходит γ, не имеют общей

вершины.

2.2. Объем бипрямоугольного гиперболического тетраэдра. Тет-

раэдр в H3 называется бипрямоугольным (или ортосхемой), если его вершины

можно обозначить через A,B,C,D таким образом, что ребро AB ортогонально

грани BCD, а грань ABC ортогональна ребру CD. В этом случае получаем сле-

дующее равенство двугранных углов: ∠AC = ∠BC = ∠BD = π/2. Величины
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остальных двугранных углов обозначим через ∠AB = α, ∠AD = β, ∠CD = γ,

где α+ β ≥ π/2 и β+ γ ≥ π/2. В этом случае бипрямоугольный тетраэдр будем

обозначать символом R(α, β, γ). Формула для его объема получена в [41]:

vol(R(α, β, γ)) =
1

2

[
�(α+ δ) + �(α− δ) + �

(π
2

+ β − δ
)

+ �
(π

2
− β + δ

)

+ �(γ + δ)− �(γ − δ) + 2�
(π

2
− δ
)]
, (1)

где

0 ≤ δ = arctan

√
cos2 β − sin2 α sin2 γ

cosα cos γ
<
π

2
.

С помощью формулы (1) вычислим кообъем группы � (�3,4,4), схема Кок-

сетера которой приведена на рис. 1(a), и группы � (�4,4,4), схема Коксетера

которой приведена на рис. 3. А именно, поскольку �3,4,4 = R(π/3, π/4, π/4),

то vol(�3,4,4) = 1
6�(π/4), и аналогично, поскольку �4,4,4 = R(π/4, π/4, π/4), то

vol(�4,4,4) = 1
2�(π/4).
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Рис. 3. Схема Коксетера для группы � (�4,4,4).

2.3. Компактные прямоугольные многогранники. Поскольку усло-

вия реализации абстрактного многогранника как компактного прямоугольного

многогранника в H3 впервые были сформулированы А. В. Погореловым [42],

иногда эти многогранники называют многогранниками Погорелова.

Опишем одно важное бесконечное семейство компактных прямоугольных

многогранников. Для n ≥ 5 рассмотрим (2n+2)-гранник Ln, у которого верхнее

и нижнее основания являются n-угольниками, а боковая поверхность состоит

из двух циклов по n пятиугольников [2], в частности, L5 является додекаэдром

(рис. 4(a)). По теореме 2.1 многогранник Ln реализуется в H3 как компакт-

ный прямоугольный многогранник Ln. Следуя [2], многогранники Ln назы-

вают многогранниками Лёбелля, а трехмерные гиперболические многообразия,

соответствующие подгруппам без кручения индекса восемь в � (Ln), n ≥ 5, —

многообразиями Лёбелля, см. [43].

✻
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Рис. 4. Додекаэдр L5 и октаэдр A3.

Теорема 2.2 [44, следствие 9.2]. Компактным прямоугольным гиперболи-
ческим многогранником наименьшего объема является додекаэдр L5, а следу-
ющим — многогранник L6.

Приведенная ниже формула выражает объемы прямоугольных гиперболи-

ческих многогранников Ln через функцию Лобачевского.
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Теорема 2.3 [45]. Для n ≥ 5 имеет место равенство

vol(Ln) =
n

2

(
2�(θn) + �

(
θn +

π

n

)
+ �

(
θn −

π

n

)
− �

(
2θn −

π

2

))
,

где θn = π
2 − arccos

(
1

2 cos(π/n)

)
.

Непосредственными вычислениями получаем приближенные значения объ-

емов с точностью до шести знаков после запятой: vol(L5) = 4,306207 и vol(L6) =

6,023046. Нетрудно видеть, что vol(Ln) является возрастающей функцией от

n (см. [44, теорема 4.2]) и lim
n→∞

vol(Ln)
n = 5

4vtet (см. [46, предложение 2.10]).

В работе [47] дан список первых 825 объемов компактных прямоугольных ги-

перболических многогранников, а также приведены изображения первых ста

соответствующих многогранников. Вычисления объемов проводились с помо-

щью компьютерной программы Orb [48].

Верхние и нижние оценки объемов компактных прямоугольных многогран-

ников через число их вершин были получены Аткинсоном в [40].

Теорема 2.4 [40, теорема 2.3]. Пусть P — компактный прямоугольный
гиперболический многогранник с V вершинами. Тогда

voct
32

(V − 8) ≤ vol(P) <
5vtet

8
(V − 10). (2)

Более того, существует последовательность компактных прямоугольных много-
гранников Pi с Vi вершинами такая, что vol(Pi)/Vi стремится к 5

8vtet, когда i
стремится к бесконечности.

В силу теоремы 2.1 в теореме 2.4 подразумевается, что V ≥ 20. В [49]

верхняя оценка в (2) была улучшена для компактных прямоугольных гипербо-

лических многогранников с числом вершин V ≥ 24, а в [50] — с числом вершин

V ≥ 81.

2.4. Идеальные прямоугольные многогранники. Напомним, что

многогранник в H3 называется идеальным, если все его вершины являются иде-

альными.

Опишем одно важное семейство идеальных прямоугольных многогранни-

ков. Для n ≥ 3 рассмотрим (2n+ 2)-гранник с верхним и нижним n-угольными

основаниями и с боковой поверхностью из двух слоев по n треугольников, у

которого в каждой вершине сходится по четыре ребра. Такой многогранник

будем называть n-антипризмой и обозначать через An. Отметим, что A3 явля-

ется октаэдром (рис. 4(b)).

По теореме 2.1 для каждого n ≥ 3 многогранник An реализуется в H3 как

идеальный прямоугольный многогранник An. В [51, предложение 5] показано,

что если многогранник имеет минимальное число граней среди всех идеальных

прямоугольных многогранников в H3, у которых хотя бы одна n-угольная, то

он является антипризмой An.

Следующая формула выражает объемы многогранников An через функцию

Лобачевского.

Теорема 2.5 [52]. Для n ≥ 3 имеет место равенство

vol(An) = 2n
[
�
(π

4
+

π

2n

)
+ �

(π
4
− π

2n

)]
. (3)

Верхние и нижние оценки объемов идеальных прямоугольных многогран-

ников через число их вершин были получены Аткинсоном в [40].
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Теорема 2.6 [40, теорема 2.2]. Пусть P — идеальный прямоугольный ги-
перболический многогранник с V вершинами. Тогда

voct
4

(V − 2) ≤ vol(P) <
voct
2

(V − 4). (4)

Оба неравенства превращаются в равенства, если P является правильным иде-
альным гиперболическим октаэдром. Более того, существует последователь-
ность идеальных прямоугольных многогранников Pi с Vi вершинами такая,
что vol(Pi)/Vi стремится к 1

2voct, когда i стремится к бесконечности.

В силу теоремы 2.1 в теореме 2.6 подразумевается, что V ≥ 6. В [49] верхняя

оценка в (4) была улучшена для идеальных прямоугольных гиперболических

многогранников c числом вершин V ≥ 8, а в [50] — с числом вершин V ≥ 25.

2.5. Прямоугольные многогранники с конечными и идеальными

вершинами. Предположим, что прямоугольный гиперболический многогран-

ник P имеет Vf конечных и V∞ идеальных вершин. Обозначим через E число

его ребер, а через F — число его граней. Эйлерова характеристика χ(P) мно-

гогранника P равна

χ(P) = V∞ + Vf − E + F = 2.

Поскольку каждая конечная вершина инцидентна трем ребрам, а идеальная —

четырем, то 3Vf + 4V∞ = 2E. Значит,

F = V∞ +
1

2
Vf + 2, (5)

откуда следует, что число Vf конечных вершин всегда четно. Учитывая, что по

п. (1) теоремы 2.1 выполнено неравенство F ≥ 6, получаем

V∞ +
1

2
Vf ≥ 4. (6)

Лемма 2.1. Пусть f — грань прямоугольного многогранника P ⊂ H3.
Если f треугольная, то она содержит не менее двух идеальных вершин, а если
f четырехугольная, то она содержит не менее одной идеальной вершины.

Доказательство. Напомним, что сумма внутренних углов α1, . . . , αn n-

угольника в H2 удовлетворяет неравенству
n∑
i=1

αi < (n− 2)π. При этом в конеч-

ной вершине грани f внутренний угол равен π/2, а в идеальной — равен 0. Если

f — треугольная грань с k конечными вершинами, то k · π2 < π, откуда k ≤ 1.

Если f — четырехугольная грань с k конечными вершинами, то k · π2 < 2π,

откуда k ≤ 3. �

Аткинсон [40] установил следующие верхнюю и нижнюю оценки на объ-

ем прямоугольного гиперболического многогранника, имеющего хотя бы одну

идеальную вершину.

Теорема 2.7 [40, теорема 2.4]. Пусть P — прямоугольный гиперболиче-
ский многогранник с V∞ ≥ 1 идеальными и Vf конечными вершинами. Тогда
имеют место следующие неравенства:

voct
8
· V∞ +

voct
32
· Vf −

voct
4
≤ vol(P) <

voct
2
· V∞ +

5vtet
8
· Vf −

voct
2
. (7)

В [50] верхняя оценка в (7) была улучшена для прямоугольных гиперболи-

ческих многогранников таких, что V∞ ≥ 1 и V∞ + VF ≥ 18. Пользуясь тем, что

voct = 4G, перепишем нижнюю оценку из (7) в следующем виде:

vol(P) ≥ G

8
(4V∞ + Vf − 8) . (8)
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§ 3. Доказательство основной теоремы

Перейдем к доказательству теоремы 1.1. Пусть P — прямоугольный много-

гранник конечного объема в H3. Обозначим через V∞ ≥ 0 число его идеальных

вершин, а через Vf ≥ 0 — число его конечных вершин. Выясним, при каких V∞
и Vf может иметь место неравенство vol(P ) ≤ G.

Лемма 3.1. Предположим, что для многогранника P имеет место один
из следующих случаев: (1) Vf = 0; (2) V∞ = 0; (3) V∞ = 1. Тогда vol(P) > G.

Доказательство. (1) В этом случае P является идеальным прямоуголь-

ным многогранником и по теореме 2.6 vol(P) ≥ voct = 4G > G.

(2) В этом случае P является компактным прямоугольным многогранни-

ком и по теореме 2.2 его объем ограничен снизу объемом прямоугольного доде-

каэдра, следовательно, vol(P) ≥ 4,306207 > G.

(3) Как показал Нонака [53, лемма 3.1], в этом случае F ≥ 12, а из равенства

(5) следует, что Vf ≥ 18. Тогда по формуле (8) получаем, что

vol(P) ≥ G

8
G(4 · 1 + 18− 8) =

14G

8
> G. �

0 1 2 3 4

1

2

3

4

5

6

7

8

V∞

Vf

Рис. 5. Замкнутая область �.

Лемма 3.2. Пусть � — замкнутая область, ограниченная четырехуголь-
ником с вершинами (2, 4), (3, 2), (3.5, 2) и (2, 8) (рис. 5). Пусть многогранник P
такой, что (V∞, Vf ) 6∈ �. Тогда vol(P) > G.

Доказательство. В силу леммы 3.1 и четности Vf можем считать, что

если vol(P) ≤ G, то P имеет V∞ ≥ 2 идеальных и Vf ≥ 2 конечных вершин.

В силу теоремы 2.1 величины V∞ и Vf удовлетворяют неравенству (6). А в

силу неравенства (8) для выполнения неравенства vol(P) ≤ G величины V∞ и

Vf должны удовлетворять неравенству 4V∞ + Vf ≤ 16. Система неравенств





V∞ ≥ 2,

Vf ≥ 2,

V∞ + 1
2Vf ≥ 4,

4V∞ + Vf ≤ 16

задает замкнутую область �, изображенную на рис. 5. �
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В силу лемм 3.1 и 3.2 неравенство vol(P) ≤ G может выполняться только

если (V∞, Vf ) ∈ {(2, 4), (2, 6), (2, 8), (3, 2), (3, 4)}. Каждый из пяти указанных

случаев мы рассмотрим ниже.

Для многогранника P определим величину W (P), равную суммарному

числу вершин по всем его граням. Поскольку в P каждая идеальная вершина

имеет валентность 4, а каждая конечная вершина — валентность 3, то

W (P) = W (V∞, Vf ) = 4V∞ + 3Vf . (9)

Лемма 3.3. Если число идеальных вершин в многограннике P равно
V∞ = 2, то vol(P) > G.

Доказательство. В силу леммы 3.2 для доказательства утверждения

осталось рассмотреть три случая: (V∞, Vf ) ∈ {(2, 4), (2, 6), (2, 8)}.
Cлучай 1: (V∞, Vf ) = (2, 4). Из формул (5) и (9) получаем, что F = 6 и

W (P) = 20. Обозначим через pn, n ≥ 3, число n-угольных граней в P. Тогда∑
n≥3

pn = F = 6 и
∑
n≥3

npn = W (P) = 20. Отметим, что число треугольных

граней удовлетворяет неравенству p3 ≤ 2. В самом деле, по лемме 2.1 каждая

треугольная грань должна содержать две идеальные вершины, которые при-

надлежат общему ребру. Так как V∞ = 2, то все треугольные грани должны

содержать одно и то же ребро. Значит, таких граней не более двух, а каждая

из оставшихся четырех граней имеет не менее чем четыре вершины. Получаем

оценку W (P) ≥ 3 ·2+4 ·4 = 22, что противоречит равенствуW (P) = 20. Таким

образом, случай 1 не реализуется.

Случай 2: (V∞, Vf ) = (2, 6). Из формул (5) и (9) получаем, что F = 7 и

W (P) = 4V∞ + 3Vf = 26. (10)

Рассмотрим все возможные варианты расположения двух идеальных вершин v1
и v2.

Подслучай 2.1. Предположим, что v1 и v2 не лежат в одной треугольной

грани. Тогда по лемме 2.1 в P нет треугольных граней. Значит, каждая грань

содержит не менее четырех вершин и W (P) ≥ 4F = 28, что противоречит

равенству (10).

Подслучай 2.2. Предположим, что v1 и v2 лежат в одной треугольной гра-

ни (и, следовательно, соединены ребром). Тогда, как и в случае 1, p3 ≤ 2. В силу

леммы 2.1 каждая четырехугольная грань содержит хотя бы одну идеальную

вершину. Поскольку v1 и v2 соединены ребром, то число граней, которые со-

держат хотя бы одну идеальную вершину (а значит, могут быть треугольными

или четырехугольными), не превосходит 6. Следовательно, имеется хотя бы

одна грань, которая не содержит идеальных вершин, и число вершин в этой

грани не менее 5. Получаем W (P) ≥ 3p3 + 4(6 − p3) + 5 · 1 = 29− p3 ≥ 27, что

противоречит (10). Таким образом, случай 2 не реализуется.

Случай 3: (V∞, Vf ) = (2, 8). Из формул (5) и (9) получаем, что F = 8 и

W (P) = 4V∞ + 3Vf = 32. (11)

Рассмотрим все возможные варианты расположения двух идеальных вершин v1
и v2.

Подслучай 3.1. Предположим, что обе идеальные вершины v1 и v2 ле-

жат в k-угольной грани f , k ≥ 4, но не соединены ребром. В силу леммы 2.1
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каждая четырехугольная грань должна содержать хотя бы одну идеальную вер-

шину. Следовательно, помимо грани f вершина v1 может содержаться не более

чем в трех четырехугольных гранях. Аналогичное свойство имеет место и для

вершины v2. Таким образом, P имеет k-угольную грань f и не более чем 6 дру-

гих четырехугольных граней. Следовательно, восьмая грань многогранника P
имеет только конечные вершины и число вершин в этой грани не менее 5. Таким

образом, W (P) ≥ k + 4 · 6 + 5 · 1 ≥ 33 с учетом k ≥ 4, что противоречит (11).

Подслучай 3.2. Предположим, что идеальные вершины v1 и v2 лежат в k-
угольной грани f , k ≥ 4, и соединены ребром e. Тогда грань f1, смежная грани

f по ребру e, также содержит бесконечные вершины v1 и v2, В силу леммы 2.1

каждая четырехугольная грань должна содержать хотя бы одну идеальную вер-

шину. Следовательно, помимо граней f и f1 вершина v1 может содержаться не

более чем в двух четырехугольных гранях. Аналогичное свойство имеет место

для вершины v2. Таким образом, в P число граней, имеющих хотя бы одну

идеальную вершину, не превосходит 6 (при этом f1 может оказаться треуголь-

ной). Значит, найдутся хотя бы две грани, у которых все вершины конечны, и

тем самым каждая их этих граней имеет не менее 5 вершин. Таким образом,

W (P) ≥ k + 3 + 4 · 4 + 5 · 2 ≥ 33 с учетом k ≥ 4, что противоречит (11).

Подслучай 3.3. Предположим, что идеальные вершины v1 и v2 соединены

ребром e и каждая из них лежит в двух треугольных гранях T1 и T2. Обозначим

через Q1, Q2, Q3, Q4 грани, смежные T1 или T2. Заметим, что Q1, Q2, Q3 и Q4

являются четырехугольниками, расположенными, как на рис. 6. В самом деле,

так как каждая из гранейQi содержит не более одной идеальной вершины, тоQi
имеет не менее 4 вершин. Предположим, что хотя бы одна из гранейQi является

k-угольной, где k ≥ 5. Поскольку идеальные вершины v1 и v2 соединены ребром

e, то число граней в P, которые содержат хотя бы одну идеальную вершину,

не превосходит 6. Следовательно, в P найдутся хотя бы две грани, у которых

все вершины являются конечными и число вершин в каждой грани не менее 5.

Таким образом,W (P) ≥ 3·2+4·3+k+5·2≥ 33 с учетом k ≥ 5, что противоречит

(11). Следовательно, все грани Q1, Q2, Q3 и Q4 являются четырехугольниками.

v1 v2

w1

w2

e
u4

u1

u2

u3

Q1 Q2

Q3Q4

T1

T2

Рис. 6. Два смежных треугольника, окруженные четырехугольниками.

Для i = 1, 2, 3, 4 обозначим через ui вершину, принадлежащую общему реб-

ру граней Qi и Qi+1, где индексы берутся по модулю 4, которая не лежит в T1

или T2. Через w1 и w2 обозначим конечные вершины треугольников T1 и T2

соответственно (см. рис. 6).

Рассмотрим следующие случаи.
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Q1

Q2 Q3

Q4

v1
q1

q2

q3

q4

Q′

1

Q′

2

Q′

3

Q′

4

(a)

v1

v2

(b)

Рис. 7. Многогранник P (2,8) и его диаграмма Шлегеля.

(i) Предположим, что вершины u1, u2, u3, u4 попарно различны. Тогда все

вершины, лежащие в гранях T1, T2, Q1, Q2, Q3 и Q4, имеют максимально воз-

можную валентность, а именно, конечные вершины имеют валентность 3, а

идеальные вершины — валентность 4. Следовательно, восемь вершин, изоб-

раженных на рис. 6, не соединены ребрами с оставшимися двумя вершинами

многогранника P, что противоречит связности одномерного остова многогран-

ника.

(ii) Предположим, что совпали две последовательные вершины ui и ui+1.

Тогда Qi+1 превращается в треугольник, что противоречит его четырехуголь-

ности, установленной выше.

(iii) Предположим, что совпали две непоследовательные вершины ui и ui+2,

а вершины ui+1 и ui+3 различны. Если i ∈ {1, 3}, то получим, что вершина

u1 = u3 смежна четырем вершинам w1, w2, u2 и u4, что противоречит ее трех-

валентности. Аналогично, если i ∈ {2, 4} то получим, что вершина u2 = u4

смежна четырем вершинам v1, v2, u1 и u3, что противоречит ее трехвалентно-

сти.

(iv) Предположим, что попарно совпали вершины ui и ui+2, а также вер-

шины ui+1 и ui+3. Тогда все вершины, лежащие в гранях T1, T2, Q1, Q2, Q3 и

Q4, имеют максимально возможную валентность, а именно, конечные вершины

{w1, w2, ui = ui+2, ui+1 = ui+3} являются трехвалентными, а идеальные верши-

ны {v1, v2} — четырехвалентными. Следовательно, указанные шесть вершин не

соединены ребрами с остальными четырьмя вершинами многогранника P, что

противоречит связности одномерного остова многогранника.

Подслучай 3.4. Предположим, что идеальные вершины v1 и v2 не лежат

в общей грани и в P имеется k-угольная грань, где k ≥ 5. По лемме 2.1

многогранник P не может иметь треугольные грани. Следовательно, W (P) ≥
5 + 7 · 4 = 33, что противоречит (11).

Подслучай 3.5. Предположим, что все восемь граней многогранника P
являются четырехугольными. Тогда каждая грань содержит ровно одну иде-

альную вершину.

Обозначим идеальные вершины в P через v1 и v2. Пусть Q1, Q2, Q3, Q4 —

четырехугольные грани, которые содержат v1 (см. рис. 7(a)). Обозначим через

qi, i = 1, . . . , 4, конечную вершину, общую для Qi и Qi+1, где индексы берутся

по модулю 4. Пусть Q′i — 4-угольная грань, имеющая общую вершину qi с гра-

нями Qi и Qi+1. Поскольку P имеет 16 ребер, то четыре ребра, по которым

пересекаются грани Q′i и Q′i+1, должны встретиться в идеальной вершине v2,
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A

D

B1 B2 B3 B4 B1

C1 C2 C3 C4 C1

Рис. 8. Многогранник P (2,8) и тетраэдр �4,4,4.

которая на рис. 7(a) предполагается бесконечно удаленной. Таким образом, рас-

сматриваемому случаю соответствует единственный многогранник. Диаграмма

Шлегеля этого же многогранника приведена на рис. 7(b). Поскольку для этого

многогранника V∞ = 2 и Vf = 8, будем обозначать его через P(2,8). На рис. 8

приведено изображение многогранника P(2,8), где левый и правый края долж-

ны быть отождествлены вдоль AB1C1D. Из рисунка видно, что у P(2,8) имеется

диэдральная группа симметрий порядка восемь, порожденная отражениями в

плоскостях (AC3D) и (AB3D), пересекающихся по прямой AD.

При факторизации P(2,8) по этой диэдральной группе симметрий получим

тетраэдр �4,4,4 = ADB3C3, у которого двугранные углы при ребрах AD, AB3

и C3D равны π/4, а остальные углы равны π/2. Диаграмма Коксетера для

группы � (�4,4,4) приведена на рис. 3.

Поскольку vol(�4,4,4) = 1
2�(π4 ), то vol(P(2,8)) = 4�(π4 ) = 2G > G, что

завершает доказательство леммы 3.3. �

Лемма 3.4. Если число идеальных вершин в прямоугольном многогран-
нике P равно V∞ = 3, то vol(P) ≥ G. Более того, равенство достигается тогда
и только тогда, когда P является прямоугольной треугольной бипирамидой
P(3,2).

Доказательство. В силу леммы 3.2 осталось рассмотреть два случая:

(V∞, Vf ) = (3, 2) и (V∞, Vf ) = (3, 4). Чтобы следовать общему порядку пе-

речисления случаев, принадлежащих области �, будем называть эти случаи

четвертым и пятым.

Случай 4: (V∞, Vf ) = (3, 2). Из формул (5) и (9) получаем, что F = 6 и

W (P ) = 18. Предположим, что у P имеется хотя бы одна грань с не менее чем

четырьмя вершинами. Тогда W (P) ≥ 4 + 5 · 3 = 19, что приводит к противо-

речию. Следовательно, все грани многогранника P являются треугольниками.

Обозначим идеальные вершины многогранника P через v1, v2 и v3. Поскольку

каждая из шести треугольных граней должна содержать не менее двух идеаль-

ных вершин, то P должен иметь не менее трех ребер, соединяющих идеальные

вершины v1, v2 и v3. Значит, эти ребра образуют цикл длины три в одномер-

ном остове многогранника, а шесть треугольных граней попарно инцидентны

ребрам этого цикла. Следовательно, P совпадает с многогранником P(3,2),

приведенным на рис. 2(b), объем которого равен vol(P(3,2)) = 2�
(
π
4

)
= G.
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Случай 5: (V∞, Vf ) = (3, 4). Из формул (5) и (9) получаем, что F = 7 и

W (P) = 3Vf + 4V∞ = 24. (12)

Прежде всего заметим, что P имеет только треугольные и четырехугольные

грани. В самом деле, предположим от противного, что найдется такая k-
угольная грань f , что k ≥ 5. Заметим, что грань f имеет хотя бы 2 идеальные

вершины. В противном случае у f найдутся по крайней мере 3 ребра, которые

имеют только конечные вершины. Тогда три грани, смежные с f по этим реб-

рам, имеют не менее чем по 4 вершины. Следовательно,W (P ) ≥ k+4·3+3·3 ≥ 26

с учетом k ≥ 5, что противоречит (12). Однако если f имеет не менее двух иде-

альных вершин, то f имеет общее ребро или общую вершину с не менее, чем

семью гранями. Значит, число граней в P не менее восьми, что противоречит

условию F = 7. Таким образом, P содержит только треугольные и четырех-

угольные грани. Более того, из W (P) = 3p3 + 4p4 = 24 и p3 + p4 = 7 следует,

что p3 = 4 и p4 = 3.

Рассмотрим все возможные варианты расположения треугольных и четы-

рехугольных граней.

Подслучай 5.1. Предположим, что P имеет треугольную грань T0, ко-

торая содержит все три идеальные вершины v1, v2 и v3. Тогда оставшиеся тре-

угольные грани Ti, i = 1, 2, 3, смежны с T0 по ребрам (рис. 9(a)). Для i = 1, 2, 3
обозначим через Qi 4-угольную грань, которая имеет общую идеальную верши-

ну с треугольниками T0, Ti и Ti+1.

Q1

Q2

Q3

T0

T1

T2 T3

(a) (b)

Рис. 9. Многогранник P (3,4) и его диаграмма Шлегеля.

Поскольку P имеет 12 ребер, то три ребра, по которым пересекаются пары

граней Qi, Qi+1, должны иметь общую конечную вершину. На рис. 9(a) эта

вершина предполагается расположенной достаточно далеко. Диаграмма Шле-

геля этого же многогранника приведена на рис. 9(b). Поскольку многогранник

имеет 3 идеальных и 4 конечных вершины, будем обозначать его через P(3,4).

Чтобы найти объем vol(P(3,4)), заметим, что под действием группы диэдра

порядка 4, порожденной отражениями в гранях многогранника P(3,4), проходя-

щих через конечные вершины A, B, D и конечные вершины A, C, D, получим

прямоугольную четырехугольную антипризму A4 (рис. 10). Таким образом,

vol(P(3,4)) = 1
4 vol(A4). Используя формулу (3), получаем приближенное зна-

чение с точностью до шести знаков после запятой: vol(P(3,4)) = 1,505361 > G.

Далее будем предполагать, что P не имеет треугольной грани, которая со-

держит все три идеальные вершины. Напомним, что в рассматриваемом случае

P имеет только 4 треугольные и 3 четырехугольные грани.
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AB

C

D

Рис. 10. Многогранник P (3,4) как 1
4
-долька антипризмы A4.

Q1Q3

Q2

T2

T1
T3

v1

(a)

Q1Q3

Q2

T2

T1
T3

v1

v2

v3

(b)

Рис. 11. Подслучай 5.2: грань Q1 с одной идеальной вершиной v1.

Подслучай 5.2. Предположим, что в P существует четырехугольная

грань Q1, которая имеет ровно одну идеальную вершину, скажем v1. Далее

будем следовать обозначениям на рис. 11(a).
Так как грани Q2 и Q3 содержат ребра, обе вершины которых конечные, то

Q2 и Q3 не могут быть треугольниками, следовательно, они являются четырех-

угольниками. Таким образом, {Q1, Q2, Q3} — полный список четырехугольных

граней в P , а оставшиеся четыре грани треугольные. Обозначим три из них

через T1, T2 и T3, как на рис. 11(a). Тогда в T1 имеется идеальная вершина

v2, смежная v1, а в T2 имеется идеальная вершина v3, смежная v1 (рис. 11(b)).

Поскольку T3 является треугольником, то вершины v2 и v3 соединены ребром.

Таким образом, у P имеется треугольная грань T3, которая содержит все три

идеальные вершины v1, v2, v3, и мы пришли к ситуации, которая уже была

изучена в подслучае 5.1.

Подслучай 5.3. Предположим, что в P не существует четырехуголь-

ной грани, которая имеет ровно одну идеальную вершину. Поскольку по лем-

ме 2.1 каждая четырехугольная грань должна содержать хотя бы одну идеаль-

ную вершину, то каждая четырехугольная грань в P имеет хотя бы по две

идеальные вершины. Обозначим через Q1, Q2 и Q3 четырехугольные грани

в P, а через k1 ≥ 2, k2 ≥ 2 и k3 ≥ 2 — число идеальных вершин в каж-

дой из них. Для многогранника P обозначим через WI(P) величину, рав-

ную суммарному числу идеальных вершин по всем граням многогранника. По-

скольку V∞ = 3 и каждая идеальная вершина имеет валентность 4, получаем

WI(P) = 4 · 3 = 12. С другой стороны, поскольку P помимо Q1, Q2, Q3 имеет

также четыре треугольные грани, каждая из которых содержит ровно по две
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идеальные вершины, то суммарное число идеальных вершин по всем граням

равно WI(P) = 2 · 4 + k1 + k2 + k3 ≥ 8 + 6 = 14; противоречие. �

Из лемм 3.1–3.4 следует, что объем произвольного прямоугольного гипер-

болического многогранника ограничен снизу константой Каталана G, причем

равенство достигается только для многогранника P(3,2). Таким образом, тео-

рема 1.1 доказана.

§ 4. Арифметичность прямоугольных групп Коксетера

Хорошо известно, что арифметичность дискретных групп � < Isom(H3)

конечного кообъема имеет важную роль при изучении гиперболических много-

образий и орбифолдов H3/� , см. [25]. Отметим здесь лишь следующее важное

свойство: по теореме Маргулиса (см., например, [25, теорема 10.3.5]) соизмери-

тель

Comm(� ) = {γ ∈ Isom(H3) | γ�γ−1 и � соизмеримы}
является дискретной группой тогда и только тогда, когда � неарифметическая.

Для дискретных групп движений пространства Hn, порожденных конеч-

ным число отражений и имеющих фундаментальный многогранник конечного

объема, необходимые и достаточные условия арифметичности были получены

Винбергом в 1967 г. (см. [5]). Поскольку предметом наших обсуждений являют-

ся прямоугольные группы Коксетера, напомним, что в [54] было отмечено, что

группа � (Ln), порожденная отражениями в гранях компактного прямоугольно-

го многогранника Лебелля, при n 6∈ {5, 6, 7, 8, 10, 12, 18} является неарифмети-

ческой, а затем в [35] было показано, что � (Ln) является арифметической тогда

и только тогда, когда n ∈ {5, 6, 8} (см. также [36]). С использованием крите-

рия Винберга в [55] установлено, что группа � (An), порожденная отражениями

в гранях прямоугольной идеальной антипризмы, является арифметической то-

гда и только тогда, когда n ∈ {3, 4}.
Известно [5], что условия арифметичности Винберга сильно упрощаются,

если фундаментальный многогранник P группы � (P ) не является компакт-

ным. А именно, пусть A(P ) = (aij)
N
i,j=1 — матрица Грама многогранника

P . Обозначим через Cyc(A) множество всех циклических произведений вида

ai1i2ai2i3 · · · aim−1imaimi1 . Тогда для арифметичности группы � (P ) необходимо

и достаточно, чтобы все циклические произведения из Cyc(2 ·A(P )) лежали в Z.
Арифметичность группы � (�3,4,4) была отмечена в [5]. Например, для группы

� (�4,4,4) удвоенная матрица Грама имеет вид

2 ·A(�4,4,4) =




2 −
√

2 0 0

−
√

2 2 −
√

2 0

0 −
√

2 2 −
√

2

0 0 −
√

2 2


 ,

что позволяет легко убедиться в арифметичности этой группы.

Хорошо известно, что � (�3,4,4) и � (�4,4,4) соизмеримы с группой Пикара

PSL(2,Z
√
−1) (см., например, [25, рис. 13.3]). Поскольку � (P(3,2)) соизмери-

ма с группой � (�3,4,4) (см. рис. 2), группа � (P(2,8)) соизмерима с группой

� (�4,4,4) (см. рис. 8), а группа � (P(3,4)) соизмерима с группой, порожденной

отражениями в гранях идеальной прямоугольной антипризмы A4 (см. рис. 10),

то все три группы � (P(3,2)), � (P(2,8)) и � (P(3,2)) являются арифметическими.

Зафиксируем этот факт в виде следующего замечания.
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Замечание 4.1. Прямоугольные гиперболические группы Коксетера

� (P(3,2)), � (P(3,4)) и � (P(2,8)) являются арифметическими.

§ 5. Открытые вопросы

В заключение сформулируем некоторые открытые вопросы.

Вопрос 5.1. Классифицировать арифметические прямоугольные гипербо-
лические группы Коксетера.

В [51, предложение 5] установлено, что антипризма An, n ≥ 3, является

минимальной по числу граней в классе прямоугольных идеальных гиперболи-

ческих многогранников, имеющих n-угольную грань. Естественно возникает

вопрос о многограннике с аналогичным свойством в классе компактных много-

гранников.

Вопрос 5.2. Верно ли, что многогранник Лёбелля L(n), n ≥ 5, является
минимальным по числу граней в классе кокомпактных прямоугольных гипер-
болических многогранников, имеющих хотя бы одну n-угольную грань.

В [56] была найдена минимальная по кообъему неарифметическая гипер-

болическая группа Коксетера, имеющая некомпактный фундаментальный мно-

гогранник. Естественно возникает вопрос о прямоугольной группе Коксетера

с аналогичным свойством. Напомним известные результаты для случаев ком-

пактных и идеальных прямоугольных многогранников Коксетера. Согласно [44]

многогранник Лёбелля L7 является четвертым по объему компактным прямо-

угольным многогранником в H3 с vol(L7) = 7,563249. В [35] было показано,

что группы отражений, соответствующие трем предшествующим многогранни-

кам, являются арифметическими, а � (L7) неарифметическая. Следователь-

но, � (L7) является компактной неарифметической прямоугольной гиперболи-

ческой группой Коксетера минимального объема. Согласно [57] идеальная ан-

типризма A5 является четвертым по объему идеальным прямоугольным мно-

гогранником в H3 с vol(A5) = 8,137885. В [55] было показано, что два мно-

гогранника наименьшего объема A3 и A4 являются арифметическими. Более

того, легко заметить, что третий многогранник наименьшего объема получается

склеиванием двух копий A3 по одной из его граней, поэтому он также арифме-

тический. Следовательно, � (A5) является идеальной неарифметической прямо-

угольной гиперболической группой Коксетера минимального объема. Случай,

когда прямоугольный многогранник Коксетера имеет как конечные, так и иде-

альные вершины, остается открытым.

Вопрос 5.3. Какая неарифметическая прямоугольная гиперболическая
группа Коксетера в H3 имеет наименьший кообъем?

Напомним также вопрос, сформулированный в [13, с. 66].

Вопрос 5.4. Верно ли, что наименьшее число гиперграней в компактном
прямоугольном многограннике в H4 равно 120?
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