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1. Введение

В настоящее время имеется большое число работ, посвященных изучению
линейных уравнений с частными производными следующего вида:

L0(Dx)D
l
tu+

l−1∑

k=0

Ll−k(Dx)D
k
t u = f(t, x). (1.1)

Такие уравнения возникают при решении многих прикладных задач гидроди-
намики, физики атмосферы, физики плазмы, теории упругости и др. (см.,
например, монографии [1, 2] и имеющуюся там библиографию). В литерату-
ре уравнения вида (1.1) зачастую называются уравнениями соболевского типа,
поскольку первое глубокое исследование свойств решений уравнений, не разре-
шенных относительно старшей производной, проводилось в работах С. Л. Со-
болева (см. [3, с. 333-463]). Исследования С. Л. Соболева были продолжены его
учениками Р. А. Александряном, Н. Н. Ваханией, Г. В. Вирабяном, А. А. Дези-
ным, Р. Т. Денчевым, Т. И. Зеленяком, В. И. Лебедевым, В. Н. Масленниковой,
С. Г. Овсепяном и др.

Монография [1] является первой монографией, целиком посвященной тео-
рии краевых задач для уравнений вида (1.1). В этой монографии была введена
некоторая классификация таких уравнений в случае, когда оператор L0(Dx)
являлся квазиэллиптическим оператором. В частности, был определен класс
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псевдогиперболических уравнений (см. [1, гл. 2]). В этот класс входят много-
мерное уравнение Власова — Релея — Бишопа [4–7]

(αI − β�)D2
t u− γ�u+ σ�2u = f(t, x) (1.2)

(� — оператор Лапласа по x ∈ Rn), уравнение Гальперна [8]

�D2
t u−

n∑

k=1

akD
4
xk
u = f(t, x), ak > 0, k = 1, . . . , n, (1.3)

обобщенное уравнение Буссинеска [9–11]

(a0I+a1�+a2�
2)D2

tu+(b0I+b1�+b2�
2)Dtu+(d0I+d1�+d2�

2+d3�
3)u = f(t, x),

(1.4)
где

a2
1 − 4a0a2 < 0, a2b0 ≥ 0, a2b1 ≤ 0, a2b2 ≥ 0,

a2d0 ≥ 0, a2d1 ≤ 0, a2d2 ≥ 0, a2d3 < 0.

Для некоторых классов уравнений, не разрешенных относительно старшей
производной, известен ряд важных результатов по теории краевых задач (см.,
например, монографии [1, 2, 12]). Для класса псевдогиперболических уравнений
достаточно хорошо изучена задача Коши в случае с постоянными коэффици-
ентами (см., например, [13–16]), в случае с переменными коэффициентами для
таких уравнений в литературе имеется только один результат по энергетиче-
ским оценкам [17], а по теории краевых задач имеются лишь результаты для
конкретных уравнений (см., например, [11, 18–22]).

2. Основные результаты

В настоящей работе мы продолжаем изучение свойств псевдогиперболи-
ческих операторов с переменными коэффициентами. Рассматривается класс
дифференциальных операторов шестого порядка, не разрешенных относитель-
но старшей производной,

L (x;Dt, Dx) = L 1(Dt, Dx) + L 2(x;Dt, Dx), t ∈ R, x ∈ Rn, (2.1)

где L 1(Dt, Dx) — однородный строго псевдогиперболический оператор с посто-
янными вещественными коэффициентами следующего вида:

L 1(Dt, Dx) = L1
0(Dx)D

2
t + L1

1(Dx)Dt + L1
2(Dx), (2.2)

L1
0(Dx) =

∑

|β|=4

a0
βD

β
x , L1

1(Dx) =
∑

|β|=5

a1
βD

β
x , L1

2(Dx) =
∑

|β|=6

a2
βD

β
x , (2.3)

при этом L1
0(Dx) — эллиптический оператор и его символ удовлетворяет оценке

q2|ξ|4 ≥ L1
0(iξ) ≡

∑

|β|=4

a0
βξ
β ≥ q1|ξ|4, ξ ∈ Rn, (2.4)

где q2 ≥ q1 > 0 — постоянные. Будем предполагать, что

−
(
L1

1(iξ)
)2

+ 4L1
2(iξ)L

1
0(iξ) > 0, ξ ∈ Rn\{0}. (2.5)

Отметим, что из (2.5) в силу однородности полиномов L1
0(iξ), L

1
1(iξ), L

1
2(iξ)

вытекает неравенство

p2|ξ|10 ≥ d(ξ) ≡ −
(
L1

1(iξ)
)2

+ 4L1
2(iξ)L

1
0(iξ) ≥ p1|ξ|10, ξ ∈ Rn, (2.6)

где p2 ≥ p1 > 0 — постоянные.
Согласно определению псевдогиперболических операторов [1, гл. 2] опе-

ратор L 1(Dt, Dx) действительно является строго псевдогиперболическим, по-
скольку выполнены следующие условия:
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Условие 1. Символ L 1(iη, iξ) оператора L 1(Dt, Dx) однороден относи-
тельно вектора (α0, α1, . . . , αn) = (1/6, 1/6, . . . , 1/6).

Условие 2. Оператор L1
0(Dx) эллиптический.

Условие 3. Уравнение

(iη)2 +
L1

1(iξ)

L1
0(iξ)

(iη) +
L1

2(iξ)

L1
0(iξ)

= 0, ξ ∈ Rn\{0}, (2.7)

в силу (2.4), (2.5) имеет только вещественные и различные корни η1(ξ), η2(ξ).

Второй дифференциальный оператор в (2.1) с вещественнозначными пере-
менными коэффициентами L 2(x;Dt, Dx) имеет вид

L 2(x;Dt, Dx) =
(
L2

0(x;Dx) + (a(x) + a)I
)
D2
t + L2

1(x;Dx)Dt + L2
2(x;Dx), (2.8)

где

L2
0(x;Dx) =

∑

|β|=4

a0
β(x)D

β
x , L2

1(x;Dx) =
∑

|β|=5

a1
β(x)D

β
x ,

L2
2(x;Dx) =

∑

|β|=6

a2
β(x)D

β
x ,

(2.9)

при этом

a(x), akβ(x) ∈ C∞0 (Rn), a(x) ≈ 0, akβ(x) ≈ 0, k = 0, 1, 2,

a > 0 — константа.
Оператор L 2(x;Dt, Dx) можно рассматривать как возмущение псевдоги-

перболического оператора L 1(Dt, Dx).
Рассматриваемый оператор (2.1)–(2.3), (2.8), (2.9) можно переписать в сле-

дующем виде:

L (x;Dt, Dx) = (L0(x;Dx) + (a(x) + a)I)D2
t + L1(x;Dx)Dt + L2(x;Dx), (2.10)

где

L0(x;Dx) =
∑

|β|=4

(
a0
β + a0

β(x)
)
Dβ
x , L1(x;Dx) =

∑

|β|=5

(
a1
β + a1

β(x)
)
Dβ
x ,

L2(x;Dx) =
∑

|β|=6

(
a2
β + a2

β(x)
)
Dβ
x .

Очевидно, при достаточно малых akβ(x) ≈ 0 оператор L0(x;Dx) является эллип-
тическим.

Наша цель — получение энергетических оценок для строго псевдогипербо-
лических операторов (2.10) с переменными коэффициентами.

В дальнейшем символом W 2,6
2,γ (Rn+1), γ > 0, будем обозначать соболевское

пространство с экспоненциальным весом e−γt, т. е. функция u(t, x) принадле-

жит W 2,6
2,γ (Rn+1), если

uγ(t, x) = e−γtu(t, x) ∈ W 2,6
2 (Rn+1).

По определению положим∥∥u(t, x),W 2,6
2,γ (Rn+1)

∥∥ =
∥∥uγ(t, x),W 2,6

2 (Rn+1)
∥∥.

Символом ûγ(η, ξ) будем обозначать преобразование Фурье функции

uγ(t, x) ∈ L2(R
n+1).

Отметим, что из [1, 14] вытекает энергетическая оценка для псевдогипербо-
лического оператора (L 1(Dt, Dx)+aI), a ≥ 0, с постоянными коэффициентами.
А именно, справедлива
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Теорема 1. Для любой функции u(t, x) ∈W 2,6
2,γ (Rn+1), γ > 0, такой, что

D2
tD

β
xu(t, x) ∈ L2,γ(R

n+1), |β| = 4, (2.11)

имеет место оценка

γ‖(|ξ|4 + a)(|η|+ γ + |ξ|)ûγ(η, ξ), L2(R
n+1)‖

≤ c‖(L 1(Dt, Dx) + aI)u(t, x), L2,γ(R
n+1)‖ (2.12)

с константой c > 0, не зависящей от u(t, x).

В настоящей работе аналогичный результат будет доказан для операторов
вида (2.10) с переменными коэффициентами.

Теорема 2. Существует γ0 > 0 такое, что если коэффициенты akβ(x) и

a(x) оператора (2.10) вместе со своими производными до пятого порядка вклю-

чительно достаточно малы, то для любой функции u(t, x) ∈ W 2,6
2,γ (Rn+1), γ > γ0,

такой, что выполнено (2.11), имеет место оценка

γ‖(|ξ|4 + a)(|η|+ γ + |ξ|)ûγ(η, ξ), L2(R
n+1)‖ ≤ c‖L (x;Dt, Dx)u(t, x), L2,γ(R

n+1)‖
(2.13)

с константой c > 0, не зависящей от u(t, x).

Оценки (2.12), (2.13) являются аналогами энергетических неравенств для
строго гиперболических операторов [23, 24].

Отметим, что энергетические оценки вида (2.13) можно использовать для
изучения корректности задачи Коши для строго псевдогиперболических урав-
нений с переменными коэффициентами

L (x;Dt, Dx) = f(t, x), t > 0, x ∈ Rn, u|t=0 = ϕ1(x), Dtu|t=0 = ϕ2(x) (2.14)

в весовом соболевском пространстве W 2,6
2,γ (Rn+1), γ > 0. В частности, из теоре-

мы 2 вытекает теорема о единственности решения задачи (2.14).

Теорема 3. Пусть выполнены условия теоремы 2, тогда задача Коши
(2.14) не может иметь более одного решения u(t, x) ∈ W 2,6

2,γ (Rn+1), γ > γ0, удо-

влетворяющего (2.11).

3. Энергетические оценки для операторов
с переменными коэффициентами

В этом разделе докажем энергетические оценки (2.13) для строго псевдо-
гиперболических операторов (2.10).

Будем предполагать, что переменные коэффициенты a(x) и akβ(x) опера-

тора (2.10) вместе со своими производными до пятого порядка включительно
достаточно малы. Их малость будет определена в дальнейшем.

В [1, гл. 2] при получении энергетических оценок для строго псевдогипер-
болических операторов с постоянными коэффициентами вида

L(Dt, Dx) = L0(Dx)D
l
t +

l−1∑

k=0

Ll−k(Dx)D
k
t u = f(t, x), (3.1)

где L0(Dx) — квазиэллиптический оператор, использовался аналог схемы Лере
[24], предложенной для изучения корректности задачи Коши для строго гипер-
болических уравнений. В частности, в [1, гл. 2] рассматривался полином

M(iη + γ, iξ) = − Im(L(iη + γ, iξ)DηL(iη + γ, iξ)), (3.2)
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где L(iη, iξ) — символ строго псевдогиперболического оператора (3.1). В [1]
предполагалось, что символ однороден относительно некоторого вектора

(α0, α1, . . . , αn), α0 > 0, 1/αj ∈ N, j = 1, . . . , n,

и в этом случае была получена оценка

M(iη + γ, iξ) ≥ c1γ〈ξ〉2(1−lα0)(|iη + γ|+ 〈ξ〉α0 )2(l−1), γ > 0,

(η, ξ) ∈ Rn+1, 〈ξ〉2 =

n∑

j=1

ξ
2/αj

j , c1 = const > 0.

Из этого неравенства вытекает энергетическая оценка для оператора (3.1)

γ‖〈ξ〉(1−lα0)(|iη + γ|+ 〈ξ〉α0)(l−1)ûγ(η, ξ), L2(R
n+1)‖

≤ c2‖L(Dt, Dx)u(t, x), L2,γ(R
n+1)‖, γ > 0,

с константой c2 > 0, не зависящей от u(t, x) ∈ C∞0 (Rn+1). Отсюда, в частности,
следует неравенство (2.12) при a = 0.

В работе [17] такой подход был использован для получения энергетической
оценки для одного частного случая строго псевдогиперболического оператора
четвертого порядка с переменными коэффициентами следующего вида:

L̂(x;Dt, Dx) = (L̂0(Dx) + aI)D2
t + L̂1(x;Dx)Dt + L̂2(x;Dx), (3.3)

где

L̂0(Dx) =
∑

|β|=2

a0
βD

β
x , L̂1(x;Dx) =

∑

|β|=3

(
a1
β + a1

β(x)
)
Dβ
x ,

L̂2(x;Dx) =
∑

|β|=4

(
a2
β + a2

β(x)
)
Dβ
x , akβ(x) ∈ C∞0 (Rn), akβ(x) ≈ 0, k = 1, 2,

при этом оператор L̂0(Dx) эллиптический с постоянными коэффициентами. От-
метим, что в качестве аналога разделяющего оператора в [17] использовался
такой же оператор, как в [1] и [14] для случая постоянных коэффициентов.

Будем развивать подход из работы [17] для получения энергетической оцен-
ки для оператора (2.10), применяя аналог схемы Лере, но в отличие от [17]
будем использовать аналог разделяющего оператора с учетом переменных ко-
эффициентов. А именно, для любой функции u(t, x) ∈ C∞0 (Rn+1) рассмотрим
следующий аналог формы (3.1) из [17]:

Mu = − Im

∫

Rn+1

e−γtL (x;Dt, Dx)u(t, x)
(
e−γtL 1

1 (x;Dt, Dx)u(t, x)
)
dz, (3.4)

где γ > 0,

L 1
1 (x;Dt, Dx) = 2i(L0(x;Dx) + (a(x) + a)I)Dt + iL1(x;Dx), z = (t, x). (3.5)

Очевидно, (3.4) можно переписать в виде

Mu = − Im

∫

Rn+1

L (x;Dt + γI,Dx)uγ(t, x)
(
L 1

1 (x;Dt + γI,Dx)uγ(t, x)
)
dz.
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В дальнейшем нам будет удобно использовать следующее обозначение для
скалярного произведения в L2(Rn+1):

〈v, ω〉 =
∫

Rn+1

v(z)ω(z)dz,

и для сокращения записи будем писать

L (x) = L (x;Dt + γI,Dx) = (L0(x;Dx) + (a(x) + a)I)(Dt + γI)2

+ L1(x;Dx)(Dt + γI) + L2(x;Dx),

L 1
1 (x) = L 1

1 (x;Dt + γI,Dx) = 2i(L0(x;Dx) + (a(x) + a)I)(Dt + γI) + iL1(x;Dx).

Тогда Mu можно представить в виде

Mu = − Im
〈
L (x)uγ ,L

1
1 (x)uγ

〉

= − 1

2i

(〈
L (x)uγ ,L

1
1 (x)uγ

〉
−
〈
L 1

1 (x)uγ ,L (x)uγ
〉)

= − 1

2i

〈((
L 1

1 (x)
)∗

L (x)− (L (x))∗L 1
1 (x)

)
uγ , uγ

〉
. (3.6)

Введем дифференциальный оператор

P(x;Dt, Dx, γ) = − 1

2i

((
L 1

1 (x)
)∗

L (x) − (L (x))∗L 1
1 (x)

)
. (3.7)

Тогда выражение (3.6) будет иметь вид

Mu = 〈P(x;Dt, Dx, γ)uγ , uγ〉. (3.8)

Учитывая вещественнозначность коэффициентов оператора (2.10) и вид
оператора (3.5), сопряженные к ним операторы можно определить следующим
образом:

(L (x))∗v(x) = (Dt − γI)2
[ ∑

|β|=4

Dβ
x

((
a0
β(x) + a0

β

)
v(x)

)
+ (a(x) + a)v(x)

]

+ (Dt − γI)
∑

|β|=5

Dβ
x

((
a1
β(x) + a1

β

)
v(x)

)
+
∑

|β|=6

Dβ
x

((
a2
β(x) + a2

β

)
v(x)

)
,

(
L 1

1 (x)
)∗
v(x) = 2i(Dt − γI)

∑

|β|=4

Dβ
x

((
a0
β(x) + a0

β

)
v(x)

)

+ 2i(Dt − γI)(a(x) + a)v(x) + i
∑

|β|=5

Dβ
x

((
a1
β(x) + a1

β

)
v(x)

)
.

Тогда дифференциальный оператор (3.7) принимает вид

P(x;Dt, Dx, γ)uγ = −(Dt − γI)
∑

|β|=4

Dβ
x

((
a0
β(x) + a0

β

)
L (x)uγ

)

− (Dt − γI)(a(x) + a)L (x)uγ −
1

2

∑

|β|=5

Dβ
x

((
a1
β(x) + a1

β

)
L (x)uγ

)

+ (Dt − γI)2
∑

|β|=4

Dβ
x

((
a0
β(x) + a0

β

)
L 1

1 (x)uγ
)

+ (Dt − γI)2(a(x) + a)L 1
1 (x)uγ
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+ (Dt − γI)
∑

|β|=5

Dβ
x

((
a1
β(x) + a1

β

)
L 1

1 (x)uγ
)

+
∑

|β|=6

Dβ
x

((
a2
β(x) + a2

β

)
L 1

1 (x)uγ
)
.

Учитывая гладкость коэффициентов оператора (2.10), дифференциальный опе-
ратор (3.7) по аналогии с (3.4) из [17] можно представить в следующем виде:

P(x;Dt, Dx, γ) = P (x;Dt, Dx, γ) + p(x;Dt, Dx, γ), (3.9)

где

P (x;Dt, Dx, γ)uγ = −2γ
(
D2
t − γ2I

)( ∑

|α|=4

(
a0
α(x) + a0

α

)
Dα
x + (a(x) + a)I

)

◦
( ∑

|β|=4

(
a0
β(x) + a0

β

)
Dβ
x + (a(x) + a)I

)
uγ

+ 2γ
( ∑

|α|=4

(
a0
α(x) + a0

α

)
Dα
x + (a(x) + a)I

)( ∑

|β|=6

(
a2
β(x) + a2

β

)
Dβ
x

)
uγ

− 2γDt

( ∑

|α|=5

(
a1
α(x) + a1

α

)
Dα
x

)( ∑

|β|=4

(
a0
β(x) + a0

β

)
Dβ
x + (a(x) + a)I

)
uγ

− γ
( ∑

|α|=5

(
a1
α(x) + a1

α

)
Dα
x

)( ∑

|β|=5

(
a1
β(x) + a1

β

)
Dβ
x

)
uγ , (3.10)

а оператор p(x;Dt, Dx, γ) имеет десятый порядок. В дальнейшем будем считать,
что оператор умножения на параметр γk является оператором k-го порядка.
С учетом этого оператор P (x;Dt, Dx, γ) имеет одиннадцатый порядок.

В силу (3.9) выражение (3.8) можно записать в виде

Mu = 〈P (x;Dt, Dx, γ)uγ , uγ〉+ 〈p(x;Dt, Dx, γ)uγ , uγ〉. (3.11)

Представим оператор (3.10) в виде двух дифференциальных операторов:

P (x;Dt, Dx, γ) = P0(Dt, Dx, γ) + P1(x;Dt, Dx, γ), (3.12)

где оператор P0(Dt, Dx, γ) имеет только постоянные коэффициенты, а коэф-
фициенты в P1(x;Dt, Dx, γ), стоящие перед операторами дифференцирования
Dα+β
x , зависят от x. Такое представление можно получить, используя опреде-

ления дифференциальных операторов (2.3). Тогда для оператора P0(Dt, Dx, γ)
получим представление

P0(Dt, Dx, γ) = γ
(
−2
(
D2
t − γ2I

)(
L1

0(Dx) + a
)(
L1

0(Dx) + a
)

+ 2
(
L1

0(Dx) + a
)
L1

2(Dx)− 2Dt

(
L1

0(Dx) + a
)
L1

1(Dx)− L1
1(Dx)L

1
1(Dx)

)
. (3.13)

При таком определении оператора P0(Dt, Dx, γ) все коэффициенты в операторе
P1(x,Dt, Dx, γ) из (3.12) содержат члены a0

α(x), a1
α(x), a2

α(x), которые вместе
со своими производными до пятого порядка включительно достаточно малы.
Поэтому для любой функции u(t, x) ∈ C∞0 (Rn+1) справедлива оценка

|〈P1(x;Dt, Dx, γ)uγ , uγ〉| ≤ γεc1‖(|ξ|4+a)(|η|+γ+ |ξ|)ûγ(η, ξ), L2(R
n+1)‖2, (3.14)

где c1 > 0 — константа, зависящая от a и коэффициентов оператора (2.2), ε >
0 определяется малостью коэффициентов akα(x) и их производных до пятого
порядка включительно.
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Аналогичная оценка имеет место для второго слагаемого из (3.11):

|〈p(x;Dt, Dx, γ)uγ , uγ〉| ≤ c2‖(|ξ|4 + a)(|η|+ γ + |ξ|)ûγ(η, ξ), L2(R
n+1)‖2, (3.15)

где c2 > 0 — константа, зависящая от a и коэффициентов оператора (2.10).
Рассмотрим форму

〈P0(Dt, Dx, γ)uγ, uγ〉, u(t, x) ∈ C∞0 (Rn+1), γ > 0.

В силу равенства Парсеваля имеем

〈P0(Dt, Dx, γ)uγ , uγ〉 = γ
(〈

2(η2 + γ2)
(
L1

0(iξ) + a
)2
ûγ(η, ξ), ûγ(η, ξ)

〉

+
〈
2
(
L1

0(iξ) + a
)
L1

2(iξ)ûγ(η, ξ), ûγ(η, ξ)
〉
−
〈
2iη
(
L1

0(iξ) + a
)
L1

1(iξ)ûγ(η, ξ), ûγ(η, ξ)
〉

−
〈(
L1

1(iξ)
)2
ûγ(η, ξ), ûγ(η, ξ)

〉)
.

Учитывая определение операторов (2.3), это можно переписать в виде

〈P0(Dt, Dx, γ)uγ , uγ〉 = γ
〈
[2(η2 + γ2)

(
L1

0(iξ) + a
)2 − 2

(
L1

0(iξ) + a
)
L1

2(ξ)

+ 2η
(
L1

0(iξ) + a
)
L1

1(ξ) +
(
L1

1(ξ)
)2]

ûγ(η, ξ), ûγ(η, ξ)
〉
.

Введем обозначение

M(η, γ, ξ, a) = γ
[
2(η2 + γ2)

(
L1

0(ξ) + a
)2 − 2

(
L1

0(ξ) + a
)
L1

2(ξ)

+ 2η
(
L1

0(ξ) + a
)
L1

1(ξ) +
(
L1

1(ξ)
)2]

. (3.16)

Тогда предыдущую формулу можно переписать в виде

〈P0(Dt, Dx, γ)uγ, uγ〉 = 〈M(η, γ, ξ, a)ûγ(η, ξ), ûγ(η, ξ)〉. (3.17)

Запишем функцию (3.16) в виде

M(η, γ, ξ, a) = 2γ
(
L1

0(ξ) + a
)2
((

η +
L1

1(ξ)

2(L1
0(ξ) + a)

)2

+

(
L1

1(ξ)
)2 − 4

(
L1

0(ξ) + a
)
L1

2(ξ)

4
(
L1

0(ξ) + a
)2 + γ2

)
.

Введем обозначение

Q(η, γ, ξ, a) =

(
η +

L1
1(ξ)

2
(
L1

0(ξ) + a
)
)2

+

(
L1

1(ξ)
)2 − 4

(
L1

0(ξ) + a
)
L1

2(ξ)

4
(
L1

0(ξ) + a
)2 + γ2. (3.18)

Тогда полином (3.16) можно представить в виде

M(η, γ, ξ, a) = 2γ
(
L1

0(ξ) + a
)2
Q(η, γ, ξ, a). (3.19)

Заметим, что функция Q(η, γ, ξ, 0), (η, γ, ξ) ∈ Rn+2, однородная степени 2 и
в силу условий (2.4), (2.5) обращается в 0 только при η = γ = |ξ| = 0. Поэтому
существуют положительные константы r2 ≥ r1, для которых выполнена оценка

r2(η
2 + γ2 + |ξ|2) ≥ Q(η, γ, ξ, 0) ≥ r1(η2 + γ2 + |ξ|2), (3.20)

или
r2 ≥ Q(η′, γ′, ξ′, 0) ≥ r1 > 0,
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η′ = η/�, γ′ = γ/�, ξ′ = ξ/�, � =
√
η2 + |ξ|2 + γ2.

Рассмотрим функцию (3.18) при a > 0 и запишем ее следующим образом:

Q(η, γ, ξ, a) = �2Q
(
η′, γ′, ξ′,

a

�4

)
.

Тогда в силу равномерной непрерывности функции

Q(η′, γ′, ξ′, α), (η′)2 + (γ′)2 + |ξ′|2 = 1, α ∈ [0, α0],

из оценки (3.20) следует, что существует γ1 > 0 такое, что при всех (η, ξ) ∈ Rn+1,
γ ≥ γ1 будет выполняться неравенство

2r2(η
2 + |ξ|2 + γ2) ≥ Q(η, γ, ξ, a) ≥ r1

2
(η2 + |ξ|2 + γ2).

Отсюда в силу (3.19) получаем

4r2γ
(
L1

0(ξ) + a
)2

(η2 + |ξ|2 + γ2) ≥M(η, γ, ξ, a) ≥ r1γ
(
L1

0(ξ) + a
)2

(η2 + |ξ|2 + γ2).

Следовательно, учитывая (2.4), имеем

4r2γ(q2|ξ|4 + a)2(η2 + |ξ|2 + γ2) ≥M(η, γ, ξ, a)

≥ r1γ(q1|ξ|4 + a)2(η2 + |ξ|2 + γ2), γ ≥ γ1, (η, ξ) ∈ Rn+1.

Поэтому для (3.17) получаем оценку снизу

〈M(η, γ, ξ, a)ûγ(η, ξ), ûγ(η, ξ)〉
≥ r1γ〈(q1|ξ|4 + a)2(η2 + |ξ|2 + γ2)ûγ(η, ξ), ûγ(η, ξ)〉
≥ ργ‖(|ξ|4 + a)(|η|+ γ + |ξ|)ûγ(η, ξ), L2(R

n+1)‖2, γ ≥ γ1, (3.21)

где ρ > 0 — константа, зависящая от a, r1, q1.
Перейдем к доказательству теоремы 2.
Учитывая формулы (3.6), (3.8), (3.11), (3.12), (3.17), форму (3.4) можно

записать в виде

Mu = 〈M(η, γ, ξ, a)ûγ(η, ξ), ûγ(η, ξ)〉
+ 〈P1(x;Dt, Dx, γ)uγ , uγ〉+ 〈p(x;Dt, Dx, γ)uγ , uγ〉.

Отсюда

Mu ≥ 〈M(η, γ, ξ, a)ûγ(η, ξ), ûγ(η, ξ)〉
− |〈P1(x;Dt, Dx, γ)uγ , uγ〉| − |〈p(x;Dt, Dx, γ)uγ , uγ〉|.

Используя оценки (3.14), (3.15) и (3.21), при γ ≥ γ1 получим неравенство

Mu ≥ γ
(
ρ− εc1 −

c2
γ

)
‖(|ξ|4 + a)(|η|+ γ + |ξ|)ûγ(η, ξ), L2(R

n+1)‖2. (3.22)

Пусть γ2 = 4c2/ρ, и предположим, что коэффициенты оператора (2.8) вме-
сте с производными до пятого порядка включительно настолько малы, что
4c1ε ≤ ρ. Тогда из оценки (3.22) при γ ≥ γ0 = max{γ1, γ2} для любой u(t, x) ∈
C∞0 (Rn+1) вытекает неравенство

Mu ≥ γ ρ
2
‖(|ξ|4 + a)(|η|+ γ + |ξ|)ûγ(η, ξ), L2(R

n+1)‖2. (3.23)
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Оценим форму (3.4) сверху. В силу неравенства Гёльдера имеем
∣∣Mu

∣∣ ≤ ‖e−γtL (x;Dt, Dx)u(t, x), L2(R
n+1)‖

×
∥∥e−γtL 1

1 (x;Dt, Dx)u(t, x), L2(R
n+1)

∥∥
= ‖L (x;Dt, Dx)u(t, x), L2,γ(R

n+1)‖
∥∥L 1

1 (x;Dt + γI,Dx)uγ(t, x), L2(R
n+1)

∥∥.

Поскольку все коэффициенты оператора (2.10) постоянны вне некоторого ком-
пакта, из определения оператора (3.5) следует оценка

|Mu| ≤ c3‖L (x;Dt, Dx)u(t, x), L2,γ(R
n+1)‖

× ‖(|ξ|4 + a)(|η| + γ + |ξ|)ûγ(η, ξ), L2(R
n+1)‖,

где c3 > 0 — константа, зависящая от коэффициентов (3.5).
Из этого неравенства и (3.23) при достаточно малых возмущениях коэффи-

циентов оператора (2.10) при γ ≥ γ0 вытекает энергетическая оценка (2.13) для
любых функций u(t, x) ∈ C∞0 (Rn+1). Следовательно, в силу теоремы о всюду

плотности C∞0 (Rn+1) в соболевском пространстве W 2,6
2,γ (Rn+1) эта оценка спра-

ведлива для любых функций u(t, x) ∈ W 2,6
2,γ (Rn+1), удовлетворяющих условию

(2.11).
Теорема 2 доказана.

Замечание. Учитывая доказанную теорему и используя теорему о раз-
биении единицы, нетрудно установить энергетическую оценку для операторов
вида (2.10), являющихся строго псевдогиперболическими при любом x0 ∈ Rn и
имеющих достаточно гладкие коэффициенты, постоянные вне компакта.

Из теоремы 2 вытекает теорема 3 о единственности решения задачи Коши
(2.14) в указанном классе функций. Действительно, если u(t, x) — решение
задачи Коши с нулевыми данными

f(t, x) = ϕ1(x) = ϕ2(x) = 0,

то, продолжая его нулем при t < 0, получим функцию u(t, x), удовлетворяющую
условиям теоремы 2. Следовательно, из оценки (2.13) получим

‖(|ξ|4 + a)(|η|+ γ + |ξ|)ûγ(η, ξ), L2(R
n+1)‖ = 0, γ > γ0.

Отсюда, очевидно, вытекает, что u(t, x) = 0, т. е. двух различных решений
задачи (2.14) не существует.

Теорема 3 доказана.
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