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ОПИСАНИЕ ИНЦИДЕНТНЫХ 3–ГРАНЯМ

РЕБЕР В 3–МНОГОГРАННИКАХ

БЕЗ СМЕЖНЫХ 3–ГРАНЕЙ

О. В. Бородин, A. O. Иванова

Аннотация. Вес w(e) ребра e в 3-многограннике это сумма степеней его концевых
вершин. Ребро e = uv есть (i, j)-ребро, если d(u) ≤ i и d(v) ≤ j. В 1940 г. Лебег
доказал, что каждый 3-многогранник содержит (3, 11)-ребро, или (4, 7)-ребро, или
(5, 6)-ребро, где 7 и 6 неулучшаемы. В 1955 г. Коциг доказал, что каждый 3-
многогранник содержит ребро с суммой степеней концевых вершин не более 13,
причем граница точна. О. В. Бородин (1987), отвечая на вопрос Эрдеша, доказал,
что каждый плоский граф без вершин степени меньше 3 содержит такое ребро.
Более того, О. В. Бородин (1991) усилил этот результат, доказав, что найдется
либо (3, 10)-ребро, или (4, 7)-ребро, или (5, 6)-ребро.

Для 3-многогранников получены верхние оценки минимального веса (суммы
степеней концевых вершин) всех его ребер, обозначаемого w; инцидентных 3-грани,
w∗; и инцидентных двум 3- граням, w∗∗. В частности, О. В. Бородин (1996) доказал,
что если w∗∗ =∞, т. е. не существует ребер, инцидентных двум 3-граням, то либо
w∗ ≤ 9, либо w ≤ 8, где обе оценки неулучшаемы.

Недавно мы усилили этот факт, доказав, что w∗∗ = ∞ влечет наличие ли-
бо (3, 6)-ребра, либо (4, 4)-ребра, инцидентных с 3-гранью, либо иначе (3, 5)-ребра,
причем описание точно. (Хорошо известно, что если (3, 5)-ребра присутствуют, то
может вообще не быть 3-граней.)

Цель нашей статьи — усилить вышеуказанный результат, доказав, что w∗∗ =
∞ влечет либо (3, 6)-ребро, окруженное 3-гранью и 4-гранью, либо (4, 4)-ребро,
окруженное 3-гранью и 7−-гранью, либо (3, 5)-ребро, где ни один из параметров
не может быть улучшен. Главной трудностью было построение 3-многогранника,
подтверждающего точность 7 в данном описании.
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Посвящается светлой памяти
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1. Введение

Степень вершины или грани x, т. е. число инцидентных ей ребер, обозначим
через d(x). k-Вершина это вершина v с d(v) = k. k-Грань f имеет d(f) = k.
Через k+ или k− обозначим любое целое число, не меньшее или не большее, чем
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k, соответственно. Следовательно, k+-вершина v удовлетворяет неравенству
d(v) ≥ k, и т. д.

Ребро uv есть (i, j)-ребро, если d(u) ≤ i и d(v) ≤ j. Вес w(e) ребра e в
3-многограннике это сумма степеней его концевых вершин. Через δ(G) и w(G)
обозначим минимальную вершинную степень и минимальный вес ребер графа
G соответственно. Будем опускать аргумент всякий раз, когда он ясен из кон-
текста.

Еще в 1904 г. Вернике [1] доказал, что каждый 3-многогранник с δ = 5
удовлетворяет неравенству w ≤ 11. В 1940 г. Лебег [2] доказал, что каждый
3-многогранник содержит либо (3, 11)-ребро, либо (4, 7)-ребро, либо (5, 6)-ребро,
где параметры 7 и 6 наилучшие из возможных. В 1955 г. Коциг [3] доказал, что
для каждого 3-многогранника верно неравенство w ≤ 13, причем оценка точна.

В 1972 г. Эрдеш (см. [4]) предположил, что оценка Коцига w ≤ 13 верна
для всех планарных графов с δ ≥ 3. Первое доказательство гипотезы Эрдеша
дал О. В. Бородин [5]. В [6, 7] О. В. Бородин уточнил этот результат, доказав,
что каждый 3-многогранник содержит либо (3, 10)-, либо (4, 7)-, или (5, 6)-ребро
(как простое следствие из некоторых более сильных структурных фактов, име-
ющих приложения к раскраске плоских графов).

В некоторых приложениях к раскраске важно найти легкое ребро, инци-
дентное одной или двум 3-граням. Для 3-многогранников минимальный вес
всех его ребер обозначим через w, инцидентных 3-грани — через w∗, а инци-
дентных двум 3-граням — через w∗∗.

О. В. Бородин [8] доказал, что для каждого 3-многогранника верно либо
w∗∗ ≤ 13, либо w∗ ≤ 10, или w ≤ 8, где все оценки являются наилучшими из
возможных. Некоторые другие связанные с этим результаты, а также гипотезы
и ссылки можно найти в обзорах [9, 12] и работах [1–8, 13–25].

За последние почти три десятилетия множество исследований было посвя-
щено структурным задачам и задачам раскраски плоских графов, разреженных
в том или ином смысле. Нам кажется, что наиболее плотные среди разрежен-
ных плоских графов — те, у которых нет 3-граней, имеющих общее ребро, т. е.
удовлетворяющие равенству w∗∗ =∞.

В частности, новые результаты о структуре плоских графов с минималь-
ной степенью 3 и 4 и w∗∗ = ∞ при различных дополнительных ограничениях
находят применение в 3-раскраске (как правильной, так и неправильной), 3- и
4-выбираемости, а также в недавно введенных 3-DP- и 4-DP-раскрасках (для
получения такой информации см. ссылки в выдающейся работе Дворжака и
Постля [26] и на нее). Кроме того, в тотальной и вершинно-реберно-граневой
раскрасках плоских графов мы часто имеем дело со случаем w∗∗ =∞.

Ранее доказанное в [16] утверждение, что каждый 3-многогранник с w∗∗ =
∞ удовлетворяет точной оценке w ≤ 9, было усилено О. В. Бородиным в [17] до
w∗ ≤ 9 или w ≤ 8, причем обе оценки точны.

Недавно мы [27] усилили этот результат, доказав, что факт w∗∗ =∞ влечет
наличие либо (3, 6)-, либо (4, 4)-ребра, инцидентных 3-грани, либо (3, 5)-ребра,
причем описание точно. Заметим, что, как хорошо известно, если (3, 5)-ребра
допускаются, то может вообще не быть 3-граней.

Целью нашей статьи является доказательство следующего более сильного
результата.

Теорема 1. Каждый 3-многогранник без смежных 3-граней содержит ли-
бо (4, 4)-ребро, инцидентное 3-грани и 7−-грани, либо (3, 6)-ребро, инцидентное
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Рис. 1. Каждое полуслабое (4, 4)-ребро инцидентно 7-грани.

3-грани и 4-грани, либо (3, 5)-ребро, где ни один из параметров не может быть
усилен.

Главной трудностью было построение 3-многогранника, подтверждающего
точность 7 в данном описании.

2. Доказательство теоремы 1

Ребро называется полуслабым, если оно инцидентно 3-грани. На рис. 1 мы
видим граф без 3-вершин, в котором каждое полуслабое (4,4)-ребро инцидентно
7-грани, что подтверждает необходимость и неулучшаемость первого варианта
в теореме 1.

В [17] получен плоский граф (с w∗∗ =∞, что также предполагается в дока-
зательстве ниже) с вершинами степеней только 3 и 6, в котором каждое ребро
является полуслабым и соединяет 3+-вершину с 6-вершиной. Это подтверждает
необходимость и неулучшаемость второго варианта в теореме 1.

Третий вариант подтверждается двойственным многогранником известного
архимедова тела, в котором каждое ребро соединяет 3-вершину с 5-вершиной и
инцидентно двум 4-граням.

2.1. Перераспределение зарядов и его следствия. Через P обозначим
контрпример к теореме 1. Пусть V , E и F — множества вершин, ребер и граней
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Рис. 2. Перераспределение зарядов.

графа P соответственно. Формулу Эйлера |V | − |E|+ |F | = 2 для P перепишем
в виде ∑

x∈V ∪F
(d(x) − 4) = −8. (1)

Каждая вершина и грань x вносит заряд µ(x) = d(x) − 4 в формулу (1),
так что только заряды 3-вершин и 3-граней отрицательны. Используя свой-
ства контрпримера P , перераспределим заряды µ, сохранив их сумму так, что
новый заряд µ′(x) окажется неотрицательным для всех x ∈ V ∪ F . Это будет
противоречить тому, что сумма новых зарядов по формуле (1) равна −8.

В дальнейшем обозначим вершины, смежные (инцидентные) вершине (гра-
ни) x в циклическом порядке, через v1, . . . , vd(x). Ребро назовем сильным, если
оно не инцидентно 3-грани.

Мы применяем следующие правила распределения зарядов (рис. 2).

R1. Каждая 3-грань получает 1
3 от каждой инцидентной вершины.

R2. Каждая 3-вершина v1 получает от смежной вершины v2 вдоль полу-
слабого ребра:

(a) 1
3 , если d(v2) = 6, и

(b) 1
2 , если d(v2) ≥ 7.

R3. Каждая 3-вершина получает 1
3 от смежной вершины вдоль каждого

сильного ребра.

R4. Каждая 4-вершина v, инцидентная грани f1 = v1vv2, получает от
каждой смежной 5+-вершины v2:

(a) 1
6 , если d(v1) ≥ 5, и

(b) 1
12 , если d(v1) = 4.

R5. Каждая 3-вершина, инцидентная 3-грани и 5+-грани f , получает 1
3

от f .

R6. Каждая 4-вершина получает 1
2 от каждой инцидентной 8+-грани.

2.2. Проверка того, что µ′(x) ≥ 0 для всех x ∈ V ∪ F .

Случай 1. f ∈ F . Если d(f) = 3, то µ′(f) = 4− 3 + 3 × 1
3 = 0 по R1. Если

d(f) = 4, то f не участвует в R1–R6, поэтому µ′(f) = µ(f) = 0.
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Подслучай 1.1. 5 ≤ d(f) ≤ 7. Заметим, что f = v1v2 . . . может участво-
вать только в R5. Предположим, f дает 1

3 вершине v2, где d(v1) ≥ 6 и d(v3) ≥ 6
благодаря отсутствию (3, 5)-ребер в P , и ребро v1v2 инцидентно 3-грани. Чтобы
оценить общую передачу от грани f , перебросим 1

12 от v2 на каждую из вершин
v1, v3. Теперь каждая вершина, инцидентная грани f , получает от f не более
1
6 = 2× 1

12 = 1
3 −2× 1

12 . Как результат, µ′(f) = d(f)−4−d(v)× 1
6 = 5d(v)−24

6 > 0,
что и требовалось.

Подслучай 1.2. d(f) ≥ 8. Теперь каждая инцидентная вершина получает
не более 1

2 от грани f по R5 или R6, откуда следует µ′(f) = d(f)−4−d(f)× 1
2 =

d(f)−8
2 ≥ 0.

Случай 2. v ∈ V .

Подслучай 2.1. d(v) = 3. Если v не инцидентна 3-граням, то µ′(v) =
4− 3 + 3× 1

3 = 0 по R3.

Пусть v инцидентна 3-грани f = v1vv2 (в точности одной, поскольку w∗∗ =
∞). Тогда v получает 1

3 от 6+-соседа v3 по R3 и дает 1
3 грани f по R1.

Если d(v1) ≥ 7, то v получает 1
2 от v1 по R2b. Если d(v1) = 6, то v получает

1
3 от v1 по R2a и 1

3 от 5+-грани f3 = v1vv3 . . . по R5 ввиду свойств нашего

контрпримера P . В обоих случаях v1 вместе с f3 приносит вершине v не менее 1
2 .

То же самое верно для v2 и f2 = v2vv3 . . . , откуда µ′(v) ≥ 3−4+2× 1
2 + 1

3− 1
3 = 0.

Подслучай 2.2. d(v) = 4. Заметим, что если v не инцидентна 3-грани, то
v не участвует в R1 и µ′(v) ≥ 0 с учетом R6.

Допустим, что найдется 3-грань f1 = v1vv2. Если d(v1) ≥ 5 и d(v2) ≥ 5, то
v получает 2× 1

6 от v1 и v2 по R4a и отдает 1
3 грани f1 по R1, поэтому 3-грань

f1 ничего не забирает от вершины v. Остается предположить, что d(v1) =
4. Теперь v получает 1

2 по R6 от 8+-грани f4 = v1vv4 . . . по свойствам G.
Поскольку v инцидентна не более чем двум 3-граням, остается рассмотреть
случай, когда найдется f3 = v3vv4.

Теперь, если найдется 4-вершина в {v2, v3}, то v получает еще 1
2 от 8+-грани

f2 = v2vv3 . . . , откуда следует µ′(v) = 4−4+2× 1
2−2× 1

3 > 0 по R1, R6. Наконец,
пусть d(v2) ≥ 5 и d(v3) ≥ 5, что означает, что каждая из v2, v3 дает вершине v
заряд 1

12 по R4b, следовательно, µ′(v) ≥ 1
2 + 2× 1

12 − 2× 1
3 = 0 с учетом R4a.

Подслучай 2.3. d(v) = 5. Здесь v инцидентна не более двум 3-граням, и
каждая 3-грань f1 = v1vv2 получает 1

3 от v по R1, тогда как v1 и v2 забирают

у v либо 2 × 1
12 по R4b, когда d(v1) = d(v2) = 4, либо не более чем 1

6 по R4a в

противном случае. Отсюда µ′(v) = 5− 4− 2× 1
2 = 0.

Подслучай 2.4. d(v) = 6. Теперь каждая 3-грань v1vv2 уносит от v не бо-
лее 1

3+ 1
3 по R1, R2a и R4. Здесь мы перераспределим передачу в 1

3 по R1 следую-

щим образом. Если d(v1) = d(v2) = 4, то переведем 1
6 на каждую из 4-вершин v1

и v2. В противном случае переводим 1
3 на 5+-вершину в грани v1vv2. Заметим,

что после такого усреднения каждое инцидентное полуслабое ребро собирает не
более 1

3 от v, а 3-грани ничего не забирают. С учетом правила R3 каждое ребро

при v уносит от v не более 1
3 . Следовательно, µ′(v) ≥ 6− 4− 6× 1

3 = 0.

Подслучай 2.5. d(v) ≥ 7. Здесь 3-грань при v забирает не более 1
3 + 1

2 = 5
6

от v по R1, R2b и R4. Кроме того, v отдает 1
3 по R3 каждой смежной 3-вершине

по сильному ребру.
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Пусть T — число 3-граней при v. Нетрудно видеть, что T ≤ d(v)
2 , откуда

µ′(v) ≥ d(v)−4−T × 5
6− (d(v)−2T )× 1

3 = 2d(v)
3 −4−T× 1

6 ≥
2d(v)

3 −4− d(v)
2 × 1

6 =
7d(v)−48

12 > 0, что и требовалось.

Таким образом, мы доказали, что µ′(x) ≥ 0 для всех x ∈ V ∪ F , а это
противоречит формуле (1) и завершает доказательство теоремы 1.
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