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Аннотация. Найден радиус инъективности вытянутого эллипсоида вращения в
трехмерном евклидовом пространстве. Он равен в точности расстоянию вдоль
двойного меридиана между его сопряженными симметричными относительно по-
люса точками и меньше половины длины экватора. Найден и применен метод сколь
угодно точных компьютерных вычислений радиуса инъективности произвольного
вытянутого эллипсоида вращения.
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§ 1. Введение

Радиус инъективности ip (соответственно число σp) полного риманова мно-
гообразия M в его точке p определяется как точная верхняя граница чисел
r > 0 таких, что экспоненциальное отображение Expp многообразия M в точ-
ке p (соответственно его дифференциал d(Expp)) является диффеоморфизмом
на открытом шаре U(0, r) радиуса r с центром в нуле касательного евклидова
пространства Mp к M в точке p (соответственно невырожденный на U(0, r)).

Радиус инъективности i(M) (соответственно число σ) многообразияM есть
точная нижняя граница чисел ip (соответственно σp) для всех p ∈M.

В следствии 4.14 из [1] доказано (формула Клингенберга), что радиус инъ-
ективности i(M) компактного риманова многообразия M равен

i(M) = min{σ, l0/2}, (1)

где l0 — минимум длин нетривиальных геодезических петель на M.
Пусть M —эллипсоид вращения

x2 + y2 +
z2

a2
= 1, a > 0, (2)

в трехмерном евклидовом пространстве R3 с индуцированной из R3 римановой
метрикой. Эллипсоид (2) задается параметрическими уравнениями

(x, y, z) = (cosu cosϕ, cosu sinϕ, a sinu), −π
2
≤ u ≤ π

2
, 0 ≤ ϕ ≤ 2π. (3)
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Здесь u — широта, ϕ — долгота или полярный угол.

Если a = 1, то хорошо известно, что i(M) = σ = l0/2 = π.

Эллипсоид вращения (2) называется сплюснутым, если 0 < a < 1, и вытя-

нутым, если a > 1.

Максимум гауссовой кривизны сплюснутого эллипсоида вращения достига-
ется на его экваторе и равен 1/a2. Поэтому вследствие известных результатов
римановой геометрии σ равно πa, т. е. первому сопряженному значению вдоль
экватора. Главный результат статьи [2]: i(M) = πa < l0/2 < π, если 0 < a < 1.

Основной результат этой статьи — следующая

Теорема 1. Для радиуса инъективности i(M) каждого вытянутого эллип-
соида вращения M, заданного уравнением (2) при a > 1 имеют место соотно-
шения i(M) = σ < min(π, l0/2). При этом σ = σp для любой точки p ∈ M,
отличной от полюсов эллипсоида и такой, что p и ближайшая к p сопряженная
относительно проходящего через p двойного меридиана m(p) точка p′ находятся
на расстоянии σ(p)/2 = σ(p′)/2 вдоль m(p) от одного из полюсов эллипсоида.

Она является непосредственным следствием предложения 1, теоремы 3, ее
следствия 2 и теорем 4, 5 о ближайших сопряженных точках.

Кроме того, в этой статье составлен алгоритм для построения последова-
тельности чисел σn(a), сходящейся сверху к σ = σ(a) = σp = σp(a) для p из
теоремы 1 и каждого a > 1; даны примеры приближенного вычисления σ(a)
посредством этого алгоритма c использованием приложения “Wolfram Mathe-
matica”.

В данной статье на основании [2] доказывается, что l0/2 = π, если 1 < a ≤ 2.
Чему равно l0, если a > 2, авторам неизвестно.

Отметим сильное отличие применяемых методов в этой статье и статье [2].

В статье [2] доказательства и необходимые оценки основаны чаще всего на
применении правила Клеро для поиска геодезических и первой вариации длин
геодезических; поля Якоби не используются.

Используемые в этой статье результаты из [2] суммированы в теореме 2.

Кроме этого, основную роль в доказательствах ключевых теорем 3–5, пред-
ложений 2, 4 и их следствий играют выражение гауссовой кривизны (5) эллип-
соида (2), два вида (10) и (14) линейных однородных обыкновенных диффе-
ренциальных уравнений 2-го порядка для ориентированных длин b(s) и b(u)
как функций длины дуги s или широты u ортогональных к геодезическим по-
лей Якоби, якобиевы вариации, теорема Штурма о нулях решений линейных
однородных ОДУ 2-го порядка и теорема о неявной функции.

В доказательстве теоремы 3 достаточно уравнения (10). Далее требует-
ся общее решение уравнения (14), полученное в предложении 2. Это решение
содержит эллиптические интегралы первого и второго рода. Проводить какие-
либо вычисления с ними невозможно. Поэтому использующее предложение 2 и
теорему 4 доказательство теоремы 5 сводит их к вычислениям с элементарными
функциями и применению теоремы о неявной функции.

Предложение 4 позволяет вычислить приближенно с любой точностью σ(a),
равное радиусу инъективности эллипсоида (2) при разных a > 1. Примеры
таких вычислений представлены в конце статьи.

Заметим, что решить задачу для достаточно простого объекта было непро-
сто.
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§ 2. Некоторые следствия результатов из [2]

Вследствие (3) верхнюю половину эллипсоида (2) можно задать уравнением

z = a
√

1− r2, r =
√
x2 + y2 = cosu, 0 ≤ r ≤ 1. (4).

В [2] установлено, что

K(r) =
a2

(1 + (a2 − 1)r2)2
, (5)

a2 = K(0) ≤ K(r) ≤ K(1) =
1

a2
, 0 < a < 1, (6)

1

a2
= K(1) ≤ K(r) ≤ K(0) = a2, 1 < a, (7)

где K(r)— гауссова кривизна эллипсоида (2).
Доказанные в теореме 1, предложении 1, следствии 3 и предложении 3 из

[2] результаты можно собрать в следующую теорему.

Теорема 2. Для любой геодезической на эллипсоиде (2), отличной от эква-
тора и двойных меридианов, разность v двух последующих значений полярного
угла ϕ при пересечении этой геодезической с экватором заключена в интервале
(πa, π), если 0 < a < 1, и в интервале (π, πa), если a > 1. При этом v может быть
любым числом в указанных интервалах, a длина соответствующей дуги геоде-
зической l = l(v) является строго возрастающей функцией от v при 0 < a < 1 и
1 < a.

Замечание 1. На самом деле в теореме 2 подразумевается не ϕ ∈ [0, 2π),
а ϕ̃ ∈ R, для которого существует локально изометричное накрывающее отоб-
ражение � : R → S1 на единичную окружность S1 ⊂ R2 с полярным углом ϕ
такое, что �(ϕ̃) = ϕ̃ = ϕ, если ϕ̃ ∈ [0, 2π). При этом для любой рассматриваемой
в [2] геодезической γ = γ(s), s ∈ R, на эллипсоиде (2), a 6= 1, не включающей
его полюса, определена строго возрастающая функция ϕ̃(s) := ϕ̃(γ(s)), s ∈ R.

Следствие 1. Если 1 < a ≤ 2, то минимальная длина петли геодезической
эллипсоида (2) равна l0 = 2π.

Доказательство. Длина экватора эллипсоида (2) равна 2π. Так как a >
1, то длина lm двойного меридиана m эллипсоида (2) больше 2π. Вследствие
теоремы 2 при a ≤ 2 максимальная по включению расположенная в полупро-
странстве z ≥ 0 или z ≤ 0 дуга любой геодезической эллипсоида (2), отличной от
экватора и двойных меридианов, не имеет самопересечений, а ее длина больше
lm/2. Стало быть, длина петли такой геодезической больше lm > 2π.

Замечание 2. Вследствие теоремы 2 для любого числа a > 2 располо-
женные в полупространстве z > 0 или z < 0 дуги некоторых геодезических
эллипсоида (2), отличных от экватора и двойных меридианов, имеют самопере-
сечения.

Предложение 1. Если a > 1, то радиус инъективности эллипсоида (2)
меньше π.

Доказательство. Существует непродолжаемая кратчайшая эллипсоида,
проходящая через полюс p эллипсоида и соединяющая симметричные относи-
тельно p точки p1, p2. Она не имеет общих точек с экватором, иначе ее длина l
будет больше π, длины полуэкватора, соединяющего эти точки. Тогда l меньше
l1, половины длины параллели (полуокружности), соединяющей точки p1, p2,
так как параллель, отличная от экватора, не является геодезической эллипсои-
да. Следовательно, l < l1 < π.
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§ 3. Якобиевы вариации и векторные поля Якоби

Далее в этом параграфе M — произвольное полное риманово многообразие
со скалярным произведением (·, ·) на касательном расслоении TM , в частном
случае рассматриваемый нами вытянутый эллипсоид вращения.

Название раздела и терминология соответствуют параграфу 8.3 из [3].
Якобиевой вариацией геодезической (точнее, геодезического отрезка) γ =

γ(s), s ∈ [α, β], называется дифференцируемое отображение V : [α, β]× J →M ,
α < β, где J — открытый интервал в R, 0 ∈ J, такое, что V (s, t0) для каждого
t0 ∈ J, — геодезическая, V (s, 0) = γ(s).

Определение из [3] отличается от данного здесь тем, что [α, β] заменено
на R.

Якобиева вариация V называется нормальной, если для каждого t0 ∈ J
геодезическая V (s, t0) нормальна, т. е. параметризована длиной дуги.

Число σ > 0 называется первым сопряженным значением нормальной гео-
дезической γ, если существует ее якобиева вариация V такая, что α = 0, β = σ,
V (0, t) ≡ γ(0), ∂V

∂t (s, 0) 6= 0, 0 < s < β, и ∂V
∂t (β, 0) = 0. При этом γ(0), γ(σ)

называются (ближайшими) сопряженными точками γ [1, 3, 4].
В разд. 4.2 «Поля Якоби» из [4] гладкое векторное поле Y = Y (s) вдоль

геодезической γ = γ(s), параметризованной длиной дуги, на гладком римановом
многообразии называется векторным полем Якоби вдоль γ, если для тензора
кривизны R

∇γ̇∇γ̇Y +R(Y, γ̇)γ̇ = 0. (8)

Векторное поле Y (s) на геодезической γ(s), s ∈ R, называется в параграфе 8.3
из [3] полем Якоби, если существует якобиева вариация V геодезической γ:

Y (s) =
∂V

∂t
(s, 0) для любого s ∈ R. (9)

Далее в [3] доказывается, что любое поле Якоби Y (s) (в смысле [3]) на геоде-
зической γ(s) удовлетворяет уравнению (8). В [3] дан набросок доказательства
утверждения, что любое решение уравнения (8) является полем Якоби.

Из этих результатов нетрудно вывести, что поля Якоби на данной геоде-
зической риманова многообразия Mn составляют линейное пространство раз-
мерности 2n над R (см. [3]); для нормальных вариаций геодезической вектор-
ные поля вида (9) образуют линейное пространство размерности 2n− 1 над R.
В последнем случае есть 1-мерное пространство касательных к геодезической
параллельных векторных полей и 2(n− 1)-мерное пространство ортогональных
к геодезической векторных полей вида (9).

Пусть γ = γ(s), s ∈ R, — нормальная геодезическая эллипсоида (2) и
X = X(s) — гладкое единичное векторное поле вдоль γ, ортогональное γ̇(s).
Тогда любое векторное поле Якоби Y (s) вдоль γ(s), ортогональное γ̇(s), можно
записать в виде Y (s) = (X(s), Y (s))X(s) и

(∇γ̇∇γ̇Y +R(Y, γ̇)γ̇, Y ) = (∇γ̇∇γ̇Y, Y ) + (R(Y, γ̇)γ̇, Y ) = 0.

Пусть b(s) = (X(s), Y (s)). Тогда

(R(Y, γ̇)γ̇, Y ) = K(γ)|γ̇|2|Y |2 = K(γ)b2(γ),

гдеK(s) := K(γ(s)) = a2/(1+(a2−1) cos2 u(s))2 — гауссова кривизна эллипсоида
в точке γ(s). Используя свойства ковариантной производной векторных полей
и учитывая, что (Y, γ̇) = (X, γ̇) = 0, |X | = |γ̇| = 1, получаем

∇γ̇Y = ∇γ̇(bX) = ḃX + b∇γ̇X = ḃX,
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∇γ̇∇γ̇Y = ∇γ̇(ḃX) = b̈X + ḃ∇γ̇X = b̈X,

(∇γ̇∇γ̇Y, Y ) + (R(Y, γ̇)γ̇, Y ) = (b̈X, bX) +K(γ)b2 = b̈b+K(γ)b2 = 0,

b̈(s) +K(s)b(s) = 0. (10)

Замечание 3. В замечании (iii) разд. 4.2 из [4] рассматриваются рима-
ново многообразие M2, поле Якоби Y на нормальной геодезической γ, ортого-
нальное γ, и выписано уравнение для Y , совпадающее с (10) с точностью до
обозначений. После этого говорится, что линейное однородное обыкновенное
дифференциальное уравнение второго порядка (10) есть уравнение свободных
колебаний. Его решения при K ≥ κ > 0 (как и у нас) имеют осциллирующий
характер.

§ 4. Реализация радиуса инъективности
на двойном меридиане m

Замечание 4. Далее в доказательстве теоремы 3 будут использоваться
без специальных ссылок теорема Штурма из разд. 38 книги [5] и задача 3 поcле
этого параграфа для О.Д.У. (10).

Лемма 1. Каждая нормальная кратчайшая γ(s), α ≤ s ≤ β, в (2) до-
пускает нормальную вариацию Якоби V (t, s), (t, s) ∈ [α, β] × J , такую, что
V (α, t) ≡ γ(α), ∂V

∂t (s, 0) 6= 0, α < s < β. Если γ(α), γ(β) не сопряжены, то
∂V
∂t (β, 0) 6= 0.

Доказательство. Можно считать, что α = 0. Положим p := γ(0), v0 :=
γ̇(0). Определим кривую единичных векторов v = v(t) ∈ Mp, t ∈ J :=

(
−π4 , π4

)
,

так, что ориентированный угол ∠(v0, v(t)) = t. Тогда отображение V (s, t) :=
Expp(sv(t)), (s, t) ∈ [0, β] × J, — нормальная вариация Якоби кратчайшей γ.
При этом справедливо первое утверждение, так как γ(0) не сопряжена с γ(s),
0 < s < β, и второе утверждение, если γ(α), γ(β) не сопряжены.

Радиус инъективности i(p), p ∈M, для полного риманова многообразия M
— непрерывная положительная функция [4]. Поэтому если M компактно, то
i(M) = min{i(p), p ∈M} := δ > 0.

Теорема 3. Если M — вытянутый эллипсоид вращения в R3, то непродол-
жаемая кратчайшая длины δ — некоторая дуга двойного меридиана эллипсоида.

Доказательство. Предположим, что существует параметризованная дли-
ной дуги непродолжаемая кратчайшая γ = γ(s), s ∈ [0, δ], не равная дуге ме-
ридиана. Тогда определены ϕ(γ(s)), 0 ≤ s ≤ δ; ϕ(γ(0)) 6= ϕ(γ(δ)). Применяя,
если нужно, некоторые из следующих изометрий эллипсоида: вращение эллип-
соида, отражение относительно плоскости экватора, отражение относительно
плоскости некоторого двойного меридиана, можно считать, что

ϕ(γ(0)) = 0 < ϕ(γ(δ)) ≤ π, z(γ(δ)) ≥ |z(γ(0))|. (11)

На основании предложения 1 имеем δ < π и γ не может быть дугой экватора.
Ввиду теоремы 2 γ не более одного раза пересекает экватор и для некоторого
числа ε ∈ (0, δ] функция u(s) := u(γ(s)) строго возрастает на [0, ε] и строго
убывает на [ε, δ], если ε < δ.

Вследствие сказанного из (11) вытекает, что z(γ(δ)) > 0.
Кроме того, ϕ(γ(s)), 0 ≤ s ≤ δ, — строго возрастающая функция.
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Для произвольной нормальной якобиевой вариации V (s, t), (s, t) ∈ [0, δ]×J,
геодезической γ = γ(s) такой, что V (s̃, t) ≡ γ(s̃), t ∈ J, для некоторого s̃ из [0, δ],
все геодезические γt вариации V — кратчайшие, и ∂V

∂t (s, t0) 6= 0 ортогонально
γt0 , t0 ∈ J, если (s, t0) ∈ ((0, δ) \ {s̃})× J .

Если верно предположение в начале доказательства, то возможны два слу-
чая:

1) γ(0), γ(δ) не сопряжены относительно γ, но существует другая кратчай-
шая γ1(s), 0 ≤ s ≤ δ с теми же концами, что γ;

2) γ(0), γ(δ) сопряжены относительно γ.
1) Прежде всего должно быть ϕ(γ(δ)) < π. Иначе, применяя упомянутую

выше нормальную якобиеву вариацию V (s, t) геодезической γ(s), 0 ≤ s ≤ δ, при
s̃ = δ, получим для некоторого фиксированного t > 0 или t < 0, достаточно
близкого к 0, кратчайшую γt с ϕ(γt(0)) < 0, ϕ(γt(δ)) = π, чего не может быть.

Так как ϕ(γ(δ)) < π, то в этом случае для некоторого фиксированного t >
0 или t < 0, достаточно близкого к 0, кратчайшие γ1(s) и V (s, t), s ∈ [0, δ],
пересекутся помимо s = 0 при единственном s̃ ∈ (0, δ). Это противоречит тому,
что эти кривые — кратчайшие.

2) Предположим сначала, что z(γ(0)) ≥ 0.
Применим упомянутую выше нормальную якобиеву вариацию V (s, t) гео-

дезической γ(s), 0 ≤ s ≤ δ, при s̃ = 0.
Вследствие сказанного, в особенности выделенного выше утверждения,

r(V (s, t)) < r(γ(s)), следовательно K(V (s, t)) > K(γ(s)) для фиксированного

t > 0 или t < 0, достаточно близкого к 0, и всех s ∈ (0, δ). Поэтому относи-
тельно геодезической V (s, t), s ∈ [0, δ], точка V (0, t) сопряжена некоторой точке
V (s, t), где 0 < s < δ. Это противоречит определению δ.

Предположим теперь, что z(γ(0)) < 0. Тогда cуществует единственное s̃ ∈
(0, δ) такое, что z(γ(s̃)) = 0. Следовательно, точка p := γ(s̃) не сопряжена отно-
сительно γ ни с γ(0), ни с γ(δ) согласно определению δ.

Применяя доказательство леммы 1, определим вариацию Якоби кратчай-
ших

V (s, t) = Expp((s− s̃)v(t)), (s, t) ∈ [0, δ]× J.

Тогда r(V (s, t)) < r(γ(s)), следовательно, K(V (s, t)) > K(γ(s)) для фиксиро-
ванного t > 0 или t < 0, достаточно близкого к 0, и всех s ∈ [0, δ] \ {s̃}. Поэтому
относительно геодезической V (s, t), s ∈ [0, δ], точка V (0, t) сопряжена некоторой
точке V (s, t), где 0 < s < δ. Это противоречит определению δ.

Следствие 2. Если M — эллипсоид (2), a > 1, то i(M) = δ = σ < l0/2.

Доказательство. В теореме 3 доказано, что радиус инъективности δ до-
стигается на двойном меридиане. Тогда если δ = l0/2, то l0/2 — длина мериди-
ана, l0/2 > π, что противоречит неравенству δ < π из предложения 1.

§ 5. Решения О.Д.У. (10) для двойного меридиана m

Найти общие решения О.Д.У. (10) для m как функции параметра s не уда-
ется.

Найдем эти решения как функции b(u) от модифицированной широты u ∈
[−π/2, 3π/2) двойного меридиана m вытянутого эллипсоида вращения: на од-
ном из его меридианов u есть обычная широта из (3), а если p — внутренняя
точка другого его меридиана, то u(p) = u(−p) + π.
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Пусть на эллипсоиде (2) при a > 1 в плоскости с ϕ = 0 и ϕ = π задан
двойной меридиан γ(u) = (cosu, 0, a sinu), u ∈ [0, 2π]. Тогда его длина дуги
равна

s(u) =

u∫

0

√
1 + (a2 − 1) cos2 τ dτ = a

u∫

0

√
1− k2 sin2 τ dτ, k =

√
a2 − 1

a
, (12)

s′(u) =
√

1 + (a2 − 1) cos2 u, u̇(s) =
1√

1 + (a2 − 1) cos2 u(s)
,

ü(s) =
d

ds
(1 + (a2 − 1) cos2 u(s))−

1
2

= −1

2
(1 + (a2 − 1) cos2 u(s))−

3
2 (−2u̇(s)(a2 − 1) sinu cosu)

=
(a2 − 1) sin 2u(s)

2(1 + (a2 − 1) cos2 u(s))2
.

Пусть γ = γ(s) := γ(u(s)), b(s) := (X(s), Y (s)), где X = X(s) — гладкое
единичное векторное поле вдоль γ, ортогональное γ̇(s), Y (s) = (X(s), Y (s))X(s)
— векторное поле Якоби вдоль γ(s), ортогональное γ̇(s). Тогда согласно диф-
ференциальному уравнению (10) получаем

b̈(s) +K(s)b(s) = 0, (13)

где
K(s) := K(γ(s)) = K(u(s)) = a2/(1 + (a2 − 1) cos2 u(s))2.

При этом

ḃ(s) = u̇(s)b′u(u(s)) =
1√

1 + (a2 − 1) cos2 u(s)
b′u(u(s)),

b̈(s) = ü(s)b′u(u(s)) + (u̇(s))2b′′u(u(s)).

Подставляя последнее выражение в (13) и убрав s, получим

(a2 − 1) sin 2u

2(1 + (a2 − 1) cos2 u)2
b′ +

b′′

1 + (a2 − 1) cos2 u
+

a2

(1 + (a2 − 1) cos2 u)2
b = 0,

b′′ +
(a2 − 1) sin 2u

2(1 + (a2 − 1) cos2 u)
b′ +

a2

1 + (a2 − 1) cos2 u
b = 0. (14)

Получили снова линейное однородное обыкновенное дифференциальное урав-
нение второго порядка для функции b(u).

Предложение 2. Общим решением уравнения (14) является функция

b(u) = c1 cosu+ c2(a sinu
√

1− k2 sin2 u+ a cosu(F (u, k)− E(u, k))), (15)

где k =
√
a2 − 1/a, E(u, k), F (u, k) — эллиптические интегралы Лежандра вто-

рого и первого рода соответственно.

Доказательство. Из теории известно, что общее решение такого О.Д.У.
является линейной комбинацией двух независимых решений того же уравнения
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[5]. В частности, если известно частное решение y1 уравнения y′′ + p(x)y′ +
q(x)y = 0, то функция

y2 = y1

∫
e−
∫
p(x) dx

y2
1

dx

является частным независимым от y1 решением этого же уравнения [5].
Видно, что b1(u) = cosu является частным решением уравнения (14), тогда

второе частное решение b2(u), независимое от b1(u), можно вычислить так:

b2(u) = cosu

∫
e
−
∫

(a2
−1) sin 2u

2(1+(a2
−1) cos2 u)

du

cos2 u
du = cosu

∫
e

1
2 ln(1+(a2−1) cos2 u)

cos2 u
du

= cosu

∫ √
1 + (a2 − 1) cos2 u

cos2 u
du = b2(u). (16)

Вычислим интеграл

I1 =

∫ √
1 + (a2 − 1) cos2 u

cos2 u
du =

∫ √
1 + (a2 − 1) cos2 u(tanu)′ du.

Интегрируя по частям, получим

I1 = tanu
√

1 + (a2 − 1) cos2 u+

∫
(a2 − 1) sinu cosu√
1 + (a2 − 1) cos2 u

tanu du

= tanu
√

1 + (a2 − 1) cos2 u+

∫
(a2 − 1) sin2 u√

1 + (a2 − 1) cos2 u
du

= a tanu
√

1− k2 sin2 u+ I2,

I2 =

∫
(a2 − 1) sin2 u√

1 + (a2 − 1)− (a2 − 1) sin2 u
du = a

∫
k2 sin2 u√

1− k2 sin2 u
du

= a

∫ (
1√

1− k2 sin2 u
−
√

1− k2 sin2 u

)
du.

Неопределенный интеграл I2 символически обозначает некоторое семейство ре-
шений О.Д.У. (14), каждое из которых получается выбором нижнего предела
интегрирования как произвольного конкретного числа, а верхнего предела —
переменной u (при замене переменной интегрирования). Каждое такое реше-
ние годится для предложения 2. Заменяя I2 на a(F (u, k) − E(u, k)), где, как
обычно,

F (u, k) =

u∫

0

(1/
√

1− k2 sin2 v) dv, E(u, k) =

u∫

0

√
1− k2 sin2 v dv, (17)

получаем предложение 2.

Учитывая (15), (17), полагая c1 = 0, c2 = 1/a в (15) и рассматривая b(u),
0 ≤ u ≤ π, на двойном меридиане m, видим, что b(0) = 0, F (u, k) − E(u, k) > 0
при 0 < u ≤ π, b(u) > 0 при 0 < u ≤ π/2, b(π) < 0. Поэтому существует
ũ ∈ (π/2, π) такое, что b(ũ) = 0.
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Теорема 4. Функция

b(u) = sinu
√

1− k2 sin2 u+ cosu[(F (u, k)− F (π/2, k))− (E(u, k)− E(π/2, k))],

u ∈ [0, π], симметрична относительно u = π
2 и является решением О.Д.У. (14).

При этом b(u) = 0 при u = u1 ∈ (0, π/2) и u = u2 = π − u1, где

tanu1 =
1√

1− k2 sin2 u1

[(F (π/2, k)− F (u1, k))− (E(π/2, k)− E(u1, k))]. (18)

Кроме того, длина дуги между двумя соответствующими сопряженными
точками на двойном меридиане равна 2a(E(π/2, k)− E(u1, k)).

Доказательство. Положим c2 = 1/a.Тогда условие симметричности функ-
ции (15) при u ∈ [0, π] относительно u = π

2 запишется в виде

sinu
√

1− k2 sin2 u+ cosu(c1 + F (u, k)− E(u, k))

= sinu
√

1− k2 sin2 u− cosu(c1 + F (π − u, k)− E(π − u, k)).

Следовательно, c1 ≡ 1
2 [(E(u, k) +E(π− u))− (F (u, k) +F (π− u, k))]. Из опреде-

ления функций E(u, k), F (u, k) и симметричности функции
√

1− k2 sin2 u отно-
сительно u = π

2 вытекает, что суммы E(u, k)+E(π−u, k) и F (u, k)+F (π−u, k)
постоянны. Поэтому

c1 =
1

2
[(E(π/2, k) +E(π/2, k))− (F (π/2, k) + F (π/2, k))] = E(π/2, k)− F (π/2, k).

Следовательно, указанная функция b(u), являющаяся решением ОДУ (14), сим-
метрична относительно u = π

2 .
Отсюда следует второе утверждение теоремы.
Из второго утверждения и равенства (12) следует последнее утверждение.

Замечание 5. Величины F (π/2, k) и E(π/2, k) называются соответственно
полными эллиптическими интегралами Лежандра первого и второго рода.

§ 6. Непродолжаемая кратчайшая длины δ

Замечание 6. Далее без специальных ссылок будет использоваться след-
ствие 2 теоремы Штурма из разд. 38 в [5]: Если u1 и u2 — два последовательных
нуля какого-нибудь решения уравнения типа (14), то всякое другое решение это-
го уравнения имеет на интервале (u1, u2) ровно один нуль, если отношение этих
двух решений не постоянно.

Теорема 5. Длина дуги двойного меридиана между ближайшими нулями
u1 < u2 решения b(u) уравнения (14) для эллипсоида (2) минимальна, если a > 1
и

0 < u1 <
π

2
,

1

2
(u1 + u2) =

π

2
.

Доказательство. Рассмотрим семейство решений уравнения (14)

b(v, u) = cosu[F (u, k)− E(u, k)− (F (v, k)− E(v, k))] + sinu
√

1− k2 sin2 u (19)

(вида (15) при c1 = −(F (v, k)− E(v, k)), c2 = 1/a), где v ∈
[
0, π2

]
.

Для каждого v ∈
[
0, π2

]
есть в точности два последовательных нуля ul(v),

l = 1, 2, функции b(v, u) таких, что 0 ≤ u1(v) <
π
2 ,

π
2 < u2(v) ≤ π−u1(v), причем
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равенство в последнем неравенстве достигается только при v = π
2 . Поэтому

ul(
π
2 ), l = 1, 2, — нули ul из теорем 4, 5. Пусть 0 = b(u(v)) := b(v, u(v)), где u(v)

какой-то из нулей ul(v), l = 1, 2, функции b(v, u).
Тогда cos(u(v)) 6= 0 и из (19) следует равенство

f(v, u(v)) := F (v, k)− E(v, k)− (F (u(v), k)− E(u(v), k))

= tanu(v)

√
1− k2 sin2 u(v). (20)

Кроме того, вследствие (19), (20) при всех v ∈ [0, π/2]
(
∂

∂u
b

)
(v, u(v)) = sinu(v)f(v, u(v)) + cosu(v)

(
k2 sin2 u(v)√

1− k2 sin2 u(v)

)

+ cosu(v)
√

1− k2 sin2 u(v) + sinu(v)
−k2 sinu(v) cosu(v)√

1− k2 sin2 u(v)

= sinu(v)

[
tg u(v)

√
1− k2 sin2 u(v)− k2 sinu(v) cosu(v)√

1− k2 sin2 u(v)

]
+

cosu(v)√
1− k2 sin2 u(v)

=
1

cosu(v)
√

1− k2 sin2 u(v)
[sin2 u(v)(1 − k2 sin2 u(v)− k2 cos2 u(v)) + cos2 u(v)]

=

√
1− k2 sin2 u(v)

cosu(v)
6= 0.

Следовательно, ∂
∂u b 6= 0 в некоторой окрестности точки (v, u(v)).

Тогда по теореме о неявной функции (теорема 2.12 в [6]) u(v), v ∈ [0, π/2],
— непрерывно дифференцируемая функция, и на основании (19), (20)

0 = b′v(u(v)) =

√
1− k2 sin2 u(v)u′(v)

cosu(v)
− k2 sin2 v cosu(v)√

1− k2 sin2 v
.

Стало быть,

u′(v) =
k2 sin2 v√

1− k2 sin2 v

cos2 u(v)√
1− k2 sin2 u(v)

.

Пусть

l(v) := a(E(u2(v), k)− E(u1(v), k)) = a

u2(v)∫

u1(v)

√
1− k2 sin2 udu

— длина дуги двойного меридиана между соответствующими сопряженными
точками,

l′(v) = a[u′2(v)
√

1− k2 sin2 u2(v)− u′1(v)
√

1− k2 sin2 u1(v)]

=
ak2 sin2 v√
1− k2 sin2 v

[cos2 u2(v)− cos2 u1(v)] ≤ 0

и в последнем неравенстве достигается равенство только при v = π
2 и v = 0.
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Как следствие функция l(v) строго убывает на отрезке 0 ≤ v ≤ π/2.
Ввиду (15), (19) b(0, u) получается из (15) при c1 = 0 и c2 = 1/a.
Нули u1(v) рассмотренного выше семейства функций b(v, u), v ∈ [0, π2 ], за-

полняют весь отрезок [0, u1], где u1 было в теореме 4, и u = u1(0) = 0.
Рассмотрим теперь при v ∈ [−1, 0] семейство решений уравнения (14)

b(v, u) = −v cosu+ (1 + v)[(F (u, k)− E(u, k)) cosu+ sinu
√

1− k2 sin2 u]. (21)

Заметим, что функции b(v, u) из (19) и (21) совпадают при v = 0.
Есть в точности два последовательных нуля u1(v) и u2(v) функции b(v, u)

для каждого v ∈ (−1, 0] таких, что −π2 < u1(v) ≤ 0, π2 < u2(v) <
3π
2 .

Пусть 0 = b(u(v)) := b(v, u(v)), где u(v) — какой-то из нулей ul(v), l = 1, 2.
Тогда cos(u(v)) 6= 0 при v ∈ (−1, 0] и из (21) получаем равенство

g(v, u(v)) := E(u(v), k)− F (u(v), k) =
−v

1 + v
+ tanu(v)

√
1− k2 sin2 u(v). (22)

Кроме того, вследствие (21), (22) при всех v ∈ (−1, 0]

(
∂

∂u
b

)
(v, u(v)) =

(1 + v)k2 sin2 u(v) cos u(v)√
1− k2 sin2 u(v)

+ (1 + v) tan u(v)

√
1− k2 sin2 u(v) sinu(v)

+ (1 + v) cosu(v)

(√
1− k2 sin2 u(v)− k2 sin2 u(v)√

1− k2 sin2 u(v)

)

=
(1 + v)

√
1− k2 sin2 u(v)

cosu(v)
6= 0.

Следовательно, ∂
∂u b 6= 0 в некоторой окрестности точки (v, u(v)).

По теореме о неявной функции u(v), v ∈ (−1, 0], — непрерывно дифферен-
цируемая функция и на основании (21), (22)

0 = b′v(u(v)) =
(1 + v)

√
1− k2 sin2 u(v)u′(v)

cosu(v)
− [1 + g(v, u(v))] cosu(v)

+ sinu(v)

√
1− k2 sin2 u(v) =

(1 + v)
√

1− k2 sin2 u(v)u′(v)

cosu(v)
− cosu(v)

1 + v
.

Отсюда находим, что

u′(v) =
cos2 u(v)

(1 + v)2
√

1− k2 sin2 u(v)
.

Пусть

l(v) := a(E(u2(v), k)− E(u1(v), k)) = a

u2(v)∫

u1(v)

√
1− k2 sin2 udu
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— длина дуги двойного меридиана между соответствующими сопряженными
точками,

l′(v) = a[u′2(v)
√

1− k2 sin2 u2(v)− u′1(v)
√

1− k2 sin2 u1(v)]

=
a(cos2 u2(v)− cos2 u1(v))

(1 + v)2
.

Последнее выражение отрицательно по крайней мере для v, достаточно близких
к нулю. Оно может равняться нулю, только если u2(v) − u1(v) = π, т. е. когда
l(v) равно длине L меридиана (половины двойного меридиана), и положительно
тогда и только тогда, когда l(v) > L. Это неравенство невозможно, поскольку
тогда l′(v) > 0, что приводит к противоречию.

Следовательно, l′(v) ≤ 0, −1 < v < 0.
Для завершения доказательства заметим, что нули u1(v) < u2(v) семейства

решений b(v, u), v ∈ [−1, π/2], и нули π − u2(v) < π − u1(v) полученного из него
зеркальной симметрией двойного меридиана (относительно полюсов) семейства
решений уравнения (14) дают ближайшие нули u1 < u2 всех ненулевых решений
b(u) уравнения (14). А такая симметрия двойного меридиана индуцируется
зеркальной симметрией эллипсоида относительно некоторой плоскости в R3,
включающей полюсы.

§ 7. Вычисление радиуса инъективности

Предложение 3. Для любого k ∈ [0, 1) существует единственное решение
u1 = u1(k) уравнения (18) на полуинтервале [0, π2 ).

Доказательство. Наличие двух решений уравнения (18) на полуинтерва-
ле [0, π2 ) эквивалентно тому, что функция b(u) из теоремы 4 (другими словами,
векторное поле Якоби) обращается в нуль в двух различных (сопряженных)
точках дуги меридиана, соединяющей верхнюю вершину эллипсоида с эквато-
ром. Этого не может быть, так как каждый меридиан является кратчайшей.

Лемма 2. Если в уравнении (18) 0 ≤ k =
√
a2−1
a и u1 ∈

[
0, π2

)
, то u1 = 0

тогда и только тогда, когда k = 0.

Доказательство. Пусть k = 0. Тогда

tanu1 = F (π/2, 0)− F (u1, 0)− (E(π/2, 0)− E(u1, 0))

=
π

2
−
(π

2
− u1

)
−
(π

2
−
(π

2
− u1

))
= 0

и u1 = 0, поскольку u1 ∈
[
0, π2

)
.

Если же u1 = 0, то

0 = F
(π

2
, k
)
− E

(π
2
, k
)
⇒ k2

π
2∫

0

sin2 u√
1− k2 sin2 u

du = 0⇒ k = 0.

Лемма доказана.

Лемма 3. Существует непрерывно дифференцируемая строго возрастаю-
щая функция u1 = u1(k), 0 ≤ k < 1, где u1— решение уравнения b(u) = 0 в
теореме 4.

Доказательство. Вследствие (18)
√

1− k2 sin2 u1 tanu1 − (F (π/2, k)− F (u1, k)) +E(π/2, k)− E(u1, k) = 0.
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Но

F (π/2, k)− F (u1, k) + E(π/2, k)− E(u1, k) = k2

π
2∫

u1

sin2 τ√
1− k2 sin2 τ

dτ.

Следовательно,

√
1− k2 sin2 u1 tanu1 − k2

π
2∫

u1

sin2 τ√
1− k2 sin2 τ

dτ = 0.

Пусть

f = f(k, u) =
√

1− k2 sin2 u tanu− k2

π
2∫

u

sin2 τ√
1− k2 sin2 τ

dτ.

Тогда

fu(k, u) =

√
1− k2 sin2 u

cos2 u
− k2 sin2 u√

1− k2 sin2 u
+

k2 sin2 u√
1− k2 sin2 u

=

√
1− k2 sin2 u

cos2 u
> 0.

По теореме о неявной функции существует непрерывно дифференцируемая функ-
ция u1 = u1(k), так как f непрерывно дифференцируема на (0, 1)× (0, π2 ). Кро-
ме того, u′1(k) = −fk(k, u1(k))/fu(k, u1(k)). Теперь достаточно доказать, что
fk < 0. Имеем

fk =
−k sin2 u tanu√

1− k2 sin2 u
− 2k

π
2∫

u

sin2 τ√
1− k2 sin2 τ

dτ − k2

π
2∫

u

−1
2 (−2k sin2 τ) sin2 τ

(1− k2 sin2 τ)
3
2

dτ < 0.

Лемма доказана.

Замечание 7. Из доказательства леммы 3 следует, что равенство (18) эк-
вивалентно равенству tan(u1(k)) = gk(u1(k)), где

gk(u) =
k2

√
1− k2 sin2 u

π
2∫

u

sin2 τ√
1− k2 sin2 τ

dτ, u ∈
[
0,
π

2

]
, k ∈ (0, 1).

Ясно, что 0 < gk(u) для всех (u, k) ∈ [0, π2 )× (0, 1).

Лемма 4. Пусть k ∈ (0, 1) фиксировано. Тогда arctan(gk(u)) < u1(k) для
всех u ∈ [0, π2 ], u 6= u1(k), где u1(k) — решение уравнения (18).

Доказательство. Ясно, что

dgk(u)

du
= g′k(u) =

k2 sinu cosu

1− k2 sin2 u
(gk(u)− tanu).

Поэтому g′k(u1(k)) = 0. Вследствие предложения 3 последнее равенство выпол-
няется для единственного u ∈ (0, π2 ), u = u1(k). Далее,

g′k(u) =
k2 sinu

1− k2 sin2 u
(cosu gk(u)− sinu).

Следовательно, g′k
(
π
2

)
< 0. При этом

g′k(u) > 0, u ∈ (0, u1(k)), g′k(u) < 0, u ∈
(
u1(k),

π

2

)
,

т. е. gk(u) < gk(u1(k)) = tanu1(k), если u ∈
[
0, π2

]
, u 6= u1(k).
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Следствие 3. Если G(k) := F
(
π
2 , k)− E(π2 , k

)
, k ∈ (0, 1), то

arctan(gk(0)) = arctan(G(k)) < u1(k).

Предложение 4. Если x0 := 0 и xn := arctan(gk(xn−1)), n ∈ N, то xn ր
u1(k).

Доказательство. Для каждого k ∈ (0, 1) имеем x1 − x0 = arctan(G(k)) >
0.

Предположим, что xn − xn−1 > 0. Тогда

xn+1 − xn = arctan(gk(xn))− arctan(gk(xn−1)) = arctan

(
gk(xn)− gk(xn−1)

1 + gk(xn)gk(xn−1)

)
.

Вследствие леммы 4 x1 = arctan(gk(0)) < arctan(gk(u1(k))) = u1(k) для каждого
k ∈ (0, 1). Предположим, что xn < u1(k). Тогда

xn+1 = arctan(gk(xn)) < arctan(gk(u1(k))) = u1(k).

Поэтому xn < u1(k) для всех натуральных n. Из предположения индукции
и того, что функция gk(u) строго возрастает на полуинтервале u ∈ [0, u1(k)),
следует, что gk(xn)− gk(xn−1) > 0. Аналогично

arctan

(
gk(xn)− gk(xn−1)

1 + gk(xn)gk(xn−1)

)
= xn+1 − xn > 0.

Поэтому xn ր sup
n∈N

xn =: x(k). Поскольку функции gk(u), arctan непрерывны,

имеем
lim
n→∞

xn = arctan(gk( lim
n→∞

xn−1)),

т. е. x(k) = arctan(gk(x(k))) и tan(x(k)) = gk(x(k)). Так как решение u1(k)
уравнения (18) единственно, то x(k) = u1(k).

Замечание 8. Определенная в предложении 4 последовательность xn поз-
воляет получить хорошую оценку для u1(k) снизу.

Следствие 4. Пусть

σn(a) := 2

π
2∫

xn(k)

√
1 + (a2 − 1) cos2 τ dτ.

Тогда σn(a)ց σ(a) (см. введение), где

σ(a) = 2

π
2∫

u1(k)

√
1 + (a2 − 1) cos2 τ dτ,

xn(k)— последовательность из предложения 4 и u1(k)— корень уравнения (18)

для любого k =
√
a2−1
a , a > 1.

Пусть n = 100.

Пример 1. σ100(3) = 0.74959, σ100(4) = 0.431298, σ100(5) = 0.288134, σ100(6)
= 0.211236, σ100(7) = 0.164441, σ100(8) = 0.133409, σ100(9) = 0.111522, σ100(10) =
0.0953589.
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Пример 2. σ100(20) = 0.036365, σ100(30) = 0.0214715, σ100(40) = 0.0149387,
σ100(50) = 0.0113311, σ100(60) = 0.00906516, σ100(70) = 0.00751939, σ100(80) =
0.00640234, σ100(90) = 0.00556003, σ100(100) = 0.0049038.
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Рис. 1.. График функции σ1(a), a ∈ [1, 2].

Предложение 5. Если 1 < a ≤ 2, то σ1(a) < π.

Это предложение подтверждает график функции σ1(a), 1 ≤ a ≤ 2, на рис. 1,
полученный в результате компьютерных вычислений по программе с использо-
ванием “Wolfram Mathematica”.
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