СОГЛАСОВАННЫЕ СТРУКТУРЫ ОБОБЩЕННЫХ КВАНДЛОВ АЛЕКСАНДЕРА. ТОЖДЕСТВА ДИСТРИБУТИВНОСТИ И МЕДИАЛЬНОСТИ

А. Н. Бородин, М. В. Нещадим, А. А. Симонов

Аннотация. Рассматривается вопрос: когда на группе существуют две структуры обобщенных квандлов Александера, согласованные между собой тождеством правой дистрибутивности или обобщенным тождеством медиальности?

DOI 10.33048/smzh.2025.66.403

Ключевые слова: квандл, обобщенный квандл Александера, правая дистрибутивность, обобщенное тождество медиальности, согласованные тождества, группа, автоморфизм.

Введение

Kвандл — это непустое множество с бинарной операцией, удовлетворяющей трем алгебраическим аксиомам [1,2], которые формализуют три преобразования Райдемайстера [3] плоских диаграмм узлов в трехмерном пространстве. Если рассматривать только второе и третье преобразования Райдемайстера, то получим алгебраическую структуру, которая называется pэком.

Исторически понятие квандла или самодистрибутивного группоида связывают с именами С. В. Матвеева и Джойса. В 1982 г. С. В. Матвеев [4] ввел алгебраическую систему, которую назвал дистрибутивным группоидом. Он доказал, что с каждым классическим узлом можно естественным образом связать праводистрибутивную правую квазигруппу, которая является его алгебраическим инвариантом и определяет узел с точностью до изотопии и зеркального отражения. Таким образом, был получен универсальный алгебраический инвариант классических узлов. В том же году к этому результату независимо пришел Джойс, давший найденной структуре название «квандл».

Исследуя вопросы дифференцируемости решений функциональных уравнений, Рылль-Нардзевский в 1949 г. ввел *симметричное среднее* [4] и получил дистрибутивную квазигруппу. Позже, в 1953 г. Госсу рассмотрел [5] несимметричные средние, далее [6, 7] он не только выделил аксиоматически данный объект, но и построил его представление над произвольной группой.

Идея согласования алгебраических операций лежит в основе определения колец и почти колец, когда две операции, групповая и полугрупповая, связаны законом дистрибутивности. Так, в косом брейсе [8–11] две групповые операции

Работа М. В. Нещадима выполнена при финансовой поддержке программы фундаментальных научных исследований СО РАН № 1.1.5. (проект FWNF-2022-0009).

^{© 2025} Бородин А. Н., Нещадим М. В., Симонов А. А.

связаны законом обобщенной дистрибутивности. Косой брэйс является относительно новой алгебраической системой, хотя в неявном виде такая конструкция появлялась в лекциях Куроша [12, § 10]. Напомним определение косого брэйса.

Определение 1. Косой брэйс — это множество G, на котором заданы две бинарные операции «о» и «·» такие, что $\langle G, \circ \rangle$, $\langle G, \cdot \rangle$ группы и операции согласованы следующей аксиомой

$$a \circ (b \cdot c) = (a \circ b) \cdot a^{-1} \cdot (a \circ c), \quad a, b, c \in G, \tag{1}$$

где a^{-1} — элемент обратный к элементу a в группе (G,\cdot) .

Заметим, что если в (1) заменить умножение «о» на «·», то получим тождественное выражение

$$a \cdot (b \cdot c) = (a \cdot b) \cdot a^{-1} \cdot (a \cdot c), \quad a, b, c \in G,$$

справедливое в группе $\langle G, \cdot \rangle$.

Одно из направлений исследования алгебраических структур, близких к квазигруппам, является изучение обобщенных тождеств на системах квазигрупп [13]. Большой список всевозможных тождеств, которые встречаются в различных областях математики, приведен в работе [14]. Там перечислено более чем 50 тождеств и указано, где они встречаются. Вопросы теории конечных проективных плоскостей, теории функциональных уравнений и других разделов математики приводят к необходимости изучения множеств, снабженных не одной операцией, а системой операций Ω . Иными словами, необходимо изучать универсальные алгебры, для которых операции из системы Ω связаны некоторыми тождественными соотношениями. Эти тождественные соотношения в случае бинарных операций могут быть трех типов. Первый тип — это тождество в обычном понимании (см., например, [15]). Второй тип тождеств сверхтождество — обладает той особенностью, что не только свободные элементы, участвующие в тождестве, могут принимать любые значения из множества Ω , на котором определена система операций, но и операции, участвующие в тождестве, также могут принимать любые значения из Ω . И третий тип промежуточный: часть операций данного тождества могут принимать любые значения из Ω , а остальная часть операций принимает уже некоторые значения из Ω , зависящие от предыдущих. Тождество последнего типа называется обобщенным тождеством (см., например, [13]).

- 1. A[B(x,y),z] = C[x,D(y,z)] общее тождество ассоциативности (или общая ассоциативность).
 - 2. $A[B(x,y),C(u,v)]=A_1[B_1(x,u),C_1(y,v)]$ общая медиальность.
 - 3. A[B(y,x),C(z,x)] = D(y,z) общая транзитивность.
 - 4. A[x, B(y, z)] = H[K(x, y), P(x, z)] общая дистрибутивность,
 - 5. A[x, B(x, y)] = y общий закон ключей (левый).
 - 6. A(x,y) = B(y,x) общая коммутативность.

Здесь $A,\,B,\,C,\,A_1,\,B_1,\,C_1,\,H,\,K,\,P$ — квазигрупповые операции из некоторого семейства операций $\Omega,$ а $x,\,y,\,z,\,u,\,v$ — элементы рассматриваемой алгебраической системы.

Одно из возможных направлений применения исследований обобщенных тождеств — построение новых алгебраических систем. Так, известно, что по каждому квандлу можно построить решение теоретико-множественного уравнения Янга — Бакстера, а по этому решению можно построить представление

группы (виртуальных) кос или инвариант для (виртуальных) узлов и зацеплений (см., например, [16–18]). Поэтому новые примеры конструкций квандлов могут привести к новым решениям уравнения Янга — Бакстера и новым инвариантам узлов и зацеплений. В [19] рассматривается задача определения операции произведения на семействе квандловых структур, заданных на некотором множестве. В частности, найдены необходимые условия, когда операция произведения двух квандловых структур является квандловой структурой. Для применимости этой конструкции необходимо, чтобы эти квандловые операции согласовывались между собой тождеством дистрибутивности.

В настоящей работе исследуются обобщенные тождества правой дистрибутивности и медиальности для двух обобщенных квандлов Александера, построенных на группе.

Статья имеет следующую структуру. В разд. 1 приведены основные определения, связанные с квандлами как алгебраическими объектами. В разд. 2 приведены и доказаны основные теоремы, отвечающие на вопрос задачи, когда две структуры обобщенных квандлов Александера, построенных на группе $\langle G, \cdot \rangle$, согласованы обобщенным тождеством правой дистрибутивности (теорема 1)

$$(x \circ y) * z = (x * z) \circ (y * z), \quad x, y, z \in G,$$

или обобщенным тождеством медиальности (теорема 2)

$$(x \circ y) * (z \circ t) = (x * z) \circ (y * t), \quad x, y, z, t \in G.$$

Отметим, что из согласованности квандловых операций при помощи тождества медиальности следует их согласованность относительно тождества дистрибутивности. Но обратное неверно (следствие 1).

Далее в статье везде под дистрибутивностью понимается правая дистрибутивность.

1. Квандлы и групповые автоморфизмы

Определение 2. K вандлом называют алгебраическую систему $\langle Q, \circ \rangle$ с одной бинарной операцией умножения « \circ », которая удовлетворяет следующим аксиомам:

- (Q1) аксиома идемпотентности: $x \circ x = x$ для всех $x \in Q$;
- (Q2) аксиома правой обратимости: для любых $y,z\in Q$ существует единственный $x\in Q$ такой, что $x\circ y=z;$
- (Q3) аксиома правой самодистрибутивности: для любых $x,y,z\in Q$ выполняется $(x\circ y)\circ z=(x\circ z)\circ (y\circ z).$

В силу аксиом (Q2) и (Q3) умножение на элемент $z \in Q$ в квандле $\langle Q, \circ \rangle$ является автоморфизмом. Группа, порожденная такими автоморфизмами, называется группой внутренних автоморфизмов квандла $\langle Q, \circ \rangle$.

В силу аксиомы (Q2) на квандле $\langle Q, \circ \rangle$ можно ввести операцию деления справа $(x,y) \mapsto x/y$ такую, что $(x \circ y)/y = x$ и $(x/y) \circ y = x$ для любых $x,y \in Q$. Нетрудно показать [19], что алгебраическая система $\langle Q, / \rangle$ также является квандлом и выполнены следующие тождества, связывающие операции умножения « \circ » и деления « \circ »:

$$(x \circ y)/z = (x/z) \circ (y/z), \quad (x/y)/z = (x/(z \circ y))/y,$$

 $x/(y/z) = ((x \circ z)/y)/z, \quad x/(y \circ z) = ((x/z)/y) \circ z,$

для любых $x, y, z \in Q$.

Определение 3. Квандл $\langle Q; \circ, / \rangle$ называют *абелевым*, если для произвольных $x,y,\,z,t\in Q$ справедливо тождество медиальности

$$(x \circ y) \circ (z \circ t) = (x \circ z) \circ (y \circ t). \tag{2}$$

Определение 4. Госсу в работах [6,7] показал, что над группой G при помощи произвольного автоморфизма $\varphi \in \operatorname{Aut}(G)$ можно построить квандл с операцией

$$x \circ y = \varphi(xy^{-1})y, \quad x, y \in G.$$

Более того, под обобщенным квандлом Александера часто понимают квандл с операцией одного из следующих четырех типов [20]:

Alex₁ (G, φ) : $x \circ y = \varphi(xy^{-1})y$, $x, y \in G$,

 $\begin{aligned} &\operatorname{Alex}_2(G,\varphi)\colon x\circ y=\varphi(y^{-1}x)y,\ x,y\in G,\\ &\operatorname{Alex}_3(G,\varphi)\colon x\circ y=y\varphi(xy^{-1}),\ x,y\in G,\\ &\operatorname{Alex}_4(G,\varphi)\colon x\circ y=y\varphi(y^{-1}x),\ x,y\in G.\end{aligned}$

Замечание 1. Отметим, что первый и четвертый типы, с одной стороны, второй и третий, с другой стороны, определяют изоморфные структуры квандлов. Изоморфные в смысле, что $\mathrm{Alex}_1(G,\varphi) = \mathrm{Alex}_4(G,\varphi^E)$ и $\mathrm{Alex}_2(G,\varphi) =$ $Alex_3(G,\varphi^E)$, где $E(x)=x^{-1}$, а $\varphi^E(x)=E\varphi E(x)$. Изоморфизм задается биекцией $E:G\to G$.

Если G — группа, то бинарная операция $x\circ y=yx^{-1}y$ для $x,y\in G$ определяет на G структуру сердцевинного квандла [1], обозначаемого Core(G).

В [19, предложение 3.21] доказано утверждение. Пусть $\langle G, \cdot \rangle$ — группа, тогда операции

$$x * y = y^{-1}xy, \quad x \circ y = yx^{-1}y, \quad x, y \in G,$$

связаны соотношением

$$(x*y) \circ z = (x \circ z)*(y \circ z), \quad x,y,z \in G,$$

если имеет место включение $\{g^2, g \in G\} \subseteq Z(G)$, где Z(G) — центр группы G.

В [19, предложение 3.21] также содержится утверждение, что если $\langle G, \cdot \rangle$ группа и φ , ψ — ее автоморфизмы, то операции

$$x \circ y = \varphi(xy^{-1})y, \quad x * y = \psi(xy^{-1})y, \quad x, y \in G,$$

связаны соотношением

$$(x \circ y) * z = (x * z) \circ (y * z), \quad x, y, z \in G,$$
(3)

тогда и только тогда, когда автоморфизмы φ , ψ перестановочны, т. е. $\varphi\psi=\psi\varphi$.

2. Обобщенное тождество правой дистрибутивности для обобщенных квандлов Александера

В настоящем разделе исследуется задача, когда на группе $\langle G, \cdot \rangle$ заданы две структуры обобщенных квандлов Александера, согласованные обобщенным тождеством правой дистрибутивности (3). Отметим, что данное соотношение определяет действие квандла $\langle G, * \rangle$ на квандле $\langle G, \circ \rangle$ (более точно, действие группы внутренних автоморфизмов квандла (G, *) на квандле (G, \circ)).

Имея четыре типа обобщенных квандлов Александера, надо исследовать десять случаев, но ввиду симметрии тождества (3) относительно операций «о» и «*» в силу замечания 1 достаточно рассмотреть только 8 вариантов (так как рассмотрение пары Alex₃-Alex₃ сводится к паре Alex₂-Alex₂, а пары Alex₄-Alex₄ к $Alex_1-Alex_1$). Подмножество центральных автоморфизмов группы G будем обозначать через $Aut_c(G)$, а центр группы — через Z(G).

Теорема 1. Пусть $\langle G, \cdot \rangle$ — группа и φ , ψ — ее автоморфизмы. Тогда операции о и * обобщенных квандлов Александера согласованы тождеством (3) тогда и только тогда, когда в зависимости от явного вида операций ∘ и ∗ выполнены условия, приведенные в табл. 1.

 $x\circ y=arphi(xy^{-1})y\ ig|\ x\circ y=arphi(y^{-1}x)y\ ig|\ x\circ y=yarphi(xy^{-1})$ $\varphi\psi=\psiarphi,$ $x * y = y\psi(xy^{-1})$ $\varphi \psi = \psi \varphi,$ $\varphi \in \operatorname{Aut}_{c}(G)$ $\varphi \psi = \psi \varphi,$ $\varphi \psi = \psi \varphi,$ $\varphi \in \operatorname{Aut}_{c}(G)$ $\varphi \psi = \psi \varphi,$ $\varphi \in \operatorname{Aut}_{c}(G)$ $\varphi \psi \in \operatorname{Aut}_{c}(G)$ $x * y = y\psi(y^{-1}x)$ $\varphi \psi = \psi \varphi,$ $\varphi \psi \in \operatorname{Aut}_{c}(G)$ $\varphi \psi = \psi \varphi,$ $\varphi \psi = \psi \psi,$ $\varphi \psi \psi = \psi \psi,$ $\varphi \psi \psi \psi \psi \psi,$ $\varphi \psi \psi \psi \psi \psi$ $\varphi \psi \psi \psi \psi \psi$ $\varphi \psi \psi \psi \psi$ $\varphi \psi \psi \psi \psi \psi$ $\varphi \psi \psi \psi \psi \psi$ $\varphi \psi \psi \psi \psi \psi \psi$ $\varphi \psi \psi \psi \psi \psi \psi$ $\varphi \psi \psi \psi \psi \psi$ $\varphi \psi \psi \psi \psi \psi \psi \psi$ $\varphi \psi \psi \psi \psi \psi \psi \psi$ $\varphi \psi \psi \psi \psi \psi \psi \psi$

Таблица 1

Доказательство. Будем использовать обозначения

$$L = (x \circ y) * z$$
, $R = (x * z) \circ (y * z)$, $x, y, z \in G$,

и рассматривать равенство

$$L = R. (4)$$

 $\varphi\psi=\psi\varphi,$ $\psi \in \operatorname{Aut}_c(G)$

Рассмотрим последовательно все случаи.

1. Для
$$x\circ y=\varphi(xy^{-1})y,\ x*y=\psi(xy^{-1})y$$
 равенство (4) принимает вид
$$z\psi(z^{-1}y\varphi(y^{-1}x))=z\psi(z^{-1}y)\varphi(\psi(y^{-1}x)),$$

что равносильно $\psi\varphi(y^{-1}x)=\varphi\psi(y^{-1}x)$. Так как произведение $y^{-1}x,\ x,y\in G,$ пробегает все элементы группы G, тождество (3) выполнено тогда и только тогда, когда $\varphi\psi=\psi\varphi$.

2. Для
$$x \circ y = \varphi(xy^{-1})y$$
, $x * y = \psi(y^{-1}x)y$ равенство (4) принимает вид
$$\psi(z^{-1}\varphi(xy^{-1})y)z = \varphi(\psi(z^{-1}xy^{-1}z))\psi(z^{-1}y)z.$$

При z=1 и $xy^{-1}=t$ получаем $\psi\varphi(t)=\varphi\psi(t)$. Следовательно, $\varphi\psi=\psi\varphi$ и

$$z^{-1}\varphi(xy^{-1}) = \varphi(z^{-1}xy^{-1}z)z^{-1}$$

или $\varphi(z)z^{-1}\varphi(xy^{-1})=\varphi(xy^{-1})\varphi(z)z^{-1}.$ Так как произведение $y^{-1}x,\ x,y\in G,$ пробегает все элементы группы G, то это равносильно тому, что $\varphi(z)z^{-1}$ лежит в центре группы G, т. е. φ — центральный автоморфизм группы G.

Случай 3 рассматривается аналогично и приводит к тому же результату, что и случай 2.

4. Для
$$x\circ y=\varphi(xy^{-1})y,\ x*y=y\psi(y^{-1}x)$$
 равенство (4) принимает вид
$$z\psi(z^{-1}\varphi(xy^{-1})y)=\varphi(z\psi(z^{-1}xy^{-1}z)z^{-1})z\psi(z^{-1}y)$$

или

$$z\psi(z^{-1})\psi\varphi(xy^{-1}) = \varphi(z)\varphi\psi(z^{-1}xy^{-1}z)\varphi(z^{-1})z\psi(z^{-1}).$$

При z=1 и $xy^{-1}=t$ получаем $\psi\varphi(t)=\varphi\psi(t)$. Следовательно, $\varphi\psi=\psi\varphi$ и

$$z\psi(z^{-1})\varphi\psi(t)=\varphi(z\psi(z^{-1})\varphi\psi(t)\varphi(\psi(z)z^{-1})z\psi(z^{-1}).$$

Положим $p=z\psi(z^{-1}),$ тогда $parphi\psi(t)=arphi(p)arphi\psi(t)arphi(p^{-1})p$ или

$$\varphi(p^{-1})p\varphi\psi(t) = \varphi\psi(t)\varphi(p^{-1})p.$$

Так как произведение t — произвольный элемент группы G, это равносильно тому, что $\varphi(p^{-1})p$ лежит в центре группы G. В голоморфе $\operatorname{Hol} G$ группы G это равносильно тому, что $[z,\psi],\varphi]\in Z(G)$.

5. Для $x \circ y = \varphi(y^{-1}x)y, \ x * y = \psi(y^{-1}x)y$ равенство (4) принимает вид

$$\psi(z^{-1}\varphi(y^{-1}x)y)z = \varphi(z^{-1}\psi(y^{-1}x)z)\psi(z^{-1}y)z$$

или $\psi(z^{-1}\varphi(y^{-1}x))=\varphi(z^{-1}\psi(y^{-1}x)z)\psi(z^{-1})$. При z=1 и $y^{-1}x=t$ получаем $\psi\varphi(t)=\varphi\psi(t)$. Следовательно, $\varphi\psi=\psi\varphi$ и

$$\psi(z^{-1})\varphi\psi(t) = \varphi(z^{-1})\varphi\psi(t)\varphi(z)\psi(z^{-1}).$$

Так как t — произвольный элемент группы G, то это равносильно тому, что $\varphi(z)\psi(z^{-1})$ лежит в центре группы G или, равносильно, $\psi^{-1}\varphi(z)z^{-1}$ лежит в центре группы G, т. е. $\psi^{-1}\varphi$ — центральный автоморфизм группы G.

6. Для $x \circ y = \varphi(y^{-1}x)y, \ x * y = y\psi(xy^{-1})$ равенство (4) принимает вид

$$z\psi(\varphi(y^{-1}x)yz^{-1}) = \varphi(\psi(zy^{-1}))$$

или $z\psi\varphi(y^{-1}x)=\varphi\psi(zy^{-1}xz^{-1})z$. При z=1 и $y^{-1}x=t$ получаем $\psi\varphi(t)=\varphi\psi(t)$. Следовательно, $\varphi\psi=\psi\varphi$ и $z\varphi\psi(t)=\varphi\psi(ztz^{-1})z$ или

$$z^{-1}\varphi\psi(z)\varphi\psi(t) = \varphi\psi(t)z^{-1}\varphi\psi(z).$$

Поскольку t — произвольный элемент группы G, это равносильно тому, что $z^{-1}\varphi\psi(z)$ лежит в центре группы G, т. е. $\varphi\psi$ — центральный автоморфизм группы G.

7. Для $x \circ y = \varphi(y^{-1}x)y, \ x * y = y\psi(y^{-1}x)$ равенство (4) принимает вид

$$z\psi(z^{-1}\varphi(y^{-1}x)y) = \varphi\psi(y^{-1}x)z\psi(z^{-1}y)$$

или

$$z\psi(z^{-1})\psi\varphi(y^{-1}x) = \varphi\psi(y^{-1}x)z\psi(z^{-1}).$$

При z=1 и $y^{-1}x=t$ получаем $\psi\varphi(t)=\varphi\psi(t)$. Следовательно, $\varphi\psi=\psi\varphi$ и

$$z\psi(z^{-1})\varphi\psi(t) = \varphi\psi(t)z\psi(z^{-1}).$$

Так как t — произвольный элемент группы G, то это равносильно тому, что $z\psi(z^{-1})$ лежит в центре группы G, т. е. ψ — центральный автоморфизм группы G.

Случай 8 рассматривается аналогично и приводит к тому же результату, что и случай 7.

Теорема доказана.

3. Обобщенное тождество медиальности для обобщенных квандлов Александера

Исследуем задачу, когда на группе $\langle G, \cdot \rangle$ заданы две структуры обобщенных квандлов Александера, согласованные обобщенным тождеством медиальности

$$(x \circ y) * (z \circ t) = (x * z) \circ (y * t), \quad x, y, z \in G.$$

$$(5)$$

Замечание 2. Пусть на множестве K заданы две квандловые структуры $\langle K, \circ \rangle$ и $\langle K, * \rangle$ такие, что справедливо (5), тогда

$$(x \circ y) * z = (x * z) \circ (y * z).$$

Действительно, положим t=z и воспользуемся идемпотентностью:

$$(x \circ y) * z = (x \circ y) * (z \circ z) = (x * z) \circ (y * z).$$

Замечание 3. Пусть в группе G выполнено равенство

$$x_1x_2\ldots x_n=z,$$

где x_1, x_2, \ldots, x_n — некоторые элементы группы G и z — центральный элемент группы G. Тогда

$$x_1x_2...x_{n-1}x_n = x_2...x_{n-1}x_nx_1 = ... = x_nx_1x_2...x_{n-1},$$

т. е. слово $x_1x_2\dots x_n$ не меняется при циклической перестановке букв. Действительно, при сопряжении слова $x_1x_2\dots x_n$ последовательно буквами x_1,x_2,\dots,x_n получаем циклически переставленные слова и, с другой стороны, так как z — центральный элемент группы G, слово $x_1x_2\dots x_n$ не меняется.

Будем использовать данное замечание в простейшем случае двух множителей $x_1x_2=z.$

Так же, как и в случае правой дистрибутивности, надо рассмотреть только восемь случаев. Подмножество центральных автоморфизмов группы G будем обозначать через $\operatorname{Aut}_c(G)$, а центр группы — через Z(G). Коммутант группы G обозначим через G', ограничение автоморфизма φ на коммутанте — через $\varphi|_{G'}$, коммутатор элементов $x,y\in G$ — через $[x,y]=x^{-1}y^{-1}xy$.

Теорема 2. Пусть $\langle G, \cdot \rangle$ — группа и φ , ψ — ее автоморфизмы. Тогда операции \circ и * обобщенных квандлов Александера согласованы тождеством (5) тогда и только тогда, когда в зависимости от явного вида операций \circ и * выполнены условия, приведенные в табл. 2.

Доказательство. Будем использовать обозначения

$$L = (x \circ y) * (z \circ t), \quad R = (x * z) \circ (y * t), \quad x, y, z, t \in G,$$

и рассматривать равенство

$$L = R. (6)$$

Рассмотрим последовательно все случаи. В силу замечания 2 можно использовать результаты теоремы 1.

1. Для
$$x \circ y = \varphi(xy^{-1})y$$
, $x * y = \psi(xy^{-1})y$ равенство (6) принимает вид
$$\psi(\varphi(xy^{-1})yt^{-1}\varphi(tz^{-1}))\varphi(zt^{-1})t = \varphi(\psi(xz^{-1})zt^{-1}\psi(ty^{-1}))\psi(yt^{-1})t$$

Таблица 2

	$x \circ y = \varphi(xy^{-1})y$	$x \circ y = \varphi(y^{-1}x)y$	$x\circ y=y\varphi(xy^{-1})$
$x * y = \psi(xy^{-1})y$	$\varphi \psi = \psi \varphi,$ $[\varphi(x^{-1})x, \psi(y^{-1})y] = 1$		
$x * y = \psi(y^{-1}x)y$	$arphi\psi=\psiarphi, \ arphi\in \operatorname{Aut}_c(G)$	$egin{aligned} arphi\psi &= \psiarphi, \ \psi^{-1}arphi \in \operatorname{Aut}_c(G), \ arphi _{G'} &= \operatorname{id}, \ G' \subseteq Z(G) \end{aligned}$	
$x * y = y\psi(xy^{-1})$	$arphi\psi=\psiarphi, \ arphi\in \operatorname{Aut}_c(G)$	$egin{aligned} arphi\psi &= \psiarphi,\ arphi\psi &\in \operatorname{Aut}_c(G)\ arphi _{G'} &= \operatorname{id},\ G' \subseteq Z(G) \end{aligned}$	
$x*y=y\psi(y^{-1}x)$	$egin{aligned} arphi\psi &= \psiarphi,\ arphi(p^{-1})p \in Z(G),\ p &= z\psi(z^{-1}) \end{aligned}$	$arphi\psi=\psiarphi, \ \psi\in \operatorname{Aut}_c(G)$	$arphi\psi=\psiarphi, \ \psi\in \operatorname{Aut}_c(G)$

или

$$\psi(\varphi(xy^{-1})yt^{-1}\varphi(tz^{-1}))\varphi(zt^{-1}) = \varphi(\psi(xz^{-1})zt^{-1}\psi(ty^{-1}))\psi(yt^{-1}). \tag{7}$$

Введем обозначения $a=xt^{-1},\,b=yt^{-1},\,c=zt^{-1}.$ Тогда (7) примет вид

$$\psi(\varphi(ab^{-1})b\varphi(c^{-1}))\varphi(c)=\varphi(\psi(ac^{-1})c\psi(b^{-1}))\psi(b).$$

В силу теоремы 1 выполнено $\varphi\psi=\psi\varphi$. Следовательно,

$$\psi(\varphi(b^{-1})b\varphi(c^{-1}))\varphi(c) = \varphi(\psi(c^{-1})c\psi(b^{-1}))\psi(b).$$

Положим $b=arphi(x),\,c=\psi(y),\,$ тогда

$$\psi(\varphi^2(x^{-1})\varphi(x)\varphi\psi(y^{-1}))\varphi\psi(y) = \varphi(\psi^2(y^{-1})\psi\varphi(x^{-1}))\psi\varphi(x).$$

Подействуем на это равенство автоморфизмом $(\varphi \psi)^{-1}$:

$$\varphi(x^{-1})x\psi(y^{-1})y = \psi(y^{-1})y\varphi(x^{-1})x.$$

2. Для
$$x\circ y=\varphi(xy^{-1})y,\ x*y=\psi(y^{-1}x)y$$
 равенство (6) принимает вид
$$\psi(t^{-1}\varphi(tz^{-1})\varphi(xy^{-1})y)\varphi(zt^{-1})t=\varphi(\psi(z^{-1}x)zt^{-1}\psi(y^{-1}t))\psi(t^{-1}y)t$$

или

$$\psi(t^{-1}\varphi(tz^{-1})\varphi(xy^{-1})y)\varphi(zt^{-1}) = \varphi(\psi(z^{-1}x)zt^{-1}\psi(y^{-1}t))\psi(t^{-1}y). \tag{8}$$

В силу теоремы 1 выполнено $\varphi\psi=\psi\varphi$ и φ — центральный автоморфизм. По-кажем, что (8) выполняется тождественно в силу этих условий. Имеем

$$\begin{split} \psi(t^{-1}\varphi(t))\psi\varphi(z^{-1}x)\psi(\varphi(y^{-1})y)\varphi(zt^{-1}) &= \varphi\psi(z^{-1}x)\varphi(zt^{-1})\varphi\psi(y^{-1}t)\psi(t^{-1}y),\\ \psi\varphi(z^{-1}x)\psi(t^{-1}\varphi(t))\psi(\varphi(y^{-1})y)\varphi(zt^{-1}) &= \varphi\psi(z^{-1}x)\varphi(zt^{-1})\varphi\psi(y^{-1}t)\psi(t^{-1}y),\\ \psi(t^{-1}\varphi(t))\psi(\varphi(y^{-1})y)\varphi(zt^{-1}) &= \varphi(zt^{-1})\varphi\psi(y^{-1}t)\psi(t^{-1}y),\\ \varphi(zt^{-1})\psi(t^{-1}\varphi(t))\psi(\varphi(y^{-1})y) &= \varphi(zt^{-1})\varphi\psi(y^{-1}t)\psi(t^{-1}y),\\ \psi(t^{-1}\varphi(t))\psi(\varphi(y^{-1})y) &= \psi\varphi(y^{-1}t)\psi(t^{-1}y),\\ t^{-1}\varphi(t)\varphi(y^{-1})y &= \varphi(t)t^{-1}\varphi(y^{-1})y,\\ t^{-1}\varphi(t) &= \varphi(t)t^{-1}. \end{split}$$

Последнее равенство в силу замечания 3 справедливо.

4. Для
$$x \circ y = \varphi(xy^{-1})y$$
, $x * y = y\psi(y^{-1}x)$ равенство (6) принимает вид
$$\varphi(zt^{-1})t\psi(t^{-1}\varphi(tz^{-1})\varphi(xy^{-1})y) = \varphi(z\psi(z^{-1}x)\psi(y^{-1}t)t^{-1})t\psi(t^{-1}y)$$

или

$$\varphi(t^{-1})t\psi(t^{-1}\varphi(tz^{-1}xy^{-1})) = \varphi(\psi(z^{-1}xy^{-1}t)t^{-1})t\psi(t^{-1}). \tag{9}$$

В силу теоремы 1 выполнено $\varphi\psi=\psi\varphi$ и элемент $\varphi(\psi(t)t^{-1})t\psi(t^{-1})$ для любого $t\in G$ лежит в центре Z(G) группы G. Покажем, что (9) выполняется тождественно в силу этих условий. Имеем следующую последовательность равенств:

$$\begin{split} \varphi(t^{-1})t\psi(t^{-1}\varphi(t))\varphi\psi(z^{-1}xy^{-1})) &= \varphi\psi(z^{-1}xy^{-1})\varphi(\psi(t)t^{-1})t\psi(t^{-1}),\\ \varphi(t^{-1})t\psi(t^{-1}\varphi(t))\varphi\psi(z^{-1}xy^{-1})) &= \varphi(\psi(t)t^{-1})t\psi(t^{-1})\varphi\psi(z^{-1}xy^{-1}),\\ \varphi(t^{-1})t\psi(t^{-1}\varphi(t)) &= \varphi(\psi(t)t^{-1})t\psi(t^{-1}),\\ \varphi(t^{-1})t\psi(t^{-1})\varphi\psi(t) &= \varphi(\psi(t)t^{-1})t\psi(t^{-1}),\\ \varphi(t^{-1})t\psi(t^{-1})\psi(t)t^{-1}\varphi(t)\varphi\psi(t^{-1})\varphi\psi(t) &= 1. \end{split}$$

Последнее равенство выполнено для произвольного $t \in G$.

5. Для
$$x \circ y = \varphi(y^{-1}x)y$$
, $x * y = \psi(y^{-1}x)y$ равенство (6) принимает вид $\psi(t^{-1}\varphi(z^{-1}t)\varphi(y^{-1}x)y)\varphi(t^{-1}z)t = \varphi(t^{-1}\psi(y^{-1}t)\psi(z^{-1}x)z)\psi(t^{-1}y)t$

или

$$\psi(t^{-1}\varphi(z^{-1}t)\varphi(y^{-1}x)y)\varphi(t^{-1}z) = \varphi(t^{-1}\psi(y^{-1}t)\psi(z^{-1}x)z)\psi(t^{-1}y).$$
 (10)

В силу теоремы 1 выполнено $\varphi\psi=\psi\varphi$ и $\psi^{-1}\varphi$ — центральный автоморфизм группы G. Преобразуем (10), используя эти условия. Имеем

$$\psi(t^{-1})\varphi\psi(z^{-1}ty^{-1}x)\psi(y)\varphi(t^{-1}z) = \varphi(t^{-1})\varphi\psi(y^{-1}tz^{-1}x)\varphi(z)\psi(t^{-1}y).$$

Применим к этому равенству ψ^{-1} :

$$\begin{split} t^{-1}\varphi(z^{-1}ty^{-1}x)y\psi^{-1}\varphi(t^{-1}z) &= \psi^{-1}\varphi(t^{-1})\varphi(y^{-1}tz^{-1}x)\psi^{-1}\varphi(z)t^{-1}y,\\ \varphi(z^{-1}ty^{-1}x)y\psi^{-1}\varphi(t^{-1}z) &= t\psi^{-1}\varphi(t^{-1})\varphi(y^{-1}tz^{-1}x)\psi^{-1}\varphi(z)t^{-1}y,\\ \varphi(z^{-1}ty^{-1}x)y\psi^{-1}\varphi(t^{-1})\psi^{-1}\varphi(z)z^{-1}z &= t\psi^{-1}\varphi(t^{-1})\varphi(y^{-1}tz^{-1}x)\psi^{-1}\varphi(z)z^{-1}zt^{-1}y,\\ \varphi(z^{-1}ty^{-1}x)yt^{-1}z &= \varphi(y^{-1}tz^{-1}x)zt^{-1}y,\\ \varphi(x^{-1}zt^{-1}yz^{-1}ty^{-1}x) &= zt^{-1}yz^{-1}ty^{-1}. \end{split}$$

Так как x — произвольный элемент группы G и $zt^{-1}yz^{-1}ty^{-1}$ — элемент из коммутанта G' группы G, причем при t=1 он совпадает с коммутатором $zyz^{-1}y^{-1}$, то автоморфизм φ действует на коммутанте G' тождественно и G' является подгруппой в центре Z(G) группы G.

6. Для
$$x \circ y = \varphi(y^{-1}x)y$$
, $x * y = y\psi(xy^{-1})$ равенство (6) принимает вид
$$\varphi(t^{-1}z)t\psi(\varphi(y^{-1}x)yt^{-1}\varphi(z^{-1}t)) = \varphi(\psi(ty^{-1})t^{-1}z\psi(xz^{-1}))t\psi(yt^{-1}). \tag{11}$$

В силу теоремы 1 выполнено $\varphi\psi=\psi\varphi$ и $\varphi\psi$ — центральный автоморфизм группы G. Преобразуем (11), используя эти условия. Имеем

$$\varphi(t^{-1}z)t\varphi\psi(y^{-1}x)\psi(yt^{-1})\varphi\psi(z^{-1}t) = \varphi\psi(ty^{-1})\varphi(t^{-1}z)\varphi\psi(xz^{-1})t\psi(yt^{-1}).$$

Положим $t^{-1}z = c$, $yt^{-1} = b$, тогда z = tc, y = bt и равенство принимает вид

$$\begin{split} \varphi(c)t\varphi\psi(t^{-1}b^{-1}x)\psi(b)\varphi\psi(c^{-1}) &= \varphi\psi(b^{-1})\varphi(c)\varphi\psi(xc^{-1}t^{-1})t\psi(b),\\ \varphi(c)t\varphi\psi(t^{-1})\varphi\psi(b^{-1}x)\psi(b)\varphi\psi(c^{-1}) &= \varphi\psi(b^{-1})\varphi(c)\varphi\psi(xc^{-1})\varphi\psi(t^{-1})t\psi(b),\\ \varphi(c)\varphi\psi(b^{-1}x)\psi(b)\varphi\psi(c^{-1}) &= \varphi\psi(b^{-1})\varphi(c)\varphi\psi(xc^{-1})\psi(b),\\ \varphi(c)\varphi\psi(b^{-1})\varphi\psi(x)x^{-1}x\psi(b)\varphi\psi(c^{-1})cc^{-1} &= \varphi\psi(b^{-1})\varphi(c)\varphi\psi(x)x^{-1}x\varphi\psi(c^{-1})\psi(b),\\ \varphi(c)b^{-1}x\psi(b)c^{-1} &= b^{-1}\varphi(c)xc^{-1}\psi(b). \end{split}$$

Пусть $b = \varphi(u)$, тогда

$$\varphi(cu^{-1})x\varphi\psi(u)c^{-1} = \varphi(u^{-1}c)xc^{-1}\varphi\psi(u),$$

$$\varphi(cu^{-1})x\varphi\psi(u)u^{-1}uc^{-1} = \varphi(u^{-1}c)xc^{-1}\varphi\psi(u)u^{-1}u,$$

$$\varphi(cu^{-1})xuc^{-1} = \varphi(u^{-1}c)xc^{-1}u,$$

$$\varphi(c^{-1}ucu^{-1}) = xc^{-1}ucu^{-1}x^{-1}.$$

Так как x — произвольный элемент группы G и $c^{-1}ucu^{-1}$ — коммутатор, то автоморфизм φ действует на коммутанте G' тождественно и G' является подгруппой в центре Z(G) группы G.

7. Для
$$x \circ y = \varphi(y^{-1}x)y, \ x * y = y\psi(y^{-1}x)$$
 равенство (6) принимает вид
$$\varphi(t^{-1}z)t\psi(t^{-1}\varphi(z^{-1}t)\varphi(y^{-1}x)y) = \varphi(\psi(y^{-1}t)t^{-1}z\psi(z^{-1}x))t\psi(t^{-1}y)$$

или

$$\varphi(t^{-1}z)t\psi(t^{-1}\varphi(z^{-1}ty^{-1}x)) = \varphi(\psi(y^{-1}t)t^{-1}z\psi(z^{-1}x))t\psi(t^{-1}). \tag{12}$$

В силу теоремы 1 выполнено $\varphi\psi=\psi\varphi$ и ψ — центральный автоморфизм. Покажем, что (12) выполняется тождественно в силу этих условий. Имеем

$$\begin{split} \varphi(t^{-1}z)t\psi(t^{-1})\varphi\psi(z^{-1}ty^{-1}x) &= \varphi\psi(y^{-1}t)\varphi(t^{-1}z)\varphi\psi(z^{-1}x)t\psi(t^{-1}),\\ \varphi(t^{-1}z)\varphi\psi(z^{-1}ty^{-1}x) &= \varphi\psi(y^{-1}t)\varphi(t^{-1}z)\varphi\psi(z^{-1}x),\\ t^{-1}z\psi(z^{-1}ty^{-1}x) &= \psi(y^{-1}t)t^{-1}z\psi(z^{-1}x),\\ t^{-1}z\psi(z^{-1})\psi(t)\psi(y^{-1}x) &= \psi(y^{-1})\psi(t)t^{-1}z\psi(z^{-1})\psi(x),\\ \psi(y^{-1}x) &= \psi(y^{-1})\psi(x). \end{split}$$

Последнее равенство выполнено для произвольных $x, y \in G$.

Случай 8 рассматривается аналогично и приводит к тому же результату, что и случай 7.

Теорема доказана.

Следствие 1. Тождества (3), (5) для обобщенных квандлов Александера не равносильны.

Действительно, для квандлов

$$x \circ y = \varphi(xy^{-1})y, \quad x * y = \psi(xy^{-1})y, \quad x, y \in G,$$

построенных на группе $\langle G,\cdot\rangle$ по автоморфизмам $\varphi,\psi\in {\rm Aut}\,G,$ тождество (3) равносильно условию $\varphi\psi=\psi\varphi,$ в то время как (5) равносильно двум условиям $\varphi\psi=\psi\varphi$ и

$$\varphi(x^{-1})x\psi(y^{-1})y = \psi(y^{-1})y\varphi(x^{-1})x \tag{13}$$

для любых элементов x, y группы G.

Непосредственно из случая 1 теоремы 2 получаем

Следствие 2. Пусть $\langle G,\cdot\rangle$ — группа, φ — автоморфизм группы G. Тогда операция

$$x \circ y = \varphi(xy^{-1})y, \quad x, y \in G,$$

определяет абелев квандл тогда и только тогда, когда имеет место соотношение

$$\varphi(x^{-1})x\varphi(y^{-1})y = \varphi(y^{-1})y\varphi(x^{-1})x \tag{14}$$

для любых элементов x, y группы G.

Замечание 4. В голоморфе $\operatorname{Hol} G$ группы G элемент $\varphi(x^{-1})x$ можно записать в виде коммутатора

$$\varphi^{-1}x^{-1}\varphi x = [\varphi, x].$$

Поэтому (14) можно записать как

$$[\varphi, x][\varphi, y] = [\varphi, y][\varphi, x].$$

Так как x, y — произвольные элементы группы G, это равносильно тому, что подгруппа в голоморфе $\operatorname{Hol} G$, порожденная коммутаторами $[\varphi, x], x \in G$, абелева.

Аналогично (13) может быть переписано в виде

$$[\varphi, x][\psi, y] = [\psi, y][\varphi, x], \quad x, y \in G,$$

в голоморфе $\operatorname{Hol} G$ группы G.

В заключение данного раздела приведем утверждение про тождество медиальности для квандлов $\operatorname{Conj}(G)$ и $\operatorname{Core}(G)$.

Предложение 1. Пусть $\langle G, \cdot \rangle$ — группа, тогда операции

$$x \circ y = yxy^{-1}, \quad x * y = yx^{-1}y, \quad x, y \in G,$$
 (15)

согласованы обобщенным тождеством медиальности (5) тогда и только тогда, когда имеет место включение

$$\left\{g^2, g \in G\right\} \subseteq Z(G),\tag{16}$$

где Z(G) — центр группы G.

Доказательство. Подставляя (15) в соотношение (2), получаем

$$dcd^{-1}ba^{-1}b^{-1}dcd^{-1} = db^{-1}dca^{-1}cd^{-1}bd^{-1}$$

или после сокращения

$$cd^{-1}ba^{-1}b^{-1}dc = b^{-1}dca^{-1}cd^{-1}b. (17)$$

Полагая c=d=1, получаем $ba^{-1}b^{-1}=b^{-1}a^{-1}b$ или $ab^2=b^2a$, что и доказывает включение (16).

С другой стороны, из тождества

$$x^{-1}y^{-1}xy = (yx)^{-2}(yxy^{-1})^2y^2$$

следует, что коммутант [G,G] группы G содержится в подгруппе, порожденной квадратами элементов группы G. Поэтому из включения $\{g^2,g\in G\}\subseteq Z(G)$ получаем, что $[G,G]\subseteq Z(G)$. Но соотношение (17) является коммутаторным (суммарная степень по каждой букве a,b,c,d равна нулю). Значит, из включения (16) следует, что соотношение (17), а значит и (2), выполняются тождественно.

Предложение доказано.

ЛИТЕРАТУРА

- 1. *Матвеев С. В.* Дистрибутивные группоиды в теории узлов // Мат. сб. 1982. Т. 119, № 1. С. 78–88.
- **2.** Joyce D. A classifying invariant of knots: the knot quandle // J. Pure Appl. Algebra. 1982. N 1. P. 37-65.
- 3. Reidemeister K. Elementare Begründung der Knotentheorie // Abh. Math. Sem. Univ. Hamburg. 1926. V. 5, N1. P. 24–32.
- 4. Ryll-Nardzewski C. Sur les moyennes // Studia Math. 1949. V. 11. P. 31–37.
- 5. Hossz'u M. On the functional equation of distributivity // Acta Math. Academiae Scientiarum Hungaricae. 1953. V. 4, N 1–2. P. 159–167.
- **6.** Госсу М. Несимметричные средние // Colloq. Math. 1957. V. 5. P. 32–42.
- 7. Hosszu M. Nonsymmetric means // Math. Debrecen. 1959. V. 6. P. 1–9.
- 8. Drinfeld V. G. On some unsolved problems in quantum group theory // Quantum groups. Berlin; Heidelberg: Springer-Verl., 1992. P. 1–8.
- 9. Smoktunowicz A., Vendramin L. On skew braces (with an appendix by Byott N. and Vendramin L.) // J. Comb. Algebra. 2018. V. 2. P. 47–86.
- Bardakov V. G., Neshchadim M. V., Yadav M. K. Computing skew left braces of small orders // Intern. J. Algebra Comput. 2020. V. 30. P. 839–851.
- 11. Bardakov V. G., Neshchadim M. V., Yadav M. K. On λ -homomorphic skew braces // J. Pure Appl. Algebra. 2022. V. 226. 106961.
- **12.** *Курош А. Г.* Общая алгебра. М.: Наука, 1974.
- 13. Белоусов В. Д. Системы квазигрупп с обобщенными тождествами // Успехи мат. наук. 1965. Т. 20, № 1. С. 75–146.
- 14. Курош А. Г. Лекции по общей алгебре. М.: Физматгиз, 1962.
- Sade A. Quasigroupes obéissant á certain lois // Rev. Fac. Sci. Univ. Istambul., 1957. V. 22.
 P. 151–184.
- sl Bardakov V., Nasybullov T. Multi-switches and representations of braid groups // J. Algebra Appl. 2024. V. 23, N 3. 2430003.
- sl Bardakov V., Nasybullov T. Multi-switches and virtual knot invariants // Topology Appl. 2021. V. 293. 107552.
- 18. Бардаков В. Г., Насыбуллов Т. Р. Мульти-переключатели, представления виртуальных кос и инварианты виртуальных узлов // Алгебра и логика. 2020. Т. 59, № 4. С. 500–506.
- 19. Бардаков В. Г., Федосеев Д. А. Произведения квандлов // Алгебра и логика. 2024. Т. 63, № 2. С. 111–142.

20. Симонов А. А., Нещадим М. В., Бородин А. Н. Конструкции квандлов над группами и кольцами // Сиб. мат. журн. 2024. Т. 65, N 3. С. 577–590.

Поступила в редакцию 17 февраля 2025 г. После доработки 2 мая 2025 г. Принята к публикации 13 мая 2025 г.

Бородин Александр Николаевич Горно-алтайский государственный университет, ул. Ленкина, 1, Горно-Алтайск 659700 serajsova@yandex.ru

Нещадим Михаил Владимирович Институт математики им. С. Л. Соболева СО РАН, пр. Академика Коптюга, 4, Новосибирск 630090 neshch@math.nsc.ru

Симонов Андрей Артёмович Новосибирский государственный университет, ул. Пирогова 1, Новосибирск 630090 a.simonov@g.nsu.ru