ФУНКЦИОНАЛЬНЫЕ ПРОСТРАНСТВА ТИПА $L_{p(\cdot)}$ ($L_{q(\cdot)}$) И ТЕОРЕМЫ ВЛОЖЕНИЯ ПРОСТРАНСТВ ФУНКЦИЙ С ПЕРЕМЕННОЙ ГЛАДКОСТЬЮ

А. Н. Артюшин

Аннотация. Определяются итерированные (квази)нормированные пространства типа $L_{p(\cdot)}$ ($L_{q(\cdot)}(\ldots)$) с показателями, зависящими от всех переменных. Для таких пространств доказан аналог интегрального неравенства Минковского для смешанных норм и мультипликативное неравенство интерполяционного типа. С помощью этих теорем доказана теорема вложения для пространства функций переменной гладкости, различной по разным направлениям.

 $DOI\,10.33048/smzh.2025.66.101$

Ключевые слова: дробные производные, переменный показатель гладкости, переменный показатель суммируемости, итерированные пространства.

1. Введение

Пусть $Q = (0,T) \times (0,1), \ 0 < \nu, \mu < 1, \ 1 < p < \infty.$ Пусть $u(t,x) \in L_p(Q)$ такова, что

$$\partial_t^{\nu} u(t,x) \in L_p(Q), \quad \partial_x^{\mu} u(t,x) \in L_p(Q).$$

Предположим, что

 $\frac{1}{p} > \frac{\nu\mu}{\nu + \mu},$ $\frac{1}{q} = \frac{1}{p} - \frac{\nu\mu}{\nu + \mu}.$ (1.1)

и положим

Тогда согласно известной теореме вложения (см. [1,2]) справедливо включение $u(t,x) \in L_q(Q)$. Среди последних результатов в этом направлении отметим работу [3] с теоремами вложения для дробных мультианизотропных пространств.

Нас будет интересовать случай переменных показателей гладкости $\nu=\nu(x),\,\mu=\mu(t).$ Вопросы такого рода возникают, например, при анализе уравнения дробной диффузии с переменным показателем производной

$$\partial_t^{\nu(x)} u(t,x) - \Delta u(t,x) = f(t,x).$$

Есть основания считать, что смешанная задача для такого уравнения обладает свойством максимальной регулярности в $L_p(Q)$. Иными словами, для $f(t,x) \in L_p(Q)$ имеют место включения

$$\partial_t^{\nu(x)} u(t,x), \Delta u(t,x) \in L_p(Q).$$

Естественным образом возникает вопрос: какому пространству принадлежит сама функция u(t,x)?

Формально применяя формулу (1.1), приходим к вложению $u(t,x) \in L_{q(\cdot)}(Q),$ где

$$\frac{1}{q(t,x)} = \frac{1}{p} - \frac{\nu(x)\mu(t)}{\nu(x) + \mu(t)}.$$

Оказывается, что при разумных условиях на показатели $\nu=\nu(x)$ и $\mu=\mu(t)$ данное вложение действительно имеет место. Вообще говоря, теоремы вложения для пространств с переменным показателем суммируемости изучаются с помощью максимальных функций Харди — Литтлвуда. Но мы получим данные результаты совершенно иным способом. А именно, применим мультипликативное неравенство интерполяционного типа для специальных анизотропных пространств суммируемых функций, обобщающих пространства типа $L_p(0,T;L_q(0,1))$. Такое обобщение сравнительно легко проделать в случае $p=p(t),\ q=q(t,x)$ (см. [4]), но нам нужен случай полной зависимости $p=p(t,x),\ q=q(t,x)$. Для такого обобщения требуется особая конструкция.

В [5] рассматривались пространства вида $W^1_{\overline{p}(.)}(\Omega), \overline{p}(x) = (p_1(x), \ldots, p_n(x)).$ Однако теорему вложения с предельным показателем получить не удалось. Представленные здесь результаты частично решают эту проблему. Более подробные комментарии будут даны ниже.

2. Лебеговы пространства с переменным показателем суммируемости

Напомним некоторые свойства пространств функций с переменным показателем суммируемости (см. [6]).

Пусть $\Omega \subset R^n, p(x)$ — измеримая функция на множестве $\Omega, p_- = \operatorname*{ess\,inf}_{\Omega} p(x),$ $p_+ = \operatorname*{ess\,sup}_{\Omega} p(x),$ причем $0 < p_- \leq p_+ < \infty.$ Такие функции будем называть ∂ опустимыми. Легко видеть, что множество допустимых показателей замкнуто относительно операций сложения, умножения и деления. Всюду далее, не оговаривая особо, рассматриваем только допустимые p(x).

Пространство $L_{p(\cdot)}(\Omega)$ состоит из функций с конечным интегралом

$$\int\limits_{\Omega} |f(x)|^{p(x)} \, dx < \infty.$$

Для $f \in L_{p(\cdot)}(\Omega)$ корректно определена квазинорма

$$||f||_{p(\cdot)} = \left\{\inf \lambda > 0 : \int\limits_{\Omega} \left| \frac{f(x)}{\lambda} \right|^{p(x)} dx \le 1 \right\}. \tag{2.1}$$

Отметим, что для $f\not\equiv 0$ инфимум всегда достигается (непрерывность по λ). Особо выделяем множество

$$\mathcal{P}_1(\Omega) = \{ p(x) : 1 < p_- \le p_+ < \infty \}.$$

Обычно из контекста ясно, о каком множестве идет речь. Поэтому в дальнейшем, если это не вызовет недоразумений, пишем просто \mathscr{P}_1 без явного указания множества Ω . Если $p(x) \in \mathscr{P}_1$, то $\|\cdot\|_{p(\cdot)}$ — норма (Люксембурга). Снабженное такой нормой $L_{p(\cdot)}(\Omega)$ становится рефлексивным банаховым пространством. Сопряженным к нему является пространство $L_{q(\cdot)}(\Omega)$, где

$$\frac{1}{p(x)} + \frac{1}{q(x)} = 1.$$

Как обычно, сопряженный показатель обозначаем через q=p'. Легко проверяется, что $q(x)\in \mathscr{P}_1$.

В дальнейшем особую роль играет неравенство Юнга. Пусть $0 \leq \theta \leq 1$. Тогда для любых $a,b \geq 0$

$$a^{\theta}b^{1-\theta} \le \theta a + (1-\theta)b \le a + b.$$

Поточечно применяя неравенство Юнга с $\theta = 1/p(x)$, легко получаем

$$\frac{1}{\|f\|_{p(\cdot)}\|g\|_{q(\cdot)}} \int\limits_{\Omega} |f(x)g(x)| \, dx \le \frac{1}{p_{-}} + \frac{1}{q_{-}}.$$

Таким образом, имеет место неравенство Гёльдера (с константой)

$$\int_{\Omega} |f(x)g(x)| \, dx \le \left(\frac{1}{p_{-}} + \frac{1}{q_{-}}\right) \|f\|_{p(\cdot)} \|g\|_{q(\cdot)}. \tag{2.2}$$

С другой стороны, положим

$$g_f(x) = \left(\frac{|f(x)|}{\|f(x)\|_{p(\cdot)}}\right)^{p(x)-1}.$$

Легко убедиться, что $||g_f(x)||_{q(\cdot)} \le 1$ и, следовательно,

$$||f(x)||_{p(\cdot)} = \int_{\Omega} f(x)g_f(x) dx \le \sup_{||g(x)||_{q(\cdot)} \le 1} \int_{\Omega} f(x)g(x) dx.$$

Значит, имеет место эквивалентность норм

$$||f(x)||_{p(\cdot)} \sim \sup_{||g(x)||_{q(\cdot)} \le 1} \int_{\Omega} f(x)g(x) dx.$$

3. Пространства типа $L_{(t,x),(p,q)}$

Во многих доказательствах теорем вложения используются итерированные пространства вида $L_p(0,T;L_q(\Omega))$. Мы обобщаем такие пространства на случай показателей p(t,x), q(t,x). Отметим, что конструкция такого рода уже была ранее описана в [7]. Но, по-видимому, никакого дальнейшего развития эта идея не получила. Хочется сказать, что определение носит довольно необычный характер, поэтому сначала более подробно рассматривается случай двух переменных. После этого будет дано индуктивное определение и для других размерностей.

В дальнейшем рассматриваются функции многих переменных и применяются к ним различные (квази)нормы по той или иной переменной. В тех случаях, когда могут возникнуть сомнения, рядом с показателем нормы указывается соответствующая переменная. Например, запись $B(t) = \|u(t,x)\|_{x,p(t,x)}$ означает следующее. Для всякого фиксированного t рассматриваем функции $\widetilde{u}(x) = u(t,x)$ и $\widetilde{p}(x) = p(t,x)$ и полагаем $B(t) = \|\widetilde{u}(x)\|_{\widetilde{p}(x)}$.

Пусть $\Omega=R^2,\,p(t,x)$ и q(t,x) — допустимые показатели. Для всякой функции u(t,x) формально определяем величину $B_u(t)=\||u|^p\|_{x,q/p}$. Пространство $L_{(t,x),(p,q)}(R^2)$ состоит из функций, для которых

$$J_{(t,x),(p,q)}(u) = \int\limits_R B_u(t) \, dt < \infty.$$

Согласно (2.1) для всякого t величина $B_u(t)$ определяется из равенства

$$\int_{B} \frac{|u|^{q(t,x)}(t,x)}{B_{u}^{\frac{q}{p}(t,x)}(t)} dx = 1$$
(3.1)

при условии, что $u(t,x) \not\equiv 0$ (в противном случае $B_u(t)=0$). Из равенства (3.1) легко выводим, что $L_{(t,x),(p,q)}(R^2)$ — векторное пространство. Особо отметим, что в определении не требуется неравенство $p(t,x) \leq q(t,x)$.

Очевидно, что переменные t и x входят в определение пространства несимметричным образом. Поэтому следует указывать явный порядок их использования. В дальнейшем, когда этот порядок не меняется и ясен из контекста, пишем просто $L_{p,q}(R^2)$ и $J_{p,q}(u)$.

Лемма 3.1. Пусть $u(t,x),v(t,x)\in L_{p,q}(R^2)$. Если $|u(t,x)|\leq |v(t,x)|$ для п.в. $(t,x)\in R^2$, то

$$J_{p,q}(u) \le J_{p,q}(v)$$
.

Для любой ограниченной функции $a(t,x) \geq 0$

$$A_{-}J_{p,q}(u) \le J_{p,q}(au) \le A_{+}J_{p,q}(u),$$
 (3.2)

где

$$A_{-} = \operatorname*{ess\,inf}_{R^{2}} a(t,x)^{p(t,x)}, \quad A_{+} = \operatorname*{ess\,sup}_{R^{2}} a(t,x)^{p(t,x)}.$$

Если $u(t,x) \not\equiv 0$, то функция $J_{p,q}(\mu u)$ непрерывна и строго монотонно возрастает при $\mu \in (0,\infty)$. При этом

$$\lim_{u \to 0} J_{p,q}(\mu u) \to 0, \quad \lim_{u \to \infty} J_{p,q}(\mu u) \to \infty. \tag{3.3}$$

ДОКАЗАТЕЛЬСТВО. Из равенства (3.1) следует, что для п.в. $t \in R$ справедливо неравенство $B_u(t) \leq B_v(t)$, а значит, $J_{p,q}(u) \leq J_{p,q}(v)$.

Рассмотрим функцию $v(t,x)=u(t,x)A_+^{1/p(t,x)}$. Ясно, что $a(t,x)u(t,x)\leq v(t,x)$ и $B_v(t)=A_+B_u(t)$. Следовательно,

$$J_{p,q}(au) \le J_{p,q}(v) = A_+ J_{p,q}(u).$$

Аналогично доказываем неравенство $J_{p,q}(au) \ge A_- J_{p,q}(u)$.

Пусть $0 < \mu_1 < \mu_2$. Тогда из неравенства (3.2) следует, что

$$\left(\frac{\mu_2}{\mu_1}\right)^{p-} J_{p,q}(\mu_1 u) \le J_{p,q}(\mu_2 u) \le \left(\frac{\mu_2}{\mu_1}\right)^{p_+} J_{p,q}(\mu_1 u). \tag{3.4}$$

В частности, $J_{p,q}(\mu_2 u) > J_{p,q}(\mu_1 u)$. Устремляя либо $\mu_1 \to 0$, либо $\mu_2 \to \infty$, получаем (3.3). \square

Как и ранее, вводим в рассмотрение однородный функционал типа Минковского

$$||u||_{p,q} = \{\inf \lambda > 0 : J_{p,q}(u/\lambda) \le 1\}.$$
 (3.5)

Из леммы 3.1 следует, что данное определение корректно и для нетривиальных u(t,x) требуемый инфимум достигается при $\lambda=\|u\|_{p,q}$. Как увидим далее, этот функционал задает квазинорму, а в случае $p,q\in \mathscr{P}_1$ эта квазинорма эквивалентна некоторой норме. Пока отметим некоторые простые следствия данного определения. Легко видеть, что для постоянных $p(t,x)\equiv p$ и $q(t,x)\equiv q$ только что определенное пространство в точности совпадает с $L_p(R;L_q(R))$. В случае p(t,x)=q(t,x) имеет место «естественное» равенство

$$L_{(t,x),(p,p)}(R^2) = L_{(x,t),(p,p)}(R^2) = L_p(R^2).$$

Лемма 3.2. Пусть $u(t,x),v(t,x)\in L_{p,q}(R^2)$. Если $|u(t,x)|\leq |v(t,x)|$ для п.в. $(t,x)\in R^2$, то

$$||u||_{p,q} \le ||v||_{p,q}.$$

ДОКАЗАТЕЛЬСТВО. Рассмотрим функции $u_1=u/\|u\|_{p,q}$ и $v_1=v/\|u\|_{p,q}$. Очевидно, что $|u_1(t,x)|\leq |v_1(t,x)|$ для п.в. $(t,x)\in R^2$. Следовательно, по лемме 3.1

$$1 = J_{p,q}(u_1) \le J_{p,q}(v_1),$$

и $||v_1||_{p,q} \geq 1$. \square

Лемма 3.3. Пусть $u(t,x) \in L_{p,q}(\mathbb{R}^2)$. Если $||u||_{p,q} \ge 1$, то

$$||u||_{p,q}^{p_{-}} \le J_{p,q}(u) \le ||u||_{p,q}^{p_{+}}. \tag{3.6}$$

Eсли $\|u\|_{p,q} \le 1$, то

$$||u||_{p,q}^{p_{+}} \le J_{p,q}(u) \le ||u||_{p,q}^{p_{-}}.$$
 (3.7)

Доказательство. Пусть $||u||_{p,q} > 1$. Положим $\mu_1 = 1/||u||_{p,q}$, $\mu_2 = 1$ и применим неравенство (3.4). Получим неравенство (3.6). Аналогично доказываем неравенство (3.7). \square

В дальнейшем нам понадобится одна специальная конструкция, которую назовем разложением нормы. Пусть $u \in L_{p,q}(R^2)$. Обозначим

$$m_u(t) = \max\{x \in R : |u(t,x)| \neq 0\}, \quad R_{ut} = \{t \in R : m_u(t) \neq 0\}.$$

Оказывается, что для нетривиальной функции u(t,x) единственным образом определена такая пара $N_0,\,N_1(t)\geq 0,\,$ что

$$N_1(t) = 0, \quad t \notin R_{ut}, \tag{3.8}$$

$$N_1(t) > 0, \quad t \in R_{ut},$$
 (3.9)

$$\int_{R} N_1(t) \, dt = 1, \tag{3.10}$$

$$\int_{\mathcal{R}} \frac{u^q}{N_0^q N_1^{q/p}} dx = 1, \quad t \in R_{ut}. \tag{3.11}$$

Для тривиальной функции $u(t,x)\equiv 0$ эти величины просто равны 0.

Действительно, положим $N_0 = \|u\|_{p,q}$ и рассмотрим функцию $v = u/N_0$. Как и ранее, рассматриваем $B_v(t)$ и полагаем $N_1(t) = B_v(t)$. Тогда согласно определениям (3.1), (3.5) выполнены соотношения (3.8)–(3.11). Покажем единственность. Пусть $t \in R_{ut}$. Из (3.11) следует, что $\|u(t,\cdot)/N_{u0}\|_{x,q/p} = N_{u1}(t)$. В силу (3.8), (3.10) $J_{p,q}(u/N_{u0}) = 1$, а значит, $N_0 = \|u\|_{p,q}$. Тогда с необходимостью $N_1(t) = B_v(t)$.

4. Теорема о сравнении перестановочных квазинорм

Как отмечено выше, переменные t и x входят в определение пространства $L_{(t,x),(p,q)}(R^2)$ несимметрично. В связи с этим возникает естественный вопрос: что произойдет, если поменять порядок переменных? Или при каких условиях можно сравнивать квазинормы $\|u\|_{(t,x),(p,q)}$ и $\|u\|_{(x,t),(q,p)}$?

Для постоянных показателей p,q сравнивать квазинормы позволяет известное интегральное неравенство Минковского (см., например, [8, с. 60]). Для переменных показателей вида $p(t) \geq q(x) \geq 1$ неравенство для смешанных норм было заявлено (с пробелами в доказательстве) в [4] (окончательный результат см. в [9]). Оказывается, что и в общем случае это можно делать при условии $p(t,x) \geq q(t,x)$ (или наоборот).

Теорема 4.1. Пусть для допустимых показателей выполнено неравенство $p(t,x) \ge q(t,x)$ для п.в $(t,x) \in R^2$. Тогда для некоторой константы C(p,q)

$$||u||_{(t,x),(p,q)} \le C(p,q)||u||_{(x,t),(q,p)}.$$

ДОКАЗАТЕЛЬСТВО. Пусть $\|u\|_{(t,x),(p,q)}=1$. Как и ранее, для $t\in R$ вводим функцию $B_u(t)=\||u|^p\|_{x,q/p}$. По определению это означает, что для $t\in R_{ut}$

$$\int\limits_R rac{|u|^q(t,x)}{B_u^{q/p}(t)}\,dx=1,\quad \int\limits_R B_u(t)\,dt=1.$$

Следовательно,

$$1 = \int_{R} dt \int_{R} B(t) \frac{|u|^{q}(t,x)}{B_{u}^{q/p}(t)} dx = \int_{R} dx \int_{R} |u|^{q} B_{u}^{(p-q)/p} dt.$$
 (3.12)

Здесь можно было бы воспользоваться неравенством Гёльдера (2.2), но для этого нужно включение $(p/q) \in \mathscr{P}_1$.

Положим $\theta(t,x)=q/p$. Тогда $1-\theta=(p-q)/p$. Обозначим $N(x)=\||u|^q\|_{t,p/q}$. По неравенству Юнга если $N(x)\neq 0$, то

$$|u|^q B_u^{(p-q)/p} \le N(x) \left(\theta \frac{|u|^p}{N^{p/q}(x)} + (1-\theta)B(t)\right).$$

Подставляя это неравенство в (3.12), получаем

$$1 \le C_\theta \int\limits_R \|u^q\|_{(t, p/q)} \, dx$$

с константой

$$C_{\theta} = \operatorname{ess\,sup}_{R^2} \theta(t, x) + \operatorname{ess\,sup}_{R^2} (1 - \theta(t, x)), \quad 1 \leq C_{\theta} \leq 2.$$

Поэтому

$$J_{(x,t),(q,p)}(u) \ge \frac{1}{C_{\theta}}.$$

По лемме 3.3

$$||u||_{(x,t),(q,p)}(u) \ge \frac{1}{C_{\theta}^{1/q_{-}}}.$$

5. Многомерный случай

Рассмотрим случай произвольного количества переменных.

Пусть n>2. Пусть для $\overline{x}=(x_1,x_2,\ldots,x_n)$ задан векторный показатель $\overline{p}(\overline{x})=(p_1(\overline{x}),p_2(\overline{x}),\ldots,p_n(\overline{x}))$ с допустимыми компонентами $p_k(\overline{x}),\ k=\overline{1,n}$. Как и в двумерном случае, следует указать некоторую перестановку индексов, задающую порядок использования переменных x_k . Это существенно осложнит все обозначения и рассуждения. Поэтому чтобы не загромождать изложение излишними обозначениями, считаем, что указана естественная перестановка в порядке возрастания индексов.

Далее индуктивным образом определяем пространство $L_{\overline{p}(\overline{x})}(R^n)$ и соответствующую квазинорму. Для n=2 они уже были определены ранее $(L_{p_1,p_2}(R^2)$ и $\|\cdot\|_{p_1,q_1})$. Пусть дана функция $u(\overline{x})$. Для $x_1 \in R$ обозначим $\overline{y} = (x_2,\ldots,x_n)$, $\overline{q}(\overline{y}) = (p_2(x_1,\overline{y}),\ldots,p_n(x_1,\overline{y})),\ v(\overline{y}) = |u(x_1,\overline{y})|^{p_1(x_1,\overline{y})}$. После этого формально определим

$$B_u(x_1) = ||v(\overline{y})||_{L_{\overline{q}/p_1}(\mathbb{R}^{n-1})}.$$
(5.1)

Пространство $L_{\overline{p}(\overline{x})}(R^n)$ состоит из тех функций, у которых

$$J_{\overline{p}}(u) = \int_{R} B_{u}(x_{1}) dx_{1} < \infty.$$

При этом формально определен однородный функционал

$$||u||_{\overline{p}} = \{\inf \lambda > 0 : J_{\overline{p}}(u/\lambda) \le 1\}.$$

Позже докажем, что этот функционал задает квазинорму.

Лемма 5.1. Пусть $u(\overline{x}),v(\overline{x})\in L_{\overline{p}}(R^n)$. Если $|u(\overline{x})|\leq |v(\overline{x})|$ для п.в. $\overline{x}\in R^n$, то

$$J_{\overline{\nu}}(u) \le J_{\overline{\nu}}(v). \tag{5.2}$$

Для любой ограниченной функции $a(\overline{x}) \geq 0$

$$A_{-}J_{\overline{p}}(u) \leq J_{\overline{p}}(au) \leq A_{+}J_{\overline{p}}(u),$$

где

$$A_- = \operatorname*{ess\,inf}_{R^n} a(\overline{x})^{\overline{p}(\overline{x})}, \quad A_+ = \operatorname*{ess\,sup}_{R^n} a(\overline{x})^{\overline{p}(\overline{x})}.$$

Если $u(\overline{x}) \not\equiv 0$, то функция $J_{\overline{p}}(\mu u)$ непрерывна и строго монотонно возрастает при $\mu \in (0, \infty)$. При этом

$$\lim_{\mu \to 0} J_{\overline{p}}(\mu u) \to 0, \quad \lim_{\mu \to \infty} J_{\overline{p}}(\mu u) \to \infty.$$

Функционал $\|\cdot\|_{\overline{p}}$ корректно определен, и $\|u\|_{\overline{p}} \leq \|v\|_{\overline{p}}$.

Доказательство. Применяем индукцию по размерности. Для n=2 утверждение леммы доказано в леммах 3.1 и 3.2. Пусть утверждение леммы верно для некоторого $n=n_0$. Рассмотрим случай $n=n_0+1$.

Фиксируем $x_1 \in R$. В силу индуктивного предположения справедливы неравенства

$$J_{\overline{q}/p_1}(|u|^{p_1}(x_1,\overline{y})) \leq J_{\overline{q}/p_1}(|v|^{p_1}(x_1,\overline{y})), \quad ||u|^{p_1}(x_1,\overline{y})||_{\overline{q}/p_1} \leq ||v|^{p_1}(x_1,\overline{y})||_{\overline{q}/p_1}.$$

А отсюда уже следует неравенство (5.2). Все остальные рассуждения дословно повторяют доказательства из лемм 3.1 и 3.2. \square

Введем обозначение
$$\overline{z}_k = (x_1, \dots, x_k), k = \overline{1, n}$$
.

Лемма 5.2 (разложение нормы). Для всякой нетривиальной функции $u \in L_{\overline{p}}(R^n)$ однозначно определены константа $N_{u0} > 0$ и набор функций $N_{uk}(\overline{z}_k) \ge 0$, $k = \overline{1, n-1}$ со следующими свойствами. Функция $N_{u1}(x_1)$ нетривиальна и

$$\int_{R} N_{u1} \, dx_1 = 1. \tag{5.3}$$

Далее, для всякого $k = \overline{2, n-1}$ обозначим

$$J_k(\overline{z}_{k-1}) = \int\limits_R N_{uk} \, dx_k.$$

Тогда для любого $\overline{z}_{k-1} \in R^{k-1}$

либо
$$J_k(\overline{z}_{k-1}) = 0$$
, либо $J_k(\overline{z}_{k-1}) = 1$. (5.4)

Для всякого \overline{z}_{n-1} либо $u(\overline{z}_{n-1},x_n)\equiv 0$, либо $N_{uk}(\overline{z}_k)\neq 0$ для всех $k=\overline{1,n-1}$ и

$$\int_{R} \frac{|u|^{p_n}}{N_{u0}^{p_n} \prod_{k=1}^{n-1} N_{uk}^{p_n/p_k}} dx_n = 1.$$
 (5.5)

При этом имеет место равенство $N_{u0} = ||u||_{\overline{p}}$.

ДОКАЗАТЕЛЬСТВО. В равенстве (5.5) в знаменателе присутствуют величины, которые могут обращаться в 0. Поэтому приходится делать многочисленные оговорки. В частности, в (5.4) мы не можем требовать равенства, аналогичного (5.3). То же самое можно сказать и про условия, когда имеет место равенство (5.5). Поэтому далее исключительно ради простоты изложения считаем $|u(\overline{x})| > 0$ для всех $\overline{x} \in R^n$. При таком предположении все величины $N_{uk}(\overline{z}_k) \neq 0$ и все оговорки становятся не нужны.

При n=2 требуемое (единственное) разложение вытекает из (3.10), (3.11). Рассмотрим случай n=3. Положим $N_{u0}=\|u\|_{\overline{p}}$ и рассмотрим $v=u/\|u\|_{\overline{p}}$. Фиксируем $x_1\in R$. Обозначим

$$w(x_2, x_3) = |v(x_1, x_2, x_3)|^{p_1(x_1, x_2, x_3)}.$$

Согласно (5.1) следует рассмотреть квазинорму $B_v(x_1)=\|w\|_{r_2,r_3}$ с показателями $r_2=p_2/p_1$ и $r_3=p_3/p_1$, причем по индуктивному предположению $\|w\|_{r_2,r_3}=N_{w0}$. Из разложения (3.10), (3.11) следует, что

$$\int\limits_R \frac{|w|^{r_3}}{N_{w0}^{r_3}N_{w1}^{r_3/r_2}(x_2)} \, dx_3 = 1, \quad \int\limits_R N_{w1} \, dx_2 = 1.$$

Для данного фиксированного x_1 полагаем

$$N_{u1}(x_1) = N_{w0}, \quad N_{u2}(x_1, x_2) = N_{w1}(x_2).$$

Тогда с учетом определения величин r_2 r_3 и равенства $v=u/N_{u0}$ получаем

$$\int\limits_R \frac{|u|^{p_3}}{N_{u0}^{p_3}N_{u1}^{p_3/p_1}(x_1)N_{u2}^{p_3/p_2}(x_1,x_2)}\,dx_3=1,\quad \int\limits_R N_{u2}(x_1,x_2)\,dx_2=1.$$

Кроме этого в силу равенства $\|v\|_{\overline{p}} = 1$ имеем

$$\int\limits_{R} N_{u1}(x_1)\,dx_1 = \int\limits_{R} B_v(x_1)\,dx_1 = 1.$$

Покажем единственность такого разложения. Пусть выполнены равенства (5.3)–(5.5). Для каждого фиксированного $x_1 \in R$ рассмотрим функцию $w=u/N_{u0}$ и равенства (5.4), (5.5). Из единственности разложения нормы для размерности 2 следует, что

$$N_{u1}(x_1) = N_{w0} = \|w^{p_1}\|_{\frac{p_2}{p_1}, \frac{p_3}{p_1}}, \quad N_{u2}(x_1, x_2) = N_{w1}(x_2).$$

Из (5.3) следует $J_{\overline{p}}(u/N_{u0})=1$ и $\|u\|_{\overline{p}}=N_{u0}$. Но тогда и $N_{u1},\,N_{u2}$ определяются однозначно для любого $x_1\in R$ как элементы разложения нормы однозначно определенной функции w.

Далее действуем индуктивным образом.

Ниже нам понадобится одна полезная лемма с оценкой разложения нормы.

Лемма 5.3. Пусть $u(\overline{x}) \in L_{\overline{p}}(R^n)$, и пусть для некоторых $M_0 > 0$, $M_k(\overline{z}_k) \ge 0$, $k = \overline{1, n-1}$, выполнены неравенства

$$u(\overline{x})=0, \quad ext{ecли} \ \prod_{k=1}^{n-1} M_k(\overline{z}_k)=0, \quad J_0(\overline{z}_{n-1})=\int\limits_R rac{|u|^{p_n}}{M_0^{p_n}\prod\limits_{k=1}^{n-1} M_k^{p_n/p_k}(\overline{z}_k)} dx_n \leq 1,$$

$$J_1 = \int\limits_{\mathcal{D}} M_1(x_1) \, dx_1 \leq 1, \quad J_k(\overline{z}_{k-1}) = \int\limits_{\mathcal{D}} M_k(\overline{z}_k) \, dx_k \leq 1, \quad k = \overline{2, n-1}.$$

Tогда $||u||_{\overline{p}} \leq M_0$.

Доказательство. Положим

$$v(\overline{x})=rac{u(\overline{x})}{J_0^{1/p_n}(\overline{z}_{n-1})J_1^{1/p_1}\prod\limits_{k=2}^{n-1}J_k^{1/p_k}(\overline{z}_{k-1})},$$
 если $u(\overline{x})
eq 0,$

$$\widetilde{M}_1(x_1)=rac{M_1(x_1)}{J_1},$$

$$\widetilde{M}_k(\overline{z}_k)=rac{M_k(\overline{z}_k)}{J_k(\overline{z}_{k-1})}, \quad ext{если } J_k(\overline{z}_{k-1})
eq 0, \quad k=\overline{2,n-1}.$$

Тогда при условии $\prod\limits_{k=1}^{n-1} M_k(\overline{z}_k) \neq 0$ имеет место равенство

$$\int_{R} \frac{|v|^{p_{n}}}{M_{0}^{p_{n}} \prod_{k=1}^{n-1} \widetilde{M}_{k}^{p_{n}/p_{k}}} dx_{n} = 1$$

и для функций $\widetilde{M}_k(\overline{z}_k)$ выполнены соотношения (5.3), (5.4). Из единственности разложения нормы следует, что $\|v\|_{\overline{p}}=M_0$. При этом, очевидно, $v(\overline{x})\geq u(\overline{x})$ для п.в. $\overline{x}\in R^n$. По лемме 5.1 $\|u\|_{\overline{p}}\leq M_0$. \square

Теорема 5.1. Пусть $\varepsilon > 0$. Найдется константа $C(\varepsilon)$ такая, что для любых $u(\overline{x}), v(\overline{x}) \in L_{\overline{\nu}}(R^n)$ имеет место неравенство

$$||u+v||_{\overline{p}} \le (1+\varepsilon)||u||_{\overline{p}} + C(\varepsilon)||v||_{\overline{p}}.$$

В частности, функционал $\|\cdot\|_{\overline{p}}$ задает квазинорму.

Доказательство. Пусть $u(t,x),v(t,x)\in L_{\overline{p}}(R^n)$. Пусть $Z,\delta,\gamma>0$. Рассмотрим разложения нормы $N_{uk},\ N_{vk},$ и положим

$$M_0 = (1 + \varepsilon)N_{u0} + ZN_{v0}, \quad M_k = (1 - \delta)N_{uk} + \delta N_{vk}, \quad k = \overline{1, n - 1}.$$

Несложно убедиться, что для некоторой константы $C(\gamma) > 0$

$$|u+v|^{p_n} \le (1+\gamma)^{p_n} |u|^{p_n} + C^{p_n}(\gamma) |v|^{p_n}.$$

Поэтому

$$\frac{|u+v|^{p_n}}{M_0^{p_n}\prod\limits_{k=1}^{n-1}M_k^{p_n/p_k}}\leq \theta^{p_n}\frac{|u|^{p_n}}{N_{u0}^{p_n}\prod\limits_{k=1}^{n-1}N_{uk}^{p_n/p_k}}+\frac{C(\gamma,\delta)|v|^{p_n}}{Z^{p_n}N_{v0}^{p_n}\prod\limits_{k=1}^{n-1}N_{vk}^{p_n/p_k}},$$

где

$$heta = rac{1+\gamma}{(1+arepsilon)\prod\limits_{k=1}^{n-1}(1-\delta)^{1/p_k}}.$$

Выбираем Z, γ, δ так, чтобы $\theta^{p_n} \le \theta_0 < 1$ и $C(\gamma, \delta)/Z^{p_n} \le 1 - \theta_0$. После этого применяем лемму 5.3. \square

Следствие 5.1 (регуляризация разложения нормы). Пусть $u(\overline{x}) \in L_{\overline{p}}(R^n)$, $u(\overline{x}) \not\equiv 0$. Для всякого $\varepsilon > 0$ найдется функция $u_{\varepsilon}(\overline{x}) \in L_{\overline{p}}(R^n)$ такая, что

$$u_{\varepsilon}(\overline{x}) \neq 0, \ \overline{x} \in \mathbb{R}^n, \quad |u_{\varepsilon}(\overline{x}) - u(\overline{x})| \leq \varepsilon, \ \overline{x} \in \mathbb{R}^n, \quad |u_{\varepsilon}||_{L_{\overline{x}}(\mathbb{R}^n)} \leq ||u||_{L_{\overline{x}}(\mathbb{R}^n)} + \varepsilon.$$

Доказательство. Пусть $\delta > 0$. Рассмотрим функцию

$$v(\overline{x}) = \left\{ egin{array}{ll} u(\overline{x}) + \mathrm{sign}(u(\overline{x})) \delta e^{-|\overline{x}|^2}, & u(\overline{x})
eq 0, \ \delta e^{-|\overline{x}|^2}, & u(\overline{x}) = 0. \end{array}
ight.$$

После этого устремляем $\delta \to 0$ и применяем теорему 5.1. \square

С помощью данного следствия в дальнейшем можно отказаться от всех оговорок при использовании разложения нормы.

6. Мультипликативное неравенство

Для пространств с постоянным показателем хорошо известен следующий факт. Если $u\in L_p(\Omega)$ и $u\in L_q(\Omega)$, то $u\in L_r(\Omega)$, где

$$\frac{1}{r} = \frac{\theta}{p} + \frac{1-\theta}{q},$$

причем

$$||u||_r \le ||u||_p^{\theta} ||u||_q^{1-\theta}.$$

Оказывается, что для описанных выше пространств применима интерполяция нескольких пространств $L_{\overline{p}_j}(R^n)$, $j=\overline{1,m}$, с поточечными множителями $\theta_j(\overline{x})$. Исключительно для простоты изложения ниже рассматриваем случай m=2.

Теорема 6.1. Пусть заданы два допустимых показателя $p(\overline{x}), q(\overline{x})$ и две измеримых функции $0 \le \theta_p(\overline{x}), \theta_q(\overline{x}) \le 1$, причем

$$\theta_p(\overline{x}) + \theta_q(\overline{x}) = 1.$$

Определим допустимый показатель $\overline{r}(\overline{x})$ следующим образом:

$$\frac{1}{r_k} = \frac{\theta_p}{p_k} + \frac{\theta_q}{q_k}, \quad k = \overline{1, n}. \tag{5.6}$$

 Π усть $u(\overline{x})\in L_{\overline{p}}(R^n),\,v(\overline{x})\in L_{\overline{q}}(R^n)$ и их квазинормы равны $\overline{U},\,\overline{V}$ соответственно. Обозначим

$$w(\overline{x}) = |u|^{\theta_p} |v|^{\theta_q}.$$

Тогда

$$||w||_{\overline{r}} \le C \operatorname{ess\,sup}_{R^n} |\overline{U}|^{\theta_p} |\overline{V}|^{\theta_q}.$$

ДОКАЗАТЕЛЬСТВО. Для оценки $||w||_{\overline{r}}$ применим лемму 5.3. Рассмотрим разложения нормы N_{uk}, N_{vk} и для $k = \overline{1, n-1}$ положим

$$M_k(\overline{z}_k) = \frac{1}{2} \underset{(x_{k+1}, \dots, x_n) \in R^{n-k}}{\operatorname{ess \, sup}} N_{uk}^{\frac{\theta_p r_k}{p_k}} N_{vk}^{\frac{\theta_q r_k}{q_k}}.$$

В силу (5.6) можно применять неравенства Юнга

$$\int\limits_{R} M_k(\overline{z}_k) \, dx_k \le 1.$$

Для k=0 полагаем

$$M_0 = 2^{\gamma} \operatorname{ess\,sup}_{R^n} N_{u0}^{ heta_p} N_{v0}^{ heta_q}, \quad \gamma \geq \left(\sum_{k=1}^n rac{1}{r_k}
ight)_{\perp}.$$

Тогда

$$\frac{w^{r_n}}{M_0^{r_n}\prod\limits_{k=1}^{n-1}M_k^{r_n/r_k}}\leq \frac{1}{2}\Bigg(\frac{u^{p_n}}{N_{u0}^{p_n}\prod\limits_{k=1}^{n-1}N_{uk}^{p_n/p_k}}\Bigg)^{\frac{\theta_pr_n}{p_n}}\Bigg(\frac{v^{q_n}}{N_{v0}^{q_n}\prod\limits_{k=1}^{n-1}N_{vk}^{q_n/q_k}}\Bigg)^{\frac{\theta_qr_n}{q_n}}.$$

Снова используем неравенство Юнга:

$$\int_{R} \frac{w^{r_n}}{M_0^{r_n} \prod_{k=1}^{n-1} M_k^{r_n/r_k}} dx_n \le 1.$$

Осталось применить лемму 5.3. \square

7. Сравнение перестановочных квазинорм в многомерном случае

Как и в двумерном случае, возникает вопрос о сравнении квазинорм, получаемых после перестановки переменных. Оказывается, что и в многомерном случае можно сравнивать квазинормы после перестановки двух соседних переменных при выполнении соответствующего неравенства.

Теорема 7.1. Пусть на R^n задан допустимый показатель $\overline{p}(\overline{x})$. Предположим, что для некоторого k < n для п.в. $\overline{x} \in R^n$ справедливо неравенство $p_k(\overline{x}) \ge p_{k+1}(\overline{x})$. Рассмотрим перестановку переменных $\widetilde{x} = (x_1, \dots, x_{k+1}, x_k, \dots, x_n)$ и показателей $\overline{q} = (p_1, \dots, p_{k+1}, p_k, \dots, p_n)$. Тогда для $u \in L_{\widetilde{x},\overline{q}}(R^n)$ имеет место неравенство

$$||u||_{\overline{x},\overline{p}} \le C||u||_{\widetilde{x},\overline{q}}$$

Доказательство. Далее без потери общности считаем, что $\|u\|_{\overline{x},\overline{p}}=1$. Применяем индукцию по k. Пусть k=1. Для простоты изложения рассмотрим случай n=4. Все характерные черты доказательства будут видны и в этом случае. Рассмотрим разложение квазинормы $\|u\|_{\overline{x},\overline{p}}$: $N_1(x_1),\ N_2(x_1,x_2),\ N_3(x_1,x_2,x_3)$. Вместе с ним рассматриваем разложение квазинормы $\|u\|_{\widetilde{x},\overline{q}}$: $M_0,\ M_1(x_2),\ M_2(x_2,x_1),\ M_3(x_2,x_1,x_3)$. Обозначим

$$U = |u|^{p_4} \prod_{k=1}^3 N_k^{1-p_4/p_k}.$$

Из (5.3)–(5.5) следует равенство

$$\int\limits_{B^4} U\,d\overline{x}=1.$$

Пусть $0 < s < \min((p_1)_-, (p_2)_-, (p_3)_-, (p_4)_-)$. Имеет место равенство $U = U_N U_M D_3 D_{12}$, где

$$U_N = rac{|u|^{p_4-s}}{\displaystyle\prod_{k=1}^3 N_k^{(p_4-s)/p_k}}, \quad U_M = rac{|u|^s}{M_0^s M_1^{s/p_2} M_2^{s/p_1} M_3^{s/p_3}},$$

$$D_3 = M_3^{s/p_3} N_3^{1-s/p3}, \quad D_{12} = N_1 N_2 \left(rac{M_0 M_1^{1/p_2} M_2^{1/p_1}}{N_1^{1/p_1} N_2^{1/p_2}}
ight)^s.$$

Фиксируем некоторое $\varepsilon>0$. Учитывая определение s, с помощью неравенства Юнга легко получаем

$$U_N U_M \leq rac{|u|^{p_4}}{\prod\limits_{k=1}^3 N_k^{p_4/p_k}} + rac{|u|^{p_4}}{M_0^{p_4} M_1^{p_4/p_2} M_2^{p_4/p_1} M_3^{p_4/p_3}},$$

$$D_3 \le M_3 + N_3,$$

$$D_{12} \leq N_1 N_2 \bigg(\varepsilon + C(\varepsilon) \bigg(\frac{M_0 M_1^{1/p_2} M_2^{1/p_1}}{N_1^{1/p_1} N_2^{1/p_2}} \bigg)^{p_2} \bigg).$$

По условию $p_2(\overline{x}) \leq p_1(\overline{x})$. В последнем неравенстве снова можно применить неравенство Юнга

$$D_{12} \leq \varepsilon N_1 N_2 + C(\varepsilon) M_0^{p_2} M_1 M_2^{p_2/p_1} N_1^{1-p_2/p_1} \leq \varepsilon N_1 N_2 + C(\varepsilon) M_0^{p_2} M_1 (M_2 + N_1).$$

Заметим, что $M_1(x_2)$ не зависит от x_1 и

$$\int\limits_{\Omega} \left(M_2(x_2,x_1) + N_1(x_1)
ight) dx_1 = 2.$$

Поэтому

$$1 = \int\limits_{R^4} U \, d\overline{x} \leq 4\varepsilon + 8C(\varepsilon) \max \bigl(M_0^{(p_2)_+}, M_0^{(p_2)_-} \bigr).$$

Выбираем $\varepsilon < 1/4$ и получаем $\|u\|_{\widetilde{x},\overline{q}} = M_0 \ge C$. Итак, в случае k=1 требуемое утверждение доказано.

Пусть утверждение теоремы справедливо для $k=k_0$. Рассмотрим случай $k=k_0+1$. В этом случае перестановка не меняет первый показатель p_1 . По определению

$$1 = \|u\|_{\overline{x},\overline{p}} = \int\limits_{R} \||u|^{p_1}\|_{(x_2,...,x_n),(p_2/p_1,...,p_n/p_1)} \, dx_1.$$

К квазинорме под интегралом можно применить индуктивное предположение и получить неравенство $J_{\widetilde{x},\overline{q}}(u) \geq C$. Для доказательства теоремы осталось только применить многомерный аналог леммы 3.3. \square

8. Случай $\overline{p} \in \mathscr{P}_1$

В этом разделе, особо не оговаривая, считаем, что $p_k \in \mathscr{P}_1, k = \overline{1,n}$. В этом случае определены сопряженные показатели $p_k' \in \mathscr{P}_1$. Далее будем обозначать $\overline{p}' = (p_1', \dots, p_n')$.

Лемма 8.1 (неравенство Гёльдера для квазинормы). *Если* $u \in L_{\overline{p}}(R^n)$ и $v \in L_{\overline{p}'}(R^n)$, то

$$\int\limits_{Bn} |uv| \, dx \le C_{\overline{p},\overline{p}'} ||u||_{\overline{p}} ||v||_{\overline{p}'},$$

где

$$C_{\overline{p},\overline{p}'} = \prod_{k=1}^n \left(rac{1}{(p_k)_-} + rac{1}{(p_k')_-}
ight).$$

Доказательство. Рассмотрим разложения норм N_{uk} и $N_{vk}, k=\overline{0,n-1}.$ Очевидным образом

$$Z = \frac{|uv|}{N_{u0}N_{v0}} = \left(\frac{|u|}{N_{u0}\prod\limits_{k=1}^{n-1}N_{uk}^{1/p_k}}\frac{|v|}{N_{v0}\prod\limits_{k=1}^{n-1}N_{vk}^{1/p_k'}}\right)\prod\limits_{k=1}^{n-1} \left(N_{uk}^{1/p_k}N_{vk}^{1/p_k'}\right).$$

К каждой паре в скобках применяем неравенство Юнга:

$$Z \leq \left(\frac{|u|^{p_n}}{(p_n)_- N_{u0}^{p_n} \prod_{k=1}^{n-1} N_{uk}^{p_n/p_k}} + \frac{|v|^{p'_n}}{(p'_n)_- N_{v0}^{p'_n} \prod_{k=1}^{n-1} N_{vk}^{p'_n/p'_k}}\right) \prod_{k=1}^{n-1} \left(\frac{N_{uk}}{(p_k)_-} + \frac{N_{vk}}{(p'_k)_-}\right).$$

Осталось применить равенства (5.3)–(5.5).

Лемма 8.2. Пусть $u \in L_{\overline{p}}(\mathbb{R}^n)$ и $||u||_{\overline{p}} = 1$. Обозначим

$$v(t,x) = |u|^{p_n-1} \prod_{k=1}^n N_{uk}^{1-p_n/p_k}.$$

Тогда $\|v\|_{\overline{p}'}=1$ и $N_{vk}(\overline{z}_k)=N_{uk}(\overline{z}_k)$ для $k=\overline{1,n-1}$. Кроме этого

$$\int_{Bn} uv \, dx = 1.$$

Доказательство. Легко видеть, что

$$\frac{|v|p'_n}{\prod\limits_{k=1}^{n-1}N_{uk}^{p'_n/p'_k}} = |u|^{p_n} \prod_{k=1}^{n-1} \frac{N_{uk}^{\frac{(p_k-p_n)}{p_k}\frac{p_n}{(p_n-1)}}}{N_{uk}^{\frac{p_n}{(p_n-1)}\frac{(p_k-1)}{p_k}}} = \frac{|u|^{p_n}}{\prod\limits_{k=1}^{n-1}N_{uk}^{p_n/p_k}}.$$

В силу единственности разложения нормы получаем первое утверждение леммы. При этом в силу (5.3)–(5.5)

$$\int_{R^n} uv \, dx = \int_{R^n} \left(\prod_{k=1}^{n-1} N_{uk} \right) \frac{|u|^{p_n}}{\prod_{k=1}^{n-1} N_{uk}^{p_n/p_k}} \, dx = 1. \quad \Box$$

Определим норму в пространстве $L_{\overline{p}}(\mathbb{R}^n)$. Обозначим

$$U_1 = \{u(t, x) : ||u||_{\overline{p}} \le 1\}.$$

Если это множество выпуклое, то функционал $\|\cdot\|_{\overline{p}}$ удовлетворяет неравенству треугольника, а значит, является нормой. В общем случае рассматриваем выпуклое уравновешенное множество $\widetilde{U}_1=\operatorname{conv} U_1$, которое порождает некоторую полунорму. Оказывается, что на самом деле будет порождаться норма, эквивалентная квазинорме $\|\cdot\|_{\overline{p}}$. Отметим, что с технической точки зрения проще использовать множество \widetilde{U}_1 в неявном виде.

Пусть $u(\overline{x})\in L_{\overline{p}}(R^n)$. Рассмотрим всевозможные разложения u в конечную сумму $u(\overline{x})=\sum_k u_k(\overline{x})$ и положим

$$\Phi_{\overline{p}}(u) = \inf_{\sum_{k} u_k = u} \sum_{k} \|u_k\|_{\overline{p}}.$$
 (5.7)

Легко видеть, что функционал $\Phi_{\overline{p}}$ однородный и для него справедливо неравенство треугольника, так что этот функционал задает некоторую полунорму. Отметим между прочим, что из определения (5.7) тривиально следует неравенство $\Phi_{\overline{p}}(u) \leq \|u\|_{\overline{p}}$.

Лемма 8.3 (неравенство Гёльдера для нормы). *Если* $u(\overline{x}) \in L_{\overline{p}}(R^n)$ и $v(\overline{x}) \in L_{\overline{p}'}(R^n)$, то

$$J = \int\limits_{R^n} |uv| \, dx \le C_{\overline{p}, \overline{p}'} \Phi_{\overline{p}}(u) \Phi_{\overline{p}'}(v)$$

c константой $C_{\overline{p},\overline{p}'}$ из леммы 8.1.

Доказательство. Пусть

$$u = \sum_{k} u_k, \quad v = \sum_{j} v_j.$$

Тогда по лемме 8.1

$$J \leq C_{\overline{p},\overline{p}'} \sum_{k,j} \|u_k\|_{\overline{p}} \|v_j\|_{\overline{p}'} = C_{\overline{p},\overline{p}'} \Big(\sum_k \|u_k\|_{\overline{p}} \Big) \Big(\sum_j \|v_j\|_{\overline{p}'} \Big). \quad \Box$$

Теорема 8.1. Функционал $\Phi_{\overline{p}}$ задает норму на пространстве $L_{\overline{p}}(R^n)$, причем

$$\frac{1}{C_{\overline{p},\overline{p}'}} \|u\|_{\overline{p}} \le \Phi_{\overline{p}}(u) \le \|u\|_{\overline{p}}$$

c константой $C_{\overline{p},\overline{p}'}$ из леммы 8.1.

Доказательство. Как отмечалось ранее, правая часть требуемого неравенства тривиально следует из определения $\Phi_{\overline{p}}$. Пусть $\|u\|_{\overline{p}}=1$. По лемме 8.2 найдется функция $v(t,x)\in L_{\overline{p'}}(R^n)$ такая, что $\|v\|_{\overline{p'}}=1$ и

$$\int_{R^n} uv \, dx = 1.$$

Следовательно, $\Phi_{\overline{p}'}(v) \leq \|v\|_{\overline{p}'} = 1$, и по лемме 8.3

$$1 \le C_{\overline{p},\overline{p}'}\Phi_{\overline{p}}(u)\Phi_{\overline{p}'}(v) \le C_{\overline{p},\overline{p}'}\Phi_{\overline{p}}(u). \quad \Box$$

Из доказанной теоремы следует, что квазинорма $\|\cdot\|_{\overline{p}}$ эквивалентна некоторой норме, задаваемой функционалом $\Phi_{\overline{p}}(\cdot)$.

Замечание 8.1. Есть все основания считать, что пространство $L_{\overline{p}}(R^n)$ полное и рефлексивное, а $L_{\overline{p}'}(R^n)$ — его сопряженное. Но здесь эти факты не понадобятся, и эти вопросы не рассматриваются.

9. Теорема вложения

В качестве приложения установленных результатов докажем одну теорему вложения. Для простоты рассмотрим лишь двумерный случай.

Лемма 9.1. Пусть $p(y)\in \mathscr{P}_1(R),\ 0<\nu_-\le \nu(y)\le \nu_+<1,\ p_+\nu_+<1.$ Обозначим

$$\frac{1}{p_{
u}(y)} = \frac{1}{p(y)} - \nu(y).$$

Пусть $u(x,y), \partial_x^{\nu(y)}(x,y) \in L_p(\mathbb{R}^2)$. Тогда

$$||u||_{(x,y),(p_{\nu},p)} + ||u||_{(y,x),(p,p_{\nu})} \le C(||u||_p + ||\partial_x^{\nu(y)}u||_p).$$

Доказательство. Как и ранее, без потери общности считаем, что

$$\left\|u
ight\|_p + \left\|\partial_x^{
u(y)} u
ight\|_p = 1.$$

Согласно известной теореме Харди — Литтлвуда (см., например, [1, теорема 9]) для $y \in R$

$$||u(\cdot,y)||_{x,p_{\nu}} \le C(||u(\cdot,y)||_{x,p} + ||\partial_x^{\nu(y)}u(\cdot,y)||_{x,p}).$$

Но тогда (коль скоро p(y) не зависит от x)

$$||u^p(\cdot,y)||_{x,p_{\nu}/p} \le C(||u(\cdot,y)||_{x,p} + ||\partial_x^{\nu(y)}u(\cdot,y)||_{x,p})^p,$$

$$J_{(y,x),(p,p_{\nu})}(u) \le C(J_{(y,x),(p,p)}(u) + J_{(y,x),(p,p)}(\partial_x^{\nu(y)}u)) \le C.$$

По лемме 3.3

$$||u||_{(y,x),(p,p_{\nu})}(u) \leq C.$$

Очевидным образом $p < p_{\nu}$. Тогда по теореме 4.1

$$||u||_{(x,y),(p_{y},p)}(u) \leq C.$$

Теорема 9.1. Пусть $0<\nu_-\le\nu(y)\le\nu_+<1,\ 0<\mu_-\le\mu(x)\le\mu_+<1,$ $p(y)\in\mathscr{P}_1(R),\ q(x)\in\mathscr{P}_1(R),\$ причем $\nu_+p_+<1$ и $\mu_+q_+<1.$ Предположим, что

$$u, \partial_x^{\nu(y)} u \in L_p(R^2), \quad u, \partial_y^{\mu(x)} u \in L_q(R^2).$$

Пусть $0 \le \theta(x,y) \le 1$. Тогда

$$u(x,y) \in L_{(x,y),(s,r)}(R^2) \cap L_{(y,x),(r,s)}(R^2),$$

где

$$\left(\frac{1}{s},\frac{1}{r}\right) = \theta\left(\frac{1}{p} - \nu,\frac{1}{q}\right) + (1-\theta)\left(\frac{1}{p},\frac{1}{q} - \mu\right).$$

B частности (см. [2, теорема 2]),

$$u(x,y) \in L_{r^*(x,y)}(R^2),$$

где

$$1 = rac{1}{p
u} + rac{1}{q\mu} - \left(rac{1}{\mu} + rac{1}{
u}
ight)rac{1}{r^*}.$$

Доказательство. Обозначим

$$\frac{1}{p_{\nu}(y)} = \frac{1}{p(y)} - \nu(y), \quad \frac{1}{q_{\mu}(x)} = \frac{1}{q(x)} - \mu(x).$$

По лемме 9.1

$$\|u\|_{(x,y),(p_{\nu},p)} \leq C \big(\|u\|_p + \big\|\partial_x^{\nu(y)}u\big\|_p\big), \quad \|u\|_{(x,y),(q,q_{\mu})} \leq C \big(\|u\|_q + \big\|\partial_y^{\mu(x)}u\big\|_q\big).$$

После этого применяем теорему 6.1. В частном случае, когда $\theta=\frac{\mu}{\mu+\nu}$, имеем $s=r=r^*$. \square

Замечание 9.1. Случай $p_+\nu_+\geq 1$ или $q_+\mu_+\geq 1$ тоже поддается исследованию, хотя и существенно сложнее. Вместо леммы 9.1 приходится использовать дополнительные мультипликативные неравенства, которые здесь не приведены. В конечном итоге в докритическом случае $r_+^*<\infty$ утверждение теоремы 9.1 остается в силе при условии \log -Гёльдер непрерывности всех показателей. Как отмечено выше, такой результат частично решает проблему из [5] в случае p=p(y) и q=q(x). Самый общий случай p(x,y) и q(x,y) рассмотреть не удается даже при условиях теоремы 9.1. Более того, для таких показателей утверждение леммы 9.1, по-видимому, неверно.

ЛИТЕРАТУРА

- 1. Лизоркин П. И. Обобщенное лиувиллевское дифференцирование и функциональные пространства $L_p^r(E^n)$. Теоремы вложения // Мат. сб. 1963. Т. 60, № 3. С. 325–353.
- 2. Лизоркин П. И. Неизотропные бесселевы потенциалы. Теоремы вложения для пространства Соболева $L_p^{(r_1,\dots,r_n)}$ с дробными производными // Докл. АН СССР. 1966. Т. 170, № 3. С. 508–511.
- 3. Карапетян Γ . А. Дробные мультианизотропные пространства и теоремы вложения для них // Мат. тр. 2019. Т. 22, № 2. С. 76–89.
- Бандалиев Р. А. Об одном неравенстве в пространстве Лебега со смешанной нормой и с переменным показателем суммируемости // Мат. заметки. 2008. Т. 84, № 3. С. 323–333.
- Eddine N. C., Ragusa M. A., Repovš D. D. On the concentration-compactness principle for anisotropic variable exponent Sobolev spaces and its applications. // Fract. Calc. Appl. Anal. 2024. V. 27. P. 725–756.

- Diening L., Harjulehto P., Hästö P., Rùžička M. Lebesgue and Sobolev spaces with variable exponents. Berlin: Springer-Verl., 2011.
- 7. Almeida A., Hästö P. Besov spaces with variable smoothness and integrability // J. Funct. Anal. 2010. V. 258, N 5. P. 1628–1655.
- 8. Трибель Х. Теория функциональных пространств. М.: Мир, 1986.
- 9. Бандалиев Р. А. Письмо в редакцию // Мат. заметки. 2016. Т. 99, № 2. С. 319–320.

Поступила в редакцию 5 декабря 2024 г. После доработки 5 декабря 2024 г. Принята к публикации 25 декабря 2024 г.

Артюшин Александр Николаевич Новосибирский государственный университет, ул. Пирогова, 1, Новосибирск 630090 alexsp3@yandex.ru