ДОПОЛНЕНИЕ К ТЕОРЕМЕ ПОНТРЯГИНА — ШНИРЕЛЬМАНА А. В. Иванов

Аннотация. Нижняя емкостная размерность метрического компакта X впервые была рассмотрена в работе Л. С. Понтрягина и Л. Г. Шнирельмана 1932 г., где было доказано, что величина нижней емкостной размерности всегда не меньше топологической размерности X и на любом метризуемом компакте существует метрика, для которой нижняя емкостная размерность равна топологической размерности. В настоящей статье доказано, что для любого бесконечного метризуемого компакта X и любого числа b, больше либо равного топологической размерности X (включая бесконечность), на X существует совместимая с топологией метрика, для которой нижняя емкостная размерность X равна b.

 $DOI\,10.33048/smzh.2025.66.104$

Ключевые слова: метрический компакт, емкостная размерность, теорема Понтрягина — Шнирельмана.

Нижняя емкостная размерность $\underline{\dim}_B$ метрического компакта (X, ρ) впервые рассмотрена (по названием «метрический порядок») в работе Л. С. Понтрягина и Л. Г. Шнирельмана [1], где была доказана следующая фундаментальная теорема.

Теорема 1 [1]. Топологическая размерность $\dim X$ метризуемого компакта X совпадает c точной нижней гранью нижних емкостных размерностей этого компакта по всем метрикам, совместимым c топологией X.

При этом в работе [1] фактически было установлено, что на X всегда существует метрика ρ , для которой $\dim_B(X,\rho)=\dim X$. Основным результатом настоящей статьи является теорема, утверждающая, что для любого бесконечного метризуемого компакта X и любого числа b такого, что $\dim X \leq b \leq \infty$, на X существует совместимая с топологией метрика ρ , для которой $\dim_B(X,\rho)=b$.

Напомним необходимые определения. Пусть (X, ρ) — метрический компакт. Будем использовать следующие обозначения:

$$O(x, \varepsilon, \rho) = \{ y \in X : \rho(x, y) < \varepsilon \}, \quad B(x, \varepsilon, \rho) = \{ y \in X : \rho(x, y) \le \varepsilon \},$$

где $x\in X$ и $\varepsilon>0$. Через $N(X,\varepsilon,\rho)$ обозначим наименьшее число точек в ε -сетях X. Нижняя емкостная размерность компакта (X,ρ) определяется по формуле

$$\underline{\dim}_B(X,\rho) = \underline{\lim}_{\varepsilon \to 0} \frac{\log N(X,\varepsilon,\rho)}{-\log \varepsilon}.$$

Финансовое обеспечение исследования осуществлялось из средств федерального бюджета на выполнение государственного задания КарНЦ РАН (Институт прикладных математических исследований КарНЦ РАН).

Теория емкостных размерностей изложена в [2, гл. 2].

Нам будет удобно модифицировать данное выше определение $\underline{\dim}_B(X,\rho)$. Подмножество $A\subset X$ назовем ε -разреженным (для $\varepsilon>0$), если $\rho(x,y)\geq \varepsilon$ для любых двух различных точек $x,y\in X$. Через $K(X,\varepsilon,\rho)$ обозначим наибольшее число точек в ε -разреженных подмножествах X. Если A — максимальное (по включению) ε -разреженное подмножество X, то A — ε -сеть. Следовательно,

$$K(X, \varepsilon, \rho) \ge N(X, \varepsilon, \rho).$$
 (1)

Покажем, что

$$K(X, \varepsilon, \rho) < N(X, \varepsilon/3, \rho).$$
 (2)

Пусть $B-\varepsilon/3$ -сеть в $X,\,|B|=N(X,\varepsilon/3,\rho),$ и $A-\varepsilon$ -разреженное подмножество $X,\,|A|=K(X,\varepsilon,\rho).$ Для любой точки $x\in A$ пересечение $O(x,\varepsilon/2,\rho)\cap B$ непусто. При этом окрестности $O(x,\varepsilon/2,\rho)$ и $O(y,\varepsilon/2,\rho)$ не пересекаются для двух различных точек $x,y\in A.$ Следовательно, $|A|\leq |B|,$ что и требовалось. Из неравенств (1) и (2) следует

Предложение 1. Для любого метрического компакта (X, ρ)

$$\underline{\dim}_B(X,\rho) = \underline{\lim}_{\varepsilon \to 0} \frac{\log K(X,\varepsilon,\rho)}{-\log \varepsilon}.$$

Справедливо также следующее

Предложение 2. Если последовательность $\varepsilon_k>0$ монотонно ($\varepsilon_k\geq \varepsilon_{k+1}$) сходится к 0 и $\lim_{k\to\infty}\frac{\log \varepsilon_{k+1}}{\log \varepsilon_k}=1$, то

$$\underline{\dim}_B(X,\rho) = \underline{\lim_{k \to \infty}} \, \frac{\log K(X,\varepsilon_k,\rho)}{-\log \varepsilon_k}.$$

Доказательство этого предложения аналогично доказательству предложения 1 из [3].

В дальнейшем неоднократно будем рассматривать произведения метрических компактов $(X_1, \rho_1), \ldots, (X_n, \rho_n)$ (в частности отрезков числовой прямой) и при этом всегда будем предполагать, что на $\prod\limits_{i=1}^n X_i$ задана тах-метрика ρ^{\max} по формуле

$$\rho^{\max}(x, y) = \max\{\rho_i(x_i, y_i) : i = 1, \dots, n\},$$

где x_i, y_i-i -е координаты точек $x,y\in\prod_{i=1}^n X_i$. Известно, что метрика ρ^{\max} согласована с топологией произведения.

Аналогично можно ввести метрику ρ^{\max} на счетном произведении $\prod\limits_{i\in\mathbb{N}}X_i$ метрических компактов $(X_i,\rho_i),\,i\in\mathbb{N}$:

$$\rho^{\max}(x,y) = \max\{\rho_i(x_i,y_i) : i \in \mathbb{N}\},\$$

при условии, что $\operatorname{diam}(X_i) \to 0$ при $i \to \infty$. Легко проверить, что в этом случае метрика ρ^{\max} согласована с топологией тихоновского произведения.

Теорема 2. Для любого бесконечного метризуемого компакта X и любого числа $b \in [\dim X, \infty]$ существует метрика ρ на X такая, что $\underline{\dim}_B(X, \rho) = b$.

Доказательство. Пусть $\dim X = n$. В [1] построено вложение $f_0: X \to$ Q_0 компакта X в (2n+1)-мерный куб $Q_0 = [0,1]^{2n+1}$, при котором тах-метрика на Q_0 определяет метрику ρ_0 на X, удовлетворяющую условию $\underline{\dim}_B(X,\rho_0)=n$.

Пусть b > n. Поскольку $\underline{\dim}_B(X, \rho_0) < b$, существует $\varepsilon_1 > 0$ такое, что

$$K(X, \varepsilon_1, \rho_0) < [(1/\varepsilon_1)^b]$$

(квадратные скобки обозначают здесь целую часть числа).

Положим

$$\varepsilon_i = \frac{\varepsilon_1}{2^{i-1}}.$$

Пусть $k_1 = [(1/\varepsilon_1)^b]$. Покажем, что на X можно ввести метрику ρ_1 так, что для любых $x, y \in X$

- 1) $\rho_0(x,y) \le \rho_1(x,y)$,
- 2) $\rho_1(x,y) \rho_0(x,y) \le \varepsilon_1$,
- 3) существует число p > 0 такое, что $\rho_1(x, y) \le p\rho_0(x, y)$,
- 4) $K(X, \varepsilon_1, \rho_1) = k_1$.

Фиксируем ε_1 -разреженное подмножество $A\subset X$, для которого

$$|A| = K(X, \varepsilon_1, \rho_0) = m_1 < k_1.$$

Пусть $z \notin A$ и $r = \min\{\rho_0(z,A), \varepsilon_1/2\}$. Определим функцию $f_1^1: X \to [0,\varepsilon_1]$ по формуле

$$f_1^1(x)=0 \quad \text{при } x\not\in O(z,r,\rho_0),$$

$$f_1^1(x)=(r-\rho_0(x,z))\varepsilon_1/r \quad \text{при } x\in B(z,r,\rho_0).$$

Легко проверить, что функция f_1^1 непрерывна и $f_1^1(z)=\varepsilon_1$. Положим $g_1^1=f_0\Delta f_1^1:X\to Q_0\times[0,\varepsilon_1]$, где $f_0\Delta f_1^1$ — диагональное произведение отображений, действующее по формуле

$$f_0 \Delta f_1^1(x) = (f_0(x), f_1^1(x)).$$

Отображение g_1^1 инъективно, следовательно, g_1^1 определяет вложение X в $Q_0 \times$ $[0, \varepsilon_1]$. На произведении $Q_0 \times [0, \varepsilon_1]$ задана тах-метрика, ограничение которой на X обозначим через ρ_1^1 . Очевидно, что

$$\rho_1^1(x,y) = \max\{\rho_0(x,y), |f_1^1(x) - f_1^1(y)|\}. \tag{3}$$

(Здесь и далее точки $x \in X$ отождествляются с их образами при вложениях $f_0, \ g_1^1$ и др. Заметим, что при таком отождествлении ограничение проекции $Q_0 \times [0, \varepsilon_1] \to Q_0$ на X совпадает с тождественным отображением X.)

В силу выбора отображения f_1^1 для любых двух точек $x,y\in X\setminus O(z,r,\rho_0)$ будет $\rho_1^1(x,y) = \rho_0(x,y)$ и $\rho_1^1(z,a) \ge \varepsilon_1$ для любого $a \in A$. Следовательно, $A \cup \{z\}$ — ε_1 -разреженное подмножество (X,ρ_1^1) . Таким образом,

$$K(X, \varepsilon_1, \rho_1^1) \geq m_1 + 1.$$

Докажем обратное неравенство. Предположим противное. Пусть $C-\varepsilon_1$ разреженное подмножество (X, ρ_1^1) и $|C| = m_1 + 2$. Поскольку $\rho_1^1(x, y) = \rho_0(x, y)$ для точек $x, y \in X \setminus O(z, r, \rho_0)$, хотя бы две точки $c_1, c_2 \in C$ лежат в $O(z, r, \rho_0)$.

$$\varepsilon_1 \leq \rho_1^1(c_1, c_2) = \max \big\{ \rho_0(c_1, c_2), \big| f_1^1(c_1) - f_1^1(c_2) \big| \big\},$$

где $\rho_0(c_1,c_2) < 2r \le \varepsilon_1$ и $|f_1^1(c_1) - f_1^1(c_2)| < \varepsilon_1$; противоречие.

Итак, $K(X, \varepsilon_1, \rho_1^1) = m_1 + 1$. Покажем, что метрика ρ_1^1 удовлетворяет условия 1–3, если ее рассматривать в качестве ρ_1 . Условия 1 и 2 сразу следуют из формулы (3). Покажем, что

$$\rho_1^1(x,y) \le (\varepsilon_1/r)\rho_0(x,y). \tag{4}$$

Если $x,y\in X\setminus O(z,r,\rho_0)$, то $\rho_1^1(x,y)=\rho_0(x,y)$ и неравенство (4) очевидно. Если же $x\in X\setminus O(z,r,\rho_0)$, $y\in O(z,r,\rho_0)$ и

$$\rho_1^1(x,y) = \max\{\rho_0(x,y), f_1^1(y)\} = f_1^1(y) = (r - \rho_0(y,z))(\varepsilon_1/r),$$

то в силу неравенства треугольника $\rho_0(z,y)+\rho_0(y,x)\geq r$, а значит, $r-\rho_0(y,z)\leq \rho_0(x,y)$ и неравенство (4) выполнено.

Наконец, если $x,y\in O(z,r,\rho_0)$ и $\rho_1^1(x,y)=\left|f_1^1(x)-f_1^1(y)\right|$, то

$$\rho_1^1(x,y) = (\varepsilon_1/r)|\rho_0(x,z) - \rho_0(y,z)| \le (\varepsilon_1/r)\rho_0(x,y)$$

в силу неравенства треугольника. Проверка неравенства (4) выполнена.

На этом завершен первый шаг индуктивного построения метрики ρ_1 . Если $m_1+1=k_1$, то метрика $\rho_1=\rho_1^1$ искомая. Если же $m_1+1< k_1$, то делаем следующий шаг. А именно, по аналогии строим отображение $f_1^2:X\to [0,\varepsilon_1]$ и определяем вложение

$$g_1^2 = g_1^1 \Delta f_1^2 : X \to Q_0 \times [0, \varepsilon_1]^2.$$

На произведении $Q_0 \times [0, \varepsilon_1]^2$ определена тах-метрика, ограничение которой на X обозначим через ρ_1^2 . Повторив рассуждения первого тага, получаем, что

$$K(X, \varepsilon_1, \rho_1^2) = m_1 + 2.$$

Кроме того, для ρ_1^2 выполняются условия 1, 2 и следующее условие:

 $(3_2) \rho_1^2(x,y) \le p_2 \rho_1^1(x,y)$ для некоторой константы $p_2 > 0$.

После выполнения $k_1 - m_1$ таких шагов получим вложение

$$f_1 = g_1^{k_1 - m_1} : X \to Q_0 \times [0, \varepsilon_1]^{k_1 - m_1},$$

которое определит искомую метрику $\rho_1=\rho_1^{k_1-m_1}$ на компакте X. (Условие 3 для метрики ρ_1 будет выполняться для $p=p_1\cdot\ldots\cdot p_{k_1-m_1}.$)

В силу условия 1 для любого $\varepsilon > 0$ имеет место неравенство

$$K(X, \varepsilon, \rho_1) \ge K(X, \varepsilon, \rho_0),$$
 (5)

а в силу 3

$$K(X, \varepsilon, \rho_1) \le K(X, \varepsilon/p, \rho_0).$$
 (6)

Из неравенств (5) и (6) следует, что

$$\underline{\dim}_B(X,\rho_0) = \underline{\dim}_B(X,\rho_1) = n < b.$$

Положим $Q_1=[0,\varepsilon_1]^{k_1-m_1},\ s_1=1.$ На этом первый шаг главного индукционного процесса завершен.

Переходим к второму шагу. Пусть s_2 — наименьшее натуральное число, которое больше s_1 и удовлетворяет условию $K(X,\varepsilon_{s_2},\rho_1)<[(1/\varepsilon_{s_2})^b]$. Поскольку в силу предложений 1 и 2

$$\underline{\dim}_B(X, \rho_1) = \underline{\lim}_{i \to \infty} \frac{\log K(X, \varepsilon_i, \rho_1)}{-\log \varepsilon_i} < b,$$

такое число s_2 существует. Положим $k_2 = [(1/\varepsilon_{s_2})^b], m_2 = K(X, \varepsilon_{s_2}, \rho_1).$

Повторим построения первого шага с увеличением всех индексов на 1 и заменой ε_1 на ε_{s_2} (напомним, что $s_1=1$). В результате получим вложение

$$f_2: X \to Q_0 \times Q_1 \times Q_2$$
,

где $Q_2=[0,arepsilon_{s_2}]^{k_2-m_2}$. На $Q_0 imes Q_1 imes Q_2$ определена тах-метрика, ограничение которой на X задает метрику ρ_2 (как и выше, точки X отождествляем с точками $f_2(X)$).

Продолжая индукцию, на шаге k получим натуральное число $s_k > s_{k-1}$, вложение

$$f_k: X \to \prod_{i=0}^k Q_i$$

и метрику ρ_k на X такие, что

- $1_k) \rho_k(x, y) \ge \rho_i(x, y), i < k, x, y \in X;$
- $2_k) \ \rho_k(x,y) \rho_i(x,y) \leq \varepsilon_{s_{i+1}}, \ i < k, \ x,y \in X;$ $3_k) \ K(X,\varepsilon_i,\rho_{k-1}) > [(1/\varepsilon_i)^b]$ при $i \in (s_{k-1},s_k);$
- $\begin{array}{l} 4_k) \ K(X, \varepsilon_{s_k}, \rho_k) = [(1/\varepsilon_{s_k})^b]; \\ 5_k) \ \underline{\dim}_B(X, \rho_k) = n < b; \end{array}$

$$(6_k)$$
 $\pi_i^k \circ f_k = f_i$ где $\pi_i^k : \prod_{j=0}^k Q_j o \prod_{j=0}^i Q_j$ — проекция, $i < k;$

 7_k) диаметр Q_k (по тах-метрике) равен ε_{s_k} .

В результате индукционного процесса возникает обратный спектр

$$S = \left\{ \prod_{j=0}^{k} Q_j, \pi_i^k : i < k; i, k \in \mathbb{N} \right\},$$

пределом которого является $\prod_{j=0}^{\infty}Q_{j}$. В силу условия 6_{k} семейство вложений

 $f_k:X o\prod^kQ_i,\ k\in\mathbb{N},$ задает отображение компакта X в S, предел которого является вложением

$$f=\lim f_k:X o \lim S=\prod_{j=0}^\infty Q_j.$$

В силу условия 7_k на $\prod\limits_{j=0}^{\infty}Q_j$ определена тах-метрика, ограничение которой на X = f(X) обозначим через ρ .

Покажем, что $\underline{\dim}_{B}(X,\rho) = b$. В силу условия $1_{k} \rho(x,y) \geq \rho_{i}(x,y)$ для любого $i \in \mathbb{N}$ и $x, y \in X$. Отсюда в силу условий 3_k и 4_k следует, что $K(X, \varepsilon_i, \rho) \geq$ $[(1/\varepsilon_i)^b]$ для любого i. Из этого неравенства получаем, что $\underline{\dim}_B(X,\rho) \geq b$.

Докажем обратное неравенство. Для этого достаточно показать, что

$$K(X, 2\varepsilon_{s_k}, \rho) \le [(1/\varepsilon_{s_k})^b],$$
 (7)

поскольку

$$\underline{\dim}_B(X,\rho) \leq \underline{\lim_{k \to \infty}} \, \frac{\log K(X,2\varepsilon_{s_k},\rho)}{-\log \varepsilon_{s_k}}.$$

Пусть $C-2\varepsilon_{s_k}$ -разреженное подмножество (X,ρ) . В силу условия 2_k

$$\rho(x,y) - \rho_k(x,y) \le \varepsilon_{s_{k+1}}.$$

Следовательно, C является ε_{s_k} -разреженным подмножеством (X, ρ_k) . В силу условия 4_k имеем $|C| \leq [(1/\varepsilon_{s_k})^b]$. Неравенство (7) тем самым доказано.

Для завершения доказательства теоремы осталось рассмотреть случай $b=\infty$. Здесь можно использовать схему проведенных выше рассуждений (с некоторой модификацией), но есть и более простой вариант.

Пусть Y — одноточечная компактификация натурального ряда: $Y = \mathbb{N} \cup \{p\}$. Разобьем \mathbb{N} на счетное семейство непересекающихся подмножеств A_i так, что $|A_i| = 2^{i^2}$. Определим на Y метрику ρ' следующим образом:

если
$$x \in A_i$$
, $y \in A_j$ и $i \ge j$, то $\rho'(x,y) = 1/2^j$; если $x \in A_i$, $y = p$, то $\rho'(x,y) = 1/2^i$.

Каждое множество A_i является $(1/2^i)$ -разреженным подмножеством (Y, ρ') . Следовательно,

$$K(X, 1/2^i, \rho') \ge 2^{i^2}$$
.

Таким образом,

$$\underline{\dim}_B(Y, \rho') = \infty.$$

По условию теоремы X является бесконечным компактом. Следовательно, Y топологически вкладывается в X. Согласно теореме Хаусдорфа (см. [4]) метрика ρ' , заданная на Y, может быть продолжена до некоторой метрики ρ на X. Поскольку нижняя емкостная размерность монотонна (см. [2]), получаем, что

$$\dim_{\mathcal{B}}(X,\rho) \geq \dim_{\mathcal{B}}(Y,\rho') = \infty.$$

ЛИТЕРАТУРА

- 1. Pontryagin L., Shnirelman L. On one metric property of dimension // Ann. Math. 1932. V. 33. P. 156–162.
- **2.** *Песин Я.* Б. Теория размерности и динамические системы: современный взгляд и приложения. М.; Ижевск: Институт компьютерных исследований, 2013.
- **3.** Иванов А. В. О размерности квантования вероятностных мер // Мат. сб. 2024. Т. 215, N2 8. С. 41–51.
- 4. $Torunczyk\ H.$ A short proof of Hausdorff's theorem on extending metrics // Fundam. Math. 1973. V. 77. P. 191–193.

Поступила в редакцию 18 ноября 2024 г.

После доработки 18 ноября 2024 г.

Принята к публикации 25 декабря 2024 г.

Иванов Александр Владимирович (ORCID 0000-0002-4436-4805)

Институт прикладных математических исследований

Карельского научного центра РАН,

ул. Пушкинская, 11, Петрозаводск 185910

alvlivanov@krc.karelia.ru