КВАЗИПЛОТНОСТЬ В $\mathbb{R}^{\mathbb{N}}$ И ПРОЕКТИВНЫЕ ПАРАЛЛЕЛОТОПЫ А. Е. Гутман, И. А. Емельяненков

Аннотация. Предложены два новых критерия замкнутости архимедовых конусов в счетномерных локально выпуклых пространствах — в терминах проективных параллелотопов и проективных автоморфизмов. Получены ответы на некоторые открытые вопросы, связанные с понятиями квазивнутренности и квазиплотности.

 $DOI\,10.33048/smzh.2024.65.203$

Ключевые слова: архимедово упорядоченное векторное пространство, локально выпуклое пространство, слабая топология, конус, квазивнутренность, квазиплотное множество.

В работе [1] предложено исчерпывающее описание класса локально выпуклых пространств, в которых все архимедовы конусы замкнуты. А именно, введено понятие квазиплотного подмножества локально выпуклого пространства и показано, что описываемый класс составляют конечномерные пространства, а также все счетномерные пространства X, у которых топологически сопряженное пространство X' квазиплотно в алгебраически сопряженном пространстве $X^\#$, снабженном слабой топологией $\sigma(X^\#,X)$. Привлечение понятия квазиплотности позволило решить ряд проблем, связанных с архимедовыми конусами, но это понятие остается новым и малоисследованным, о чем, в частности, свидетельствует список открытых вопросов, приведенный в конце статьи [1]. Поскольку в случае $\dim X = |\mathbb{N}|$ локально выпуклое пространство $(X^\#,\sigma(X^\#,X))$ изоморфно $\mathbb{R}^\mathbb{N}$, первоочередной задачей в рассматриваемом направлении является характеризация квазиплотных подмножеств $\mathbb{R}^\mathbb{N}$. Статья посвящена решению этой задачи.

В параграфах 1 и 2, имеющих вспомогательный характер, приведены предварительные сведения и изучены автоморфизмы пространств последовательностей. В центральном параграфе 3 введено и исследовано понятие проективного параллелотопа и доказаны два новых критерия квазиплотности в $\mathbb{R}^{\mathbb{N}}$. В параграфах 4 и 5 даны ответы на четыре открытых вопроса, сформулированных в [1], а также на вопросы о представительности параллелотопов в их связи с квазиплотностью и квазивнутренностью.

§ 1. Предварительные сведения

Начнем с того, что уточним обозначения и термины общего характера, а также воспроизведем некоторые используемые в дальнейшем определения

Работа выполнена в рамках государственного задания ИМ СО РАН (проект № FWNF— 2022-0004).

^{© 2024} Гутман А. Е., Емельяненков И. А.

и факты из [1], чтобы текст статьи был пригодным для независимого чтения. Более полный набор соответствующих сведений, включающий доказательства и примеры, имеется в работе [1] и цитируемой там литературе.

1.1. Символ « \subset » обозначает нестрогое включение множеств. Знак присваивания «:=» используется в значении «полагается равным» или «равно по определению».

Символ $\mathbb N$ обозначает множество натуральных чисел $\{1,2,\dots\}$. Множества рациональных и вещественных чисел обозначаются символами $\mathbb Q$ и $\mathbb R$. Символ $\mathbb R^+$ служит для обозначения совокупности $\{\lambda\in\mathbb R:\lambda\geqslant 0\}$ положительных вещественных чисел. Множество $\mathbb R$ наделяется стандартными операциями и топологией, относительно которых оно является полем и локально выпуклым пространством. Символом $\mathbb R_D$ условимся обозначать множество вещественных чисел, снабженное дискретной топологией. Замкнутые и открытые числовые промежутки обозначаются символами $[\alpha,\beta]$ и $]\alpha,\beta[$.

Символы $\lim S$, со S, с $\lim S$ и int S служат для обозначения линейной оболочки, выпуклой оболочки, замыкания и внутренности множества S в рассматриваемом векторном или топологическом пространстве.

- **1.2.** В дальнейшем под *векторным пространством* понимается векторное пространство над \mathbb{R} . Термин *подпространство* всюду означает векторное подпространство. Подмножество K векторного пространства называется *конусом*, если $K+K\subset K$, $\mathbb{R}^+K\subset K$ и $K\cap -K=\{0\}$. Конус K в векторном пространстве K называется *архимедовым*, если архимедово упорядоченное векторное пространство (X,\leqslant_K) , где $x\leqslant_K y\Leftrightarrow y-x\in K$.
- **1.3.** Если X и Y векторные пространства, символом L(X,Y) обозначается векторное пространство линейных операторов из X в Y. Символ $X^\#$ используется для обозначения алгебраически сопряженного к X векторного пространства $L(X,\mathbb{R})$. Если X и Y топологические векторные пространства, символом $\mathscr{L}(X,Y)$ обозначается векторное пространство непрерывных линейных операторов из X в Y, а символом X' топологически сопряженное к X пространство $\mathscr{L}(X,\mathbb{R})$. Записи L(X) и $\mathscr{L}(X)$ служат сокращениями для L(X,X) и $\mathscr{L}(X,X)$. Символом Aut(X) условимся обозначать совокупность всех автоморфизмов топологического векторного пространства X, т. е. множество таких биекций $T\colon X\to X$, что $T,T^{-1}\in\mathscr{L}(X)$.
- **1.4.** Символом $\mathbb{R}^{\mathbb{N}}_{\text{fin}}$ обозначается подпространство $\mathbb{R}^{\mathbb{N}}$, состоящее из финитных последовательностей, т. е. функций $s\colon \mathbb{N} \to \mathbb{R}$ с конечными носителями $\sup s := \{n \in \mathbb{N} : s(n) \neq 0\}$. Кортежи $x = (x(1), \dots, x(n)) \in \mathbb{R}^n$, где $n \in \mathbb{N}$, традиционно считаются функциями $x\colon \{1,\dots,n\} \to \mathbb{R}$. В дальнейшем используются обозначения

$$\begin{split} e_n &:= \chi_{\{n\}} = (0,\dots,0,\underset{(n)}{1},0,0,\dots) \in \mathbb{R}^{\mathbb{N}}; \\ \mathbb{R}_n^{\mathbb{N}} &:= \lim\{e_1,\dots,e_n\} = \big\{s \in \mathbb{R}_{\text{fin}}^{\mathbb{N}}: \, \text{supp} \, s \subset \{1,\dots,n\} \big\}. \end{split}$$

Линейный оператор $\pi_n \colon \mathbb{R}^\mathbb{N} \to \mathbb{R}^n$ определяется формулой

$$\pi_n s := s|_{\{1,\dots,n\}} = (s(1),\dots,s(n)).$$
 (1)

Условимся использовать обозначение (1) не только для последовательностей $s \in \mathbb{R}^{\mathbb{N}}$, но и для кортежей $s \in \mathbb{R}^m$, где $m \geqslant n$. Кроме того, для удобства положим $\mathbb{R}^0 := \{0\}$ и $\pi_0 s := 0 \in \mathbb{R}^0$.

- **1.5.** Говорят, что векторные пространства X и Y образуют двойственную napy относительно двойственности $\langle\cdot\,|\cdot\rangle$, если $\langle\cdot\,|\cdot\rangle$: $X\times Y\to\mathbb{R}$ — такой билинейный функционал, что $\ker \langle \cdot | = \{0\}$ и $\ker | \cdot \rangle = \{0\}$, где $\langle x | = \langle x | \cdot \rangle \in Y^{\#}$ $(x \in X)$ и $|y\rangle = \langle \cdot | y \rangle \in X^{\#}$ $(y \in Y)$. Такие пространства X и Y по умолчанию наделяются соответствующими слабыми топологиями $\sigma(X,Y)$ и $\sigma(Y,X)$ и тем самым становятся хаусдорфовыми локально выпуклыми пространствами, которые условимся обозначать символами X|Y и Y|X. При этом отображения $\langle\cdot|\colon X\to Y'$ и $|\cdot\rangle\colon Y\to X'$ (или, точнее, $\langle\cdot|\colon X|Y\to (Y|X)'$ и $|\cdot\rangle\colon Y|X\to (X|Y)'$) являются линейными и топологическими изоморфизмами.
- **1.6.** Пространство \mathbb{R}^n $(n \in \mathbb{N})$ рассматривается в двойственной паре с \mathbb{R}^n , где $\langle x\,|\,y\rangle=\sum\limits_{i=1}^nx(i)y(i),$ а векторные пространства $\mathbb{R}^{\mathbb{N}}_{\mathrm{fin}}$ и $\mathbb{R}^{\mathbb{N}}$ по умолчанию считаются парой относительно двойственности $\langle x\,|\,y\rangle=\sum\limits_{n\in\mathbb{N}}x(n)y(n)$ и наделяются соответствующими слабыми топологиями: $\mathbb{R}^{\mathbb{N}}_{\mathrm{fin}} := \mathbb{R}^{\mathbb{N}}_{\mathrm{fin}} | \mathbb{R}^{\mathbb{N}}$ и $\mathbb{R}^{\mathbb{N}} := \mathbb{R}^{\mathbb{N}} | \mathbb{R}^{\mathbb{N}}_{\mathrm{fin}}$. Эта же двойственность подразумевается при рассмотрении локально выпуклых пространств вида $\mathbb{R}^{\mathbb{N}}_{\text{fin}}|Y$, где Y — подпространство $\mathbb{R}^{\mathbb{N}}$, удовлетворяющее следующим равносильным условиям (см. [1, 3.5, 3.6]):
 - (a) $\mathbb{R}^{\mathbb{N}}_{\text{fin}}$ и Y образуют двойственную пару относительно $\langle x\,|\,y\rangle=\sum\limits_{n\in\mathbb{N}}x(n)y(n);$ (b) слабая топология $\sigma\!\left(\mathbb{R}^{\mathbb{N}}_{\text{fin}},Y\right)$ хаусдорфова;

 - (c) Y плотно в $\mathbb{R}^{\mathbb{N}} | \mathbb{R}_{\text{fin}}^{\mathbb{N}}$;
 - (d) Y плотно в $\mathbb{R}_{\mathbb{D}}^{\mathbb{N}}$;
 - (e) $\pi_n Y = \mathbb{R}^n$ для всех $n \in \mathbb{N}$;
 - (f) $\pi_n e_n \in \pi_n Y$ для всех $n \in \mathbb{N}$.
- **1.7.** Множество $S \subset \mathbb{R}^{\mathbb{N}}$, называется проективным (см. [1, 7.1]), если оно замкнуто в $\mathbb{R}^{\mathbb{N}}_{D}$ или, что то же самое, содержит каждую последовательность $s \in \mathbb{R}^{\mathbb{N}}$, удовлетворяющую включениям $\pi_n s \in \pi_n S$ для всех $n \in \mathbb{N}$.

Примерами проективных множеств служат произвольные декартовы произведения $\prod \Lambda_n$, где $\Lambda_n \subset \mathbb{R}$. Кроме того, любое замкнутое подмножество $\mathbb{R}^{\mathbb{N}}$ замкнуто также в $\mathbb{R}^{\mathbb{N}}_{\mathbb{D}}$ и поэтому проективно.

Последовательность множеств $S_n \subset \mathbb{R}^n \ (n \in \mathbb{N})$ называется проективной (см. [1, 7.1]), если она обладает следующими равносильными свойствами:

- (a) существует такое множество $S \subset \mathbb{R}^{\mathbb{N}}$, что $S_n = \pi_n S$ для всех $n \in \mathbb{N}$;
- (b) $S_n = \pi_n S_m$ при $n \leqslant m$;
- (c) $S_n = \pi_n S_{n+1}$ для всех $n \in \mathbb{N}$.

При этом множество

$$igcap_{n\in\mathbb{N}}\pi_n^{-1}(S_n)=\left\{s\in\mathbb{R}^\mathbb{N}:\pi_ns\in S_n$$
 для всех $n\in\mathbb{N}
ight\}$

называется проективным пределом последовательности $(S_n)_{n\in\mathbb{N}}$ и обозначается символом $\lim S_n$ (см. [1, 7.3]). Проективный предел $\lim S_n$ представляет собой наибольшее среди множеств S, удовлетворяющих условию пункта (a), является единственным проективным среди таких множеств и совпадает с замыканием любого из них в топологическом пространстве $\mathbb{R}^{\mathbb{N}}_{\mathrm{D}}$.

1.8. *Квазивнутренность* qi S подмножества S хаусдорфова локально выпуклого пространства X определяется следующим образом:

$$\operatorname{qi} S := \{ x \in S : \operatorname{cl} \mathbb{R}^+(S - x) = X \}.$$

Элементы qi S называются κ вазивнутренними точками множества S. В случае qi S=S говорят, что множество S κ вазиоткрыто.

Теорема [1, 4.13]. Для любого выпуклого множества $C \subset \mathbb{R}^{\mathbb{N}}$ справедливо равенство

$$\operatorname{qi} C = \{c \in C : \pi_n c \in \operatorname{int} \pi_n C \text{ для всех } n \in \mathbb{N}\}.$$

В частности, выпуклое множество C квазиоткрыто в $\mathbb{R}^{\mathbb{N}}$ тогда и только тогда, когда каждая проекция $\pi_n C$ открыта в \mathbb{R}^n .

1.9. Подмножество $\mathbb{R}^{\mathbb{N}}$, имеющее вид $\prod_{n\in\mathbb{N}}\Lambda_n$, где Λ_n — открытые подмножества \mathbb{R} , называется *открытой коробкой*. Топология на $\mathbb{R}^{\mathbb{N}}$, для которой открытые коробки служат базовыми открытыми множествами, называется *коробочной топологией*. Как легко видеть, для любого элемента $z\in\mathbb{R}^{\mathbb{N}}$ выпуклые открытые коробки

$$\prod_{n \in \mathbb{N}} |z(n) - r(n), z(n) + r(n)[, \quad r(n) > 0,$$
 (2)

образуют базу окрестностей точки z в коробочной топологии.

Предложение [1, 7.8]. Всякая выпуклая открытая коробка в $\mathbb{R}^{\mathbb{N}}$ служит примером проективного ограниченного квазиоткрытого множества. Более того, все подмножества $\mathbb{R}^{\mathbb{N}}$, открытые в коробочной топологии, квазиоткрыты.

1.10. Подмножество S локально выпуклого пространства X называют $\kappa easun nom bum$ в X, если $S \cap B \neq \emptyset$ для любого замкнутого ограниченного выпуклого множества $B \subset X$, имеющего непустую квазивнутренность (см. [1, 6.2]).

Предложение [1, 6.4]. В пространстве $\mathbb{R}^{\mathbb{N}}$ все квазиплотные множества являются плотными.

- **1.11.** Предложение [1, 8.8]. Следующие свойства множества $S \subset \mathbb{R}^{\mathbb{N}}$ равносильны:
 - (a) S квазиплотно в $\mathbb{R}^{\mathbb{N}}$;
 - (b) если C компактное выпуклое подмножество $\mathbb{R}^{\mathbb{N}}$ и qi $C \neq \emptyset$, то $S \cap C \neq \emptyset$;
- (c) если B непустое проективное ограниченное квазиоткрытое выпуклое подмножество $\mathbb{R}^{\mathbb{N}}$, то $S\cap B\neq\varnothing$;
- (d) если $(B_n)_{n\in\mathbb{N}}$ проективная последовательность непустых ограниченных открытых выпуклых множеств, то $S\cap \varprojlim B_n\neq\varnothing;$
 - (e) если C проективное выпуклое подмножество $\mathbb{R}^{\mathbb{N}}$ и qi $C \neq \emptyset$, то $S \cap C \neq \emptyset$.
 - **1.12.** Теорема [1, 8.5]. Пусть Y плотное подпространство $\mathbb{R}^{\mathbb{N}}$.
- (а) B пространстве $\mathbb{R}^{\mathbb{N}}_{\text{fin}}|Y$ все архимедовы конусы замкнуты тогда и только тогда, когда Y квазиплотно в $\mathbb{R}^{\mathbb{N}}$.
- (b) Если C компактное выпуклое подмножество $\mathbb{R}^{\mathbb{N}}$, qi $C \neq \emptyset$ и $Y \cap C = \emptyset$ (см. предложение 1.11(b)), то множество $\{x \in \mathbb{R}^{\mathbb{N}}_{\mathrm{fin}} : \langle x \, | \, c \rangle \geqslant 0$ при $c \in C\}$ служит примером архимедова, но не замкнутого (более того, плотного) конуса в $\mathbb{R}^{\mathbb{N}}_{\mathrm{fin}} | Y$.

§ 2. Индуктивные и проективные автоморфизмы

В этом вспомогательном параграфе уточняется вид числовых матриц, задающих непрерывные линейные операторы в пространствах последовательностей, и исследуются операторы, соответствующие верхнетреугольным и нижнетреугольным матрицам.

2.1. Пусть X,Y — двойственная пара векторных пространств и $T \in \mathcal{L}(X)$. Как известно, в этом случае существует единственное отображение $T' \colon Y \to Y$, удовлетворяющее равенству $\langle Tx \,|\, y \rangle = \langle x \,|\, T'y \rangle$ для всех $x \in X$ и $y \in Y$. Отображение T' принадлежит $\mathcal{L}(Y)$ и называется сопряженным κ T оператором (см. [2, 11-1]). Аналогично для $S \in \mathcal{L}(Y)$ определяется оператор $S' \in \mathcal{L}(X)$.

Всякий оператор $T\in \mathcal{L}(X)$ является сопряженным к $T'\in \mathcal{L}(Y)$, а оператор $S\in \mathcal{L}(Y)$ — сопряженным к $S'\in \mathcal{L}(X)$, т. е. T''=T и S''=S.

Для любого оператора $T \in \mathcal{L}(X)$ включения $T \in Aut(X)$ и $T' \in Aut(Y)$ равносильны. При этом $(T^{-1})' = (T')^{-1}$.

В дальнейшем в роли X,Y будет выступать пара $\mathbb{R}^{\mathbb{N}}_{\mathrm{fin}}, \mathbb{R}^{\mathbb{N}}$. Заметим, что в силу соотношения $\left(\mathbb{R}^{\mathbb{N}}_{\mathrm{fin}}\right)' = \left(\mathbb{R}^{\mathbb{N}}_{\mathrm{fin}}\right)^{\#}$ все линейные операторы $T \colon \mathbb{R}^{\mathbb{N}}_{\mathrm{fin}} \to \mathbb{R}^{\mathbb{N}}_{\mathrm{fin}}$ непрерывны, т.е. $L\left(\mathbb{R}^{\mathbb{N}}_{\mathrm{fin}}\right) = \mathscr{L}\left(\mathbb{R}^{\mathbb{N}}_{\mathrm{fin}}\right)$.

2.2. Условимся называть числовые семейства $\mu \in \mathbb{R}^{\mathbb{N} \times \mathbb{N}}$ матрицами, а последовательности $\mu(\cdot, n)$ и $\mu(m, \cdot)$ $(m, n \in \mathbb{N})$ — столбцами и строками матрицы μ :

$$\begin{pmatrix} \mu(1,1) & \mu(1,2) & \mu(1,3) & \cdots & \mu(1,n) & \cdots \\ \mu(2,1) & \mu(2,2) & \mu(2,3) & \cdots & \mu(2,n) & \cdots \\ \mu(3,1) & \mu(3,2) & \mu(3,3) & \cdots & \mu(3,n) & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ \hline \mu(m,1) & \mu(m,2) & \mu(m,3) & \cdots & \mu(m,n) & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ \hline \mu(\cdot,n) \end{pmatrix} \mu(m,\cdot)$$

$$\mu(\cdot,n)=(\mu(m,n))_{m\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}-n$$
-й столбец $(n\in\mathbb{N})$ матрицы $\mu,$ $\mu(m,\cdot)=(\mu(m,n))_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}-m$ -я строка $(m\in\mathbb{N})$ матрицы $\mu.$

Транспонированная матрица μ^{T} определяется формулой $\mu^{\mathrm{T}}(m,n) := \mu(n,m)$ $(m,n\in\mathbb{N}).$

Матрицу μ назовем матрицей с финитными столбцами (с финитными стороками), если $\mu(\cdot,n)\in\mathbb{R}_{\mathrm{fin}}^{\mathbb{N}}$ для всех $n\in\mathbb{N}$ (соответственно, $\mu(m,\cdot)\in\mathbb{R}_{\mathrm{fin}}^{\mathbb{N}}$ для всех $m\in\mathbb{N}$). Частными случаями матриц с финитными столбцами и финитными строками служат верхнетреугольные и нижнетреугольные матрицы— такие $\mu,\lambda\in\mathbb{R}^{\mathbb{N}\times\mathbb{N}}$, что $\mu(m,n)=0$ при m>n и $\lambda(m,n)=0$ при n>m:

2.3. Матрицам μ с финитными столбцами и матрицам λ с финитными строками соответствуют отображения $\mu^{\wedge} \colon \mathbb{R}_{\text{fin}}^{\mathbb{N}} \to \mathbb{R}_{\text{fin}}^{\mathbb{N}}$ и $\lambda^{\vee} \colon \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{N}}$, определяемые следующими формулами:

$$\begin{split} (\mu^{\wedge}x)(m) &:= \langle x \,|\, \mu(m,\cdot) \rangle = \sum_{n \in \mathbb{N}} \mu(m,n)x(n), \quad x \in \mathbb{R}_{\text{fin}}^{\mathbb{N}}, \, m \in \mathbb{N}, \\ (\lambda^{\vee}y)(m) &:= \langle \lambda(m,\cdot) \,|\, y \rangle = \sum_{n \in \mathbb{N}} \lambda(m,n)y(n), \quad y \in \mathbb{R}^{\mathbb{N}}, \, \, m \in \mathbb{N}. \end{split}$$

(Поясним, почему $\mu^{\wedge}x\in\mathbb{R}_{\text{fin}}^{\mathbb{N}}$ при $x\in\mathbb{R}_{\text{fin}}^{\mathbb{N}}$. Действительно, благодаря финитности столбцов $\mu(\cdot,n)$ имеется такая последовательность натуральных чисел m_n , что $\mu(m,n)=0$ для всех $m\geqslant m_n$. Пусть x(n)=0 при n>k. Тогда для всех

чисел
$$m\geqslant \max\{m_1,\ldots,m_k\}$$
 имеем $(\mu^\wedge x)(m)=\sum\limits_{n=1}^k\mu(m,n)x(n)=0.$)
Всякому оператору T , принадлежащему $L(\mathbb{R}^\mathbb{N}_{\mathrm{fin}})$ или $L(\mathbb{R}^\mathbb{N})$, сопоставим мат-

рицу $[T] \in \mathbb{R}^{\mathbb{N} \times \mathbb{N}}$, полагая

$$[T](m,n) := (Te_n)(m), \quad m,n \in \mathbb{N}.$$

- **2.4.** Предложение (ср. [2, 11-1-6, 11-1-10, 11-1-11]).
- (a) Если μ матрица c финитными столбцами, то $\mu^{\wedge} \in L(\mathbb{R}_{fn}^{\mathbb{N}})$ и $[\mu^{\wedge}] = \mu$.
- (b) Если λ матрица c финитными строками, то $\lambda^{\vee} \in \mathscr{L}(\mathbb{R}^{\mathbb{N}})$ и $[\lambda^{\vee}] = \lambda$.
- (c) Если $\nabla \in L(\mathbb{R}^{\mathbb{N}}_{\mathrm{fin}})$, то $[\nabla]$ матрица c финитными столбцами, $[\nabla]^{\wedge} = \nabla$, $\nabla' \in \mathscr{L}(\mathbb{R}^{\mathbb{N}}) \ \mathit{u} \ [\nabla'] = [\nabla]^{\mathrm{T}}.$
- (d) $\mathit{Eсли}\ \Delta \in \mathscr{L}(\mathbb{R}^{\mathbb{N}}),$ то $[\Delta]$ матрица c финитными строками, $[\Delta]^{\vee} = \Delta,$ $\Delta' \in L(\mathbb{R}^{\mathbb{N}}_{\text{fin}}) \ \textit{u} \ [\Delta'] = [\Delta]^{\mathrm{T}}.$
- \triangleleft В пояснении нуждается лишь пункт (d). Пусть $\Delta \in \mathscr{L}(\mathbb{R}^{\mathbb{N}})$. Тогда для $\text{Bcex } m, n \in \mathbb{N}$

$$[\Delta](m,n) = (\Delta e_n)(m) = \langle e_m \mid \Delta e_n \rangle = \langle \Delta' e_m \mid e_n \rangle = (\Delta' e_m)(n),$$

а значит, $[\Delta](m,\cdot)=\Delta'e_m\in\mathbb{R}^{\mathbb{N}}_{\mathrm{fin}},$ т. е. $[\Delta]$ — матрица с финитными строками. Далее, для всех $m, n \in \mathbb{N}$

$$([\Delta]^{\vee}e_n)(m)=\langle [\Delta](m,\cdot)\,|\,e_n\rangle=([\Delta](m,\cdot))(n)=[\Delta](m,n)=(\Delta e_n)(m),$$
 откуда с учетом плотности $\inf\{e_n:n\in\mathbb{N}\}$ в $\mathbb{R}^\mathbb{N}$ и непрерывности операторов Δ и $[\Delta]^{\vee}$ (см. п. (b)) вытекает равенство $[\Delta]^{\vee}=\Delta$. Равенство $[\Delta']=[\Delta]^{\mathrm{T}}$ очевидно. \triangleright

- **2.5.** Предложение. Следующие свойства оператора $\nabla \in L(\mathbb{R}_{\mathrm{fn}}^{\mathbb{N}})$ равносильны:
 - (a) $[\nabla]$ верхнетреугольная матрица;
 - (b) $\nabla(\mathbb{R}_n^{\mathbb{N}}) \subset \mathbb{R}_n^{\mathbb{N}}$ для всех $n \in \mathbb{N}$; (c) $\nabla e_n \in \mathbb{R}_n^{\mathbb{N}}$ для всех $n \in \mathbb{N}$.

Оператор $\nabla \in L(\mathbb{R}_{\text{fin}}^{\mathbb{N}})$, обладающий равносильными свойствами (a)–(c), назовем индуктивным.

- **2.6.** Предложение. Следующие свойства оператора $\Delta \in \mathscr{L}(\mathbb{R}^{\mathbb{N}})$ равно-
 - (a) $[\Delta]$ нижнетреугольная матрица;

 - (b) если $y \in \mathbb{R}^{\mathbb{N}}$, $n \in \mathbb{N}$ и $\pi_n y = 0$, то $\pi_n \Delta y = 0$; (c) если $y, z \in \mathbb{R}^{\mathbb{N}}$, $n \in \mathbb{N}$ и $\pi_n y = \pi_n z$, то $\pi_n \Delta y = \pi_n \Delta z$;
 - (d) $\pi_n \Delta e_{n+1} = 0$ для всех $n \in \mathbb{N}$.

Оператор $\Delta \in \mathscr{L}(\mathbb{R}^{\mathbb{N}})$, обладающий равносильными свойствами (a)–(d), назовем проективным.

- **2.7. Предложение.** (a) Оператор $\nabla \in L(\mathbb{R}^{\mathbb{N}}_{\text{fin}})$ является индуктивным тогда и только тогда, когда $\nabla' \in \mathcal{L}(\mathbb{R}^{\mathbb{N}})$ проективный оператор.
- (b) Оператор $\Delta \in \mathcal{L}(\mathbb{R}^{\mathbb{N}})$ является проективным тогда и только тогда, когда $\Delta' \in L(\mathbb{R}^{\mathbb{N}}_{\mathrm{fin}})$ индуктивный оператор.
- **2.8.** Предложение. (a) Для любой последовательности элементов $x_n \in \mathbb{R}_n^{\mathbb{N}}$ существует единственный оператор $\nabla \in L(\mathbb{R}_{\text{fin}}^{\mathbb{N}})$ такой, что $\nabla e_n = x_n$ для всех $n \in \mathbb{N}$. Такой оператор ∇ является индуктивным.
- (b) Если последовательность элементов $y_n \in \mathbb{R}^{\mathbb{N}}$ удовлетворяет условию $\pi_n y_{n+1} = 0$ для всех $n \in \mathbb{N}$, то существует единственный оператор $\Delta \in \mathcal{L}(\mathbb{R}^{\mathbb{N}})$ такой, что $\Delta e_n = y_n$ для всех $n \in \mathbb{N}$. Такой оператор Δ является проективным.
 - ⊲ Утверждение (а) в пояснении не нуждается.
- (b) По условию матрица λ , определенная формулой $\lambda(m,n):=y_n(m)$, является нижнетреугольной, а значит, $\Delta:=\lambda^\vee$ искомый оператор (см. предложение 2.4(b)). Единственность такого оператора вытекает из его непрерывности и плотности $\inf\{e_n:n\in\mathbb{N}\}$ в $\mathbb{R}^\mathbb{N}$, а проективность обусловлена соотношением 2.6(d). \triangleright
 - **2.9.** Предложение. Пусть $\Delta \in \mathscr{L}(\mathbb{R}^{\mathbb{N}})$ проективный оператор.
 - (a) Оператор Δ непрерывен как отображение из $\mathbb{R}^{\mathbb{N}}_{\mathbb{D}}$ в $\mathbb{R}^{\mathbb{N}}_{\mathbb{D}}$.
- (b) Если P проективное подмножество $\mathbb{R}^{\mathbb{N}}$, то $\Delta^{-1}(P)$ проективное подмножество $\mathbb{R}^{\mathbb{N}}$.
- (c) Если іт $\Delta=\mathbb{R}^{\mathbb{N}}$ и Y плотное подпространство $\mathbb{R}^{\mathbb{N}}$, то $\Delta(Y)$ плотное подпространство $\mathbb{R}^{\mathbb{N}}$.
- \vartriangleleft Утверждение (a) легко доказать с помощью предложения 2.6(c). Утверждения (b) и (c) вытекают из утверждения (a) согласно пп. 1.7 и 1.6(d) соответственно. \rhd
- **2.10.** Предложение. Пусть $\nabla \in L(\mathbb{R}^{\mathbb{N}}_{\mathrm{fin}})$ индуктивный оператор. Следующие свойства ∇ равносильны:
 - (a) $\nabla \in Aut(\mathbb{R}^{\mathbb{N}}_{fin});$
 - (b) $\nabla e_n \ (n \in \mathbb{N})$ линейно независимые элементы $\mathbb{R}_{6n}^{\mathbb{N}}$;
 - (c) $[\nabla](n,n) \neq 0$ для всех $n \in \mathbb{N}$.
 - \triangleleft Импликация (a) \Rightarrow (b) тривиальна.
- (b) \Rightarrow (c). Поскольку $\nabla e_1 \in \mathbb{R}_1^{\mathbb{N}}$ (см. предложение 2.5(c)) и $\nabla e_1 \neq 0$, имеем $[\nabla](1,1) = (\nabla e_1)(1) \neq 0$. Пусть теперь n>1. Согласно п. (b) элементы $\nabla e_1, \ldots, \nabla e_{n-1}$ образуют базис $\mathbb{R}_{n-1}^{\mathbb{N}}$. Если бы число $[\nabla](n,n) = (\nabla e_n)(n)$ равнялось нулю, то с учетом включения $\nabla e_n \in \mathbb{R}_n^{\mathbb{N}}$ были бы справедливы соотношения $\nabla e_n \in \mathbb{R}_{n-1}^{\mathbb{N}} = \lim \{\nabla e_1, \ldots, \nabla e_{n-1}\}$ вопреки линейной независимости $\nabla e_1, \ldots, \nabla e_n$.
- (c) \Rightarrow (a). Поскольку верхнетреугольная матрица $n \times n$ с ненулевыми диагональными элементами невырождена, элементы $\nabla e_1, \ldots, \nabla e_n$ образуют базис $\mathbb{R}_n^{\mathbb{N}}$ для каждого $n \in \mathbb{N}$, а значит, $\{\nabla e_n : n \in \mathbb{N}\}$ базис $\mathbb{R}_{\text{fin}}^{\mathbb{N}}$. \triangleright

Индуктивный оператор $\nabla \in L\left(\mathbb{R}_{\mathrm{fin}}^{\mathbb{N}}\right)$, обладающий равносильными свойствами (a)–(c), будем называть *индуктивным автоморфизмом*. Индуктивный автоморфизм ∇ назовем *позитивным*, если $[\nabla](n,n)>0$ для всех $n\in\mathbb{N}$. Множество всех позитивных индуктивных автоморфизмов обозначим символом $\nabla_+(\mathbb{R}_{\mathrm{fin}}^{\mathbb{N}})$.

- **2.11. Предложение.** Пусть $\Delta \in \mathscr{L}(\mathbb{R}^{\mathbb{N}})$ проективный оператор. Следующие свойства Δ равносильны:
 - (a) $\Delta \in Aut(\mathbb{R}^{\mathbb{N}});$
 - (b) $\Delta e_n \ (n \in \mathbb{N})$ линейно независимые элементы $\mathbb{R}^\mathbb{N}$ и $\operatorname{clim} \Delta = \mathbb{R}^\mathbb{N};$
 - (c) $[\Delta](n,n) \neq 0$ для всех $n \in \mathbb{N}$.
- $(b)\Rightarrow(c)$. Покажем, что $\Delta'e_n\ (n\in\mathbb{N})$ линейно независимые элементы $\mathbb{R}^{\mathbb{N}}_{\mathrm{fin}}$. Действительно, если $\lambda_1,\ldots,\lambda_n\in\mathbb{R}$ и $\sum_{i=1}^n\lambda_i\Delta'e_i=0$, то для всех $y\in\mathbb{R}^{\mathbb{N}}$

$$\left\langle \sum_{i=1}^n \lambda_i e_i \, \Big| \, \Delta y \right
angle = \left\langle \Delta' \Bigl(\sum_{i=1}^n \lambda_i e_i \Bigr) \, \Big| \, y \right
angle = \left\langle \sum_{i=1}^n \lambda_i \Delta' e_i \, \Big| \, y
ight
angle = 0,$$

откуда благодаря плотности іт Δ в $\mathbb{R}^{\mathbb{N}}$ вытекает равенство $\sum_{i=1}^{n} \lambda_{i} e_{i} = 0$ и поэтому $\lambda_{1} = \cdots = \lambda_{n} = 0$. Согласно предложениям 2.4(d), 2.7(b) и 2.10 отсюда следует, что $[\Delta](n,n) = [\Delta']^{\mathsf{T}}(n,n) = [\Delta'](n,n) \neq 0$ для всех $n \in \mathbb{N}$.

Импликация (c) \Rightarrow (a) так же легко выводится из предложений 2.4(d), 2.7(b) и 2.10. \triangleright

Заметим, что в пункте (b) требование $\operatorname{cl} \operatorname{im} \Delta = \mathbb{R}^{\mathbb{N}}$ является существенным. Соответствующим контрпримером служит оператор сдвига, определяемый формулой $\Delta(y) = (0, y(1), y(2), y(3), \ldots)$.

Проективный оператор $\Delta \in \mathscr{L}(\mathbb{R}^{\mathbb{N}})$, обладающий равносильными свойствами (a)–(c), будем называть *проективным автоморфизмом*. Проективный автоморфизм Δ назовем *позитивным*, если $[\Delta](n,n)>0$ для всех $n\in\mathbb{N}$. Множество всех позитивных проективных автоморфизмов обозначим символом $\Delta^+(\mathbb{R}^{\mathbb{N}})$.

2.12. Следующее утверждение с очевидностью вытекает из приведенных выше сведений.

Предложение. (a) Для любых $\nabla \in L(\mathbb{R}^{\mathbb{N}}_{\mathrm{fin}})$ и $\Delta \in \mathscr{L}(\mathbb{R}^{\mathbb{N}})$

$$\begin{split} \nabla \in \bigtriangledown_{\!\scriptscriptstyle{+}}(\mathbb{R}^{\mathbb{N}}_{\mathrm{fin}}) &\Leftrightarrow \nabla' \in \triangle^{\!\scriptscriptstyle{+}}(\mathbb{R}^{\mathbb{N}}); \\ \Delta \in \triangle^{\!\scriptscriptstyle{+}}(\mathbb{R}^{\mathbb{N}}) &\Leftrightarrow \Delta' \in \bigtriangledown_{\!\scriptscriptstyle{+}}(\mathbb{R}^{\mathbb{N}}_{\mathrm{fin}}). \end{split}$$

(b) Множества $\nabla_{\!+}\!\left(\mathbb{R}^{\mathbb{N}}_{\mathrm{fin}}\right)$ и $\triangle^{\!+}\!\left(\mathbb{R}^{\mathbb{N}}\right)$ являются подгруппами в группах автоморфизмов $Aut\!\left(\mathbb{R}^{\mathbb{N}}_{\mathrm{fin}}\right)$ и $Aut\!\left(\mathbb{R}^{\mathbb{N}}\right)$ относительно композиции операторов.

§ 3. Проективные параллелотопы

В этом параграфе вводится понятие проективного параллелотопа, устанавливается связь параллелотопов с индуктивными и проективными автоморфизмами (теорема 3.4) и предлагаются два новых критерия квазиплотности в $\mathbb{R}^{\mathbb{N}}$ — в терминах параллелотопов и автоморфизмов (теорема 3.8).

3.1. Для
$$\varkappa=(\varkappa_n)_{n\in\mathbb{N}}\in\prod_{n\in\mathbb{N}}\mathbb{R}^n$$
 и $r\in]0,\infty[^\mathbb{N}$ положим

$$\Pi^r_{m{arkappa}}:=\Big\{y\in\mathbb{R}^\mathbb{N}:|y(1)|< r(1),\ \Big|y(n+1)-\sum_{i=1}^nm{arkappa}_n(i)y(i)\Big|< r(n+1)$$
 для всех $n\in\mathbb{N}\Big\}.$

Для удобства в дальнейшем будем полагать $\varkappa_0 := 0 \in \mathbb{R}^0$. (Напомним о введенных ранее обозначениях $\mathbb{R}^0 := \{0\}$ и $\pi_0 y := \pi_0 x := 0 \in \mathbb{R}^0$ для $y \in \mathbb{R}^\mathbb{N}$ и $x \in \mathbb{R}^n$.) С учетом этого соглашения имеем

$$\Pi^r_{\varkappa} = \{ y \in \mathbb{R}^{\mathbb{N}} : |y(n) - \langle \varkappa_{n-1} | \pi_{n-1} y \rangle | < r(n)$$
для всех $n \in \mathbb{N} \}.$

Множество $z+\Pi^r_{\varkappa}$, где $z\in\mathbb{R}^{\mathbb{N}}$, условимся называть napaллелотопом (точнее, npoekmubhым napaллелотопом) с qehmpom z, hakrohom \varkappa и paduycom r.

Символом Π_0^r обозначим параллелотоп с нулевым центром $0 \in \mathbb{R}^{\mathbb{N}}$, нулевым наклоном $(0,0,\dots) \in \prod_{n \in \mathbb{N}} \mathbb{R}^n$ и радиусом $r \in]0,\infty[^{\mathbb{N}}$, а символом Π_0^1 — параллелотоп $\Pi_0^{(1,1,\dots)}$:

$$\Pi_0^r=\{y\in\mathbb{R}^\mathbb{N}:\,|y(n)|< r(n)$$
 для всех $n\in\mathbb{N}\},$ $\Pi_0^1=\{y\in\mathbb{R}^\mathbb{N}:\,|y(n)|< 1$ для всех $n\in\mathbb{N}\}.$

3.2. Из следующей леммы видно, что каждая проекция $\pi_n P$ параллелотопа $P \subset \mathbb{R}^{\mathbb{N}}$ является открытым параллелотопом в \mathbb{R}^n , т. е. открытым n-мерным параллелепипедом.

Лемма. Пусть
$$\varkappa\in\prod_{n\in\mathbb{N}}\mathbb{R}^n,\,r\in\left]0,\infty\right[^{\mathbb{N}},\,n\in\mathbb{N}.$$
 Тогда

$$\pi_n \Pi_{\varkappa}^r = \left\{ x \in \mathbb{R}^n : |x(m) - \langle \varkappa_{m-1} | \pi_{m-1} x \rangle| < r(m) \text{ для } m = 1, \dots, n \right\}$$

$$= \left\{ x \in \mathbb{R}^n : \pi_{n-1} x \in \pi_{n-1} \Pi_{\varkappa}^r \text{ и } |x(n) - \langle \varkappa_{n-1} | \pi_{n-1} x \rangle| < r(n) \right\}.$$

 \triangleleft Включение «С» очевидно. Предположим теперь, что $x \in \mathbb{R}^n$ и

$$|x(m) - \langle \varkappa_{m-1} | \pi_{m-1} x \rangle| < r(m), \quad m = 1, \dots, n.$$

Определим $y \in \mathbb{R}^{\mathbb{N}}$, полагая $\pi_n y := x$ и $y(m) := \sum_{i=1}^{m-1} \varkappa_{m-1}(i) y(i)$ рекурсивно для m > n. Тогда $y \in \Pi^r_{\varkappa}$, а значит, $x \in \pi_n \Pi^r_{\varkappa}$. \triangleright

- **3.3.** Предложение. Центр, наклон и радиус однозначно определяются параллелотопом: если $z + \Pi_{\varkappa}^r = z' + \Pi_{\varkappa'}^{r'}$, то z = z', $\varkappa = \varkappa'$ и r = r'.
- \lhd Пусть $z+\Pi_{\varkappa}^r=z'+\Pi_{\varkappa'}^{r'}$. Сразу заметим, что z=z', так как непустое ограниченное множество не может иметь два центра симметрии. Поэтому можно считать, что z=z'=0.

Рассмотрим $n \in \mathbb{N}$ и покажем, что r(n) = r'(n) и $\varkappa_{n-1} = \varkappa'_{n-1}$. Случай n=1 тривиален. Пусть n>1. Для каждого $x \in \pi_{n-1}\Pi_{\varkappa}^r = \pi_{n-1}\Pi_{\varkappa'}^{r'}$ благодаря лемме 3.2 имеем при всех $\lambda \in \mathbb{R}$

$$|\lambda - \langle \varkappa_{n-1} | x \rangle| < r(n) \iff (x, \lambda) \in \pi_n \Pi_{\varkappa}^{r'}$$

$$\Leftrightarrow (x, \lambda) \in \pi_n \Pi_{\varkappa'}^{r'} \iff |\lambda - \langle \varkappa_{n-1}' | x \rangle| < r'(n),$$

а значит, r(n)=r'(n) и $\langle \varkappa_{n-1}\,|\,x\rangle=\langle \varkappa_{n-1}'\,|\,x\rangle$. Последнее равенство с учетом произвольности $x\in\pi_{n-1}\Pi_{\varkappa}^r$ означает, что функционал $\langle \varkappa_{n-1}-\varkappa_{n-1}'|$ постоянен на $\pi_{n-1}\Pi_{\varkappa}^r$. Следовательно, $\varkappa_{n-1}=\varkappa_{n-1}'$, так как согласно лемме 3.2 множество $\pi_{n-1}\Pi_{\varkappa}^r$ является окрестностью нуля в \mathbb{R}^{n-1} . \triangleright

- **3.4. Теорема.** Следующие свойства множества $P \subset \mathbb{R}^{\mathbb{N}}$ равносильны:
- (a) P является параллелотопом c центром в нуле, т. е. $P = \Pi_{\varkappa}^r$ для некоторых $\varkappa \in \prod_{n=1}^{\infty} \mathbb{R}^n$ и $r \in]0, \infty[^{\mathbb{N}};$
- (b) $P = \{y \in \mathbb{R}^{\mathbb{N}} : |\langle \nabla e_n \, | \, y \rangle| < 1$ при всех $n \in \mathbb{N}\}$ для некоторого автоморфизма $\nabla \in \nabla_+(\mathbb{R}^{\mathbb{N}}_{\mathrm{fin}});$
 - (c) $P = \Delta(\Pi_0^1)$ для некоторого автоморфизма $\Delta \in \Delta^+(\mathbb{R}^\mathbb{N})$.

При этом \varkappa, r, ∇ и Δ однозначно определяются параллелотопом P и удовлетворяют следующим соотношениям:

$$r(n) = \frac{1}{(\nabla e_n)(n)}; \quad \varkappa_{n-1} = -r(n) \, \pi_{n-1} \nabla e_n;$$
 (3)

$$\nabla e_n = \frac{1}{r(n)} (-\varkappa_{n-1}(1), \dots, -\varkappa_{n-1}(n-1), 1, 0, 0, \dots);$$

$$\Delta = (\nabla')^{-1} = (\nabla^{-1})'; \quad \nabla = (\Delta')^{-1} = (\Delta^{-1})'.$$
(4)

 \triangleleft (a) \Rightarrow (b). Пусть \varkappa и r удовлетворяют условию (a). Согласно предложению 2.8(a) имеется индуктивный оператор ∇ , удовлетворяющий равенству (4) для всех $n \in \mathbb{N}$, причем $\nabla \in \nabla_+(\mathbb{R}^\mathbb{N}_{\text{fin}})$, поскольку $[\nabla](n,n) = (\nabla e_n)(n) = \frac{1}{r(n)} > 0$. Остается заметить, что для $y \in \mathbb{R}^\mathbb{N}$ и $n \in \mathbb{N}$

$$|y(n) - \langle \varkappa_{n-1} | \pi_{n-1} y \rangle| < r(n) \iff \left| \frac{1}{r(n)} y(n) - \left\langle \frac{1}{r(n)} \varkappa_{n-1} | \pi_{n-1} y \right\rangle \right| < 1$$

$$\Leftrightarrow |\langle \nabla e_n | y \rangle| < 1.$$

(b) \Rightarrow (c). Пусть P и ∇ удовлетворяют условию (b). Согласно предложению 2.12 операторы ∇' и $\Delta := (\nabla')^{-1}$ принадлежат группе $\Delta^+(\mathbb{R}^\mathbb{N})$. Кроме того, для всех $y \in \mathbb{R}^\mathbb{N}$ и $n \in \mathbb{N}$ неравенство $|\langle \nabla e_n \, | \, y \rangle| < 1$ равносильно $|(\nabla' y)(n)| < 1$, а значит.

$$y \in P \Leftrightarrow \nabla' y \in \Pi_0^1 \Leftrightarrow y \in (\nabla')^{-1}(\Pi_0^1) = \Delta(\Pi_0^1).$$

 $(c)\Rightarrow (a)$. Пусть $\Delta\in\Delta^+(\mathbb{R}^\mathbb{N})$ и $P=\Delta(\Pi^1_0)$. Согласно предложению 2.12 оператор $\nabla:=(\Delta^{-1})'$ принадлежит $\nabla_+(\mathbb{R}^\mathbb{N}_{\mathrm{fin}})$. Определим r и \varkappa в соответствии с равенствами (3) и покажем, что $P=\Pi^r_{\varkappa}$. Действительно, для всех $y\in\mathbb{R}^\mathbb{N}$ и $n\in\mathbb{N}$

$$\begin{split} (\Delta^{-1}y)(n) &= \langle e_n \mid \Delta^{-1}y \rangle = \left\langle (\Delta^{-1})'e_n \mid y \right\rangle = \langle \nabla e_n \mid y \rangle \\ &= (\nabla e_n)(n)y(n) + \langle \pi_{n-1}\nabla e_n \mid \pi_{n-1}y \rangle = \frac{1}{r(n)}y(n) - \left\langle \frac{1}{r(n)}\varkappa_{n-1} \mid \pi_{n-1}y \right\rangle. \end{split}$$

Следовательно, неравенства $|(\Delta^{-1}y)(n)|<1$ и $|y(n)-\langle\varkappa_{n-1}|\pi_{n-1}y\rangle|< r(n)$ равносильны и поэтому

$$y \in P \iff y \in \Delta(\Pi_0^1) \iff \Delta^{-1}y \in \Pi_0^1 \iff y \in \Pi_\varkappa^r.$$

Поясним единственность параметров \varkappa , r, ∇ и Δ , фигурирующих в формулировке теоремы. Единственность \varkappa и r обоснована в лемме 3.3. Если ∇ удовлетворяет условию (b), то, как видно из доказательства импликации (c) \Rightarrow (a), имеет место равенство $P=\Pi^r_{\varkappa}$, где r и \varkappa определяются соотношениями (3). Тогда из предложения 3.3 следует, что параллелотопом P однозначно определяются значения ∇e_n ($n \in \mathbb{N}$), а значит, и оператор ∇ . Если же Δ удовлетворяет условию (c), то, как легко видеть, $\nabla := (\Delta^{-1})'$ удовлетворяет условию (b) и, следовательно, параллелотоп P однозначно определяет операторы ∇ и $\Delta = (\nabla')^{-1}$. \triangleright

3.5. Следующее утверждение вытекает из предложения 2.12(b) и теоремы 3.4.

Следствие. Если P — параллелотоп и $\Delta \in \Delta^+(\mathbb{R}^\mathbb{N})$, то $\Delta(P)$ и $\Delta^{-1}(P)$ — параллелотопы.

- **3.6.** Следствие. Всякий параллелотоп является непустым проективным ограниченным квазиоткрытым выпуклым подмножеством $\mathbb{R}^{\mathbb{N}}$.
- ⊲ Параллелотоп Π_0^1 , очевидно, обладает перечисленными свойствами, а значит, с учетом предложений 2.9(b) и 2.12(b) ими обладает и всякое множество вида $z + \Delta(\Pi_0^1)$, где $z \in \mathbb{R}^{\mathbb{N}}$ и $\Delta \in \triangle^+(\mathbb{R}^{\mathbb{N}})$. Остается привлечь теорему 3.4. ⊳
- **3.7.** Лемма. Пусть C проективное выпуклое подмножество $\mathbb{R}^{\mathbb{N}}$. Тогда $\operatorname{qi} C \neq \varnothing$ в том и только в том случае, если C содержит некоторый параллелотоп.
- \triangleleft Достаточность вытекает из следствия 3.6. Покажем необходимость. Можно считать, что $0 \in \operatorname{qi} C$. Согласно теореме 1.8 для каждого $n \in \mathbb{N}$ проекция $\pi_n C$ является окрестностью нуля в \mathbb{R}^n , а значит, существуют последовательности элементов $c_n \in C$ и чисел $\varepsilon_n > 0$ такие, что

$$\pi_n c_n = \varepsilon_n \pi_n e_n$$
 для всех $n \in \mathbb{N}$.

Поскольку $\pi_n c_{n+1} = \pi_n \pi_{n+1} c_{n+1} = \pi_n (\varepsilon_{n+1} \pi_{n+1} e_{n+1}) = 0$, благодаря предложению 2.8(b) имеется такой проективный оператор $\Delta \in \mathscr{L}(\mathbb{R}^{\mathbb{N}})$, что $\Delta e_n = \frac{1}{2^{n+1}} c_n$ для всех $n \in \mathbb{N}$. Кроме того,

$$\begin{split} [\Delta](n,n) &= (\Delta e_n)(n) = \frac{1}{2^{n+1}} c_n(n) \\ &= \frac{1}{2^{n+1}} (\pi_n c_n)(n) = \frac{1}{2^{n+1}} (\varepsilon_n \pi_n e_n)(n) > 0, \end{split}$$

а значит, $\Delta \in \Delta^+(\mathbb{R}^\mathbb{N})$. Из предложения 2.9(b) следует, что $D := \Delta^{-1}(C)$ — проективное выпуклое подмножество $\mathbb{R}^\mathbb{N}$, причем $0 \in D$ и $2^{n+1}e_n \in D$ для всех $n \in \mathbb{N}$. Положим $z := (1,1,\dots) \in \mathbb{R}^\mathbb{N}$ и покажем, что $z + \Pi_0^1 \subset D$.

Пусть $y \in \Pi_0^1$. Поскольку множество D проективно, достаточно фиксировать $n \in \mathbb{N}$ и установить включение $x := \pi_n(z+y) \in \pi_n D$. Для всех $i \in \{1, \ldots, n\}$ имеем x(i) = 1 + y(i), где |y(i)| < 1, и поэтому 0 < x(i) < 2. Следовательно,

$$x = x(1)\pi_n e_1 + x(2)\pi_n e_2 + \dots + x(n)\pi_n e_n$$

= $\frac{x(1)}{4}\pi_n(4e_1) + \frac{x(2)}{8}\pi_n(8e_2) + \dots + \frac{x(n)}{2^{n+1}}\pi_n(2^{n+1}e_n) + \left(1 - \sum_{i=1}^n \frac{x(i)}{2^{i+1}}\right)0,$

а значит, x принадлежит $\pi_n D$ как выпуклая комбинация элементов

$$\pi_n(4e_1), \pi_n(8e_2), \dots, \pi_n(2^{n+1}e_n), 0 \in \pi_n D.$$

Из включения $z+\Pi^1_0\subset D$ следует, что множество $C=\Delta(D)$ содержит параллелотоп $\Delta z+\Delta(\Pi^1_0)$ (см. теорему 3.4). \triangleright

В связи с леммой 3.7 возникает естественный вопрос о том, образуют ли параллелотопы «базу квазивнутренности» в следующем смысле: если C — проективное выпуклое подмножество $\mathbb{R}^\mathbb{N}$ и $x\in \operatorname{qi} C$, то содержится ли в C какой-либо параллелотоп с центром x или хотя бы параллелотоп, включающий точку x? Ответ на этот вопрос приведен ниже в пп. 5.5 и 5.6.

- **3.8. Теорема.** Следующие свойства множества $S \subset \mathbb{R}^{\mathbb{N}}$ равносильны:
- (a) S квазиплотно в $\mathbb{R}^{\mathbb{N}}$;
- (b) S имеет непустое пересечение c любым параллелотопом;
- (c) для любого автоморфизма $\Delta\in \triangle^+(\mathbb{R}^\mathbb{N})$ множество $\Delta(S)$ коробочно плотно в $\mathbb{R}^\mathbb{N}$.
- \triangleleft Эквивалентность (а) ф(b) вытекает из предложения 1.11, следствия 3.6 и леммы 3.7.
 - (b) \Rightarrow (c). Пусть $\Delta \in \triangle^{\!+}(\mathbb{R}^{\mathbb{N}})$. Поскольку всякая базовая открытая коробка

$$B = \prod_{n \in \mathbb{N}}]z(n) - r(n), z(n) + r(n)[$$

- (см. (2)) представляет собой параллелотоп $z+\Pi_0^r$, по следствию 3.5 множество $\Delta^{-1}(B)$ тоже параллелотоп. Тогда из условия (b) следует $S\cap\Delta^{-1}(B)\neq\varnothing$, а значит, $\Delta(S)\cap B\neq\varnothing$.
- (c) \Rightarrow (b). Согласно теореме 3.4 всякий параллелотоп имеет вид $z+\Delta(\Pi_0^1)$ для некоторых $z\in\mathbb{R}^\mathbb{N}$ и $\Delta\in\Delta^+(\mathbb{R}^\mathbb{N})$. Поскольку $\Delta^{-1}\in\Delta^+(\mathbb{R}^\mathbb{N})$ (см. предложение 2.12(b)) и $\Delta^{-1}z+\Pi_0^1$ коробка, из условия (c) следует, что

$$\Delta^{-1}(S) \cap (\Delta^{-1}z + \Pi_0^1) \neq \emptyset,$$

а значит, $S\cap (z+\Delta(\Pi^1_0)) \neq \varnothing$. \triangleright

3.9. Следствие. Если S — квазиплотное подмножество $\mathbb{R}^{\mathbb{N}}$ и $\Delta \in \Delta^{+}(\mathbb{R}^{\mathbb{N}})$, то $\Delta(S)$ квазиплотно в $\mathbb{R}^{\mathbb{N}}$.

§ 4. Примеры

В этом параграфе приведены контрпримеры к трем сформулированным в [1] гипотезам — о полярах конусов [1, 9.6], о связи квазиплотности с проективностью [1, 9.7] и о пространствах, в которых все линейно независимые множества замкнуты [1, 9.11].

4.1. Если X,Y — двойственная пара векторных пространств, то для всякого множества $S\subset X$ определены поляры (см. [1,3.7])

$$\begin{split} S^{\oplus} &:= \{y \in Y : \langle s \,|\, y \rangle \geqslant 0 \text{ для всех } s \in S\}; \\ S^{\boxplus} &:= \{y \in Y : \langle s \,|\, y \rangle > 0 \text{ для всех } s \in S \backslash \{0\}\}. \end{split}$$

Последовательность подмножеств $S_n \subset \mathbb{R}_n^{\mathbb{N}}$ $(n \in \mathbb{N})$ называется $u + dy \kappa mue-$ ной (см. [1, 8.1]), если она обладает любым из следующих равносильных свойств:

- (a) существует такое множество $S \subset \mathbb{R}_{\text{fin}}^{\mathbb{N}}$, что $S_n = S \cap \mathbb{R}_n^{\mathbb{N}}$ для всех $n \in \mathbb{N}$;
- (b) $S_n = S_m \cap \mathbb{R}_n^{\mathbb{N}}$ при $n \leqslant m$;
- (c) $S_n = S_{n+1} \cap \mathbb{R}_n^{\mathbb{N}}$ для всех $n \in \mathbb{N}$.

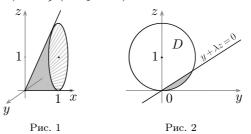
При этом множество S, удовлетворяющее условию (a), единственно и равно объединению $\bigcup_{n} S_n$.

Лемма [1, 8.3]. Если $K_n \subset \mathbb{R}_n^{\mathbb{N}}$ $(n \in \mathbb{N})$ — индуктивная последовательность замкнутых конусов, то $(\pi_n K_n)^{\boxplus}$ $(n \in \mathbb{N})$ — проективная последовательность и

$$arprojlim (\pi_n K_n)^{\boxplus} = \Big(igcup_{n\in\mathbb{N}} K_n\Big)^{\boxplus}.$$

Следующий пример дает отрицательный ответ на вопрос [1, 9.6] о том, проективна ли в этой ситуации последовательность поляр $(\pi_n K_n)^{\oplus}$.

Пример. Рассмотрим замкнутый конус $K_3 := \mathbb{R}^+(\{1\} \times D) \subset \mathbb{R}^3$, где $D = \{(y,z): y^2 + (z-1)^2 \leqslant 1\}$ (см. рис. 1).



Положим $\mathbb{R}^3_2 := \mathbb{R}^2 \times \{0\} \subset \mathbb{R}^3$,

$$K_2 := \pi_2(K_3 \cap \mathbb{R}^3_2) = \{(x,0) : x \geqslant 0\}$$

и покажем, что $K_2^{\oplus} \neq \pi_2 K_3^{\oplus}$. Действительно, $(0,1) \in K_2^{\oplus}$, но никакая тройка $(0,1,\lambda)$, где $\lambda \in \mathbb{R}$, не принадлежит K_3^{\oplus} , так как для любого $\lambda \in \mathbb{R}$ полуплоскость $\{(y,z): y+\lambda z < 0\}$ пересекается с кругом D (см. рис. 2), и для пары (y,z) из этого пересечения выполняется $(1,y,z) \in K_3$ и $\langle (1,y,z) \mid (0,1,\lambda) \rangle = y+\lambda z < 0$. Таким образом, для $S := K_3 \times \{(0,0,\ldots)\} \subset \mathbb{R}_{\mathrm{fin}}^{\mathbb{N}}$ последовательность поляр $(\pi_n(S \cap \mathbb{R}_n^{\mathbb{N}}))^{\oplus}$ не является проективной.

- **4.2.** Согласно предложению 1.11 квазиплотность множества $S \subset \mathbb{R}^{\mathbb{N}}$ равносильна каждому из следующих двух условий:
- (a) S пересекается с любым непустым выпуклым множеством $B \subset \mathbb{R}^{\mathbb{N}}$, которое является ограниченным, квазиоткрытым и *проективным*;
- (b) S пересекается с любым выпуклым множеством $C \subset \mathbb{R}^{\mathbb{N}}$, которое имеет непустую квазивнутренность и является *проективным*.

Приведенный ниже пример дает ответ на вопрос [1, 9.7] и показывает, что требование проективности множеств B и C в условиях (a) и (b) является существенным даже в случае, когда S — плотное векторное подпространство $\mathbb{R}^{\mathbb{N}}$.

Пример. Существуют квазиплотное (и поэтому плотное) подпространство $Y \subset \mathbb{R}^{\mathbb{N}}$ и непустое ограниченное квазиоткрытое выпуклое подмножество $B \subset \mathbb{R}^{\mathbb{N}}$ такие, что $Y \cap B = \varnothing$.

- ⊲ Пусть T базис трансцендентности $\mathbb R$ над $\mathbb Q$, т. е. максимальное алгебранически независимое над $\mathbb Q$ подмножество $\mathbb R$ или, что то же самое, алгебранически независимое над $\mathbb Q$ подмножество $T \subset \mathbb R$, для которого $\operatorname{alg} \mathbb Q(T) = \mathbb R$. (Здесь $\mathbb Q(T)$ подполе $\mathbb R$, порожденное множеством T, $\operatorname{alg} F$ подполе $\mathbb R$, состоящее из всех чисел, являющихся алгебраическими над подполем $F \subset \mathbb R$.) Рассмотрим произвольную последовательность $(t_n)_{n \in \mathbb N}$ попарно различных элементов множества T и положим $T_0 := T \setminus \{t_n : n \in \mathbb N\}$, $T_n := T_0 \cup \{t_1, \ldots, t_n\}$ и $F_n := \operatorname{alg} \mathbb Q(T_n)$. Тогда $(F_n)_{n \in \mathbb N}$ последовательность подполей $\mathbb R$, обладающая следующими свойствами:
 - (i) $F_n \subset F_{n+1}$ для всех $n \in \mathbb{N}$;
 - (ii) $\bigcup_{n\in\mathbb{N}}F_n=\mathbb{R};$
- (ііі) для каждого $n\in\mathbb{N}$ поле \mathbb{R} бесконечномерно как векторное пространство над F_n .

Действительно, благодаря равенству $\operatorname{alg}\mathbb{Q}(T)=\mathbb{R}$ для любого $\lambda\in\mathbb{R}$ имеется ненулевой многочлен p(x) с коэффициентами из $\mathbb{Q}(T)$, для которого $p(\lambda)=0$, откуда с учетом очевидных соотношений $\mathbb{Q}(T_n)\subset \mathbb{Q}(T_{n+1})$ и $\mathbb{Q}(T)=\bigcup_{n\in\mathbb{N}}\mathbb{Q}(T_n)$

следует, что все коэффициенты многочлена p(x) принадлежат $\mathbb{Q}(T_n)$ для некоторого $n \in \mathbb{N}$, и поэтому $\lambda \in \operatorname{alg} \mathbb{Q}(T_n) = F_n$. Кроме того, как легко видеть, $F_n \neq \mathbb{R}$ и для $\lambda \in \mathbb{R} \backslash F_n$ числа $\lambda, \lambda^2, \lambda^3, \ldots$ линейно независимы над F_n .

Согласно условию (iii) имеется такая последовательность элементов $x_n \in \mathbb{R}_n^{\mathbb{N}}$, что для каждого $n \in \mathbb{N}$ числа $x_n(1), \dots, x_n(n)$ линейно независимы над F_n , причем $x_n(n)>0$. Рассмотрим автоморфизм $\nabla\in\nabla_{\!\scriptscriptstyle +}(\mathbb{R}^{\mathbb{N}}_{\scriptscriptstyle \mathrm{fin}})$, принимающий значения $\nabla e_n = x_n$ для всех $n \in \mathbb{N}$ (см. предложения 2.8(a) и 2.10), и положим

$$Y := \nabla'(\operatorname{lin} \mathbb{Q}^{\mathbb{N}}), \quad B := \{b \in \Pi_0^1 \cap \mathbb{R}_{\operatorname{fin}}^{\mathbb{N}} : b(1) > 0\}.$$

Ясно, что множество B является непустым, выпуклым, ограниченным и квазиоткрытым (см. теорему 1.8). С помощью предложения 1.11(d) легко показать, что $\lim \mathbb{Q}^{\mathbb{N}}$ — квазиплотное подпространство $\mathbb{R}^{\mathbb{N}}$. Кроме того, $\nabla' \in \triangle^{+}(\mathbb{R}^{\mathbb{N}})$ (см. предложение 2.12(a)), а значит, Y квазиплотно в $\mathbb{R}^{\mathbb{N}}$ (см. следствие 3.9). Плотность пространства Y в $\mathbb{R}^{\mathbb{N}}$ вытекает из его квазиплотности согласно предложению 1.10 (см. также предложение 2.9(с)). Для завершения доказательства достаточно установить равенство $Y \cap \mathbb{R}^{\mathbb{N}}_{\text{fin}} = \{0\}.$ Покажем, что $\nabla'z \notin \mathbb{R}^{\mathbb{N}}_{\text{fin}}$ для любого ненулевого $z \in \text{lin }\mathbb{Q}^{\mathbb{N}}.$ Пусть

$$z = \sum_{i=1}^k \lambda_j q_j, \quad \lambda_j \in \mathbb{R}, \; q_j \in \mathbb{Q}^\mathbb{N},$$

и пусть $z(l) \neq 0$ для некоторого $l \in \mathbb{N}$. Благодаря условиям (i) и (ii) имеется такое число $m\geqslant l,$ что $\lambda_1,\ldots,\lambda_k\in F_m.$ Рассмотрим произвольное $n\geqslant m$ и покажем, что $(\nabla' z)(n) \neq 0$. Действительно, для всех $i \in \mathbb{N}$ имеем

$$z(i) = \sum_{j=1}^k \lambda_j q_j(i) \in F_m \subset F_n.$$

Тогда $\langle x_n \, | \, z \rangle = \sum_{i=1}^n x_n(i) z(i)$ — линейная комбинация линейно независимых над F_n чисел $x_n(1),\ldots,x_n(n)$ с коэффициентами $z(1),\ldots,z(n)\in F_n$, причем эта комбинация нетривиальна, так как $n \geqslant l$ и $z(l) \neq 0$. Следовательно, $\langle x_n \, | \, z \rangle \neq 0$. Осталось заметить, что $\langle x_n \, | \, z \rangle = \langle \nabla e_n \, | \, z \rangle = \langle e_n \, | \, \nabla' z \rangle = (\nabla' z)(n)$. \triangleright

4.3. В работе [3] приведены примеры собственных плотных векторных подпространств $Y\subset\mathbb{R}^{\mathbb{N}}$, для которых все линейно независимые множества замкнуты в $\mathbb{R}^{\mathbb{N}}_{\text{fin}}|Y|$ (см. [3, 4.8]), и показано, что наличие незамкнутого линейно независимого множества влечет наличие незамкнутого архимедова конуса (см. [3, 4.7]). Вопрос о справедливости обратного утверждения был оставлен открытым и явно сформулирован в [1, 9.11]. Приведенный ниже пример дает отрицательный ответ на этот вопрос.

Для числовой последовательности $(\lambda_n)_{n\in\mathbb{N}}$ и числа λ будем писать $\lambda_n \to \lambda$, если $\lambda_n \to \lambda$ и существует такой номер $\bar{n} \in \mathbb{N}$, что $\lambda_n \neq \lambda$ при $n \geqslant \bar{n}$. Множество $\Lambda \subset \mathbb{R}$ условимся называть *разреженным*, если оно обладает следующими равносильными свойствами:

- (a) Λ замкнуто и дискретно;
- (b) все ограниченные подмножества Λ конечны;
- (c) не существуют такая последовательность $(\lambda_n)_{n\in\mathbb{N}}$ в Λ и такое число $\alpha \in \mathbb{R}$, что $\lambda_n \to \alpha$.

Лемма. Для любых $k \in \mathbb{N}$ и $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$ множество

$$\Lambda(\alpha_1,\ldots,\alpha_k):=\{\alpha_12^{n_1}+\cdots+\alpha_k2^{n_k}:\,n_1,\ldots,n_k\in\mathbb{N}\}$$

является разреженным.

⊲ Воспользуемся индукцией по k. Разреженность множества $\Lambda(\alpha) = \{\alpha 2^n : n \in \mathbb{N}\}$ для любого числа α не вызывает сомнений. Предположим, что для любых чисел $\beta_1, \dots, \beta_{k-1}$ множество $\Lambda(\beta_1, \dots, \beta_{k-1})$ является разреженным, рассмотрим произвольные числа $\alpha_1, \dots, \alpha_k$ и допустим вопреки доказываемому, что $\Lambda(\alpha_1, \dots, \alpha_k)$ — не разреженное множество. Тогда существуют последовательности $\nu_1, \dots, \nu_k \in \mathbb{N}^{\mathbb{N}}$ и число α такие, что

$$\lambda(n) := \alpha_1 2^{\nu_1(n)} + \dots + \alpha_k 2^{\nu_k(n)} \twoheadrightarrow \alpha.$$

Текущая цель — обнаружить противоречие.

Заметим, что все последовательности ν_1,\dots,ν_k стремятся к бесконечности. Действительно, если, например, $\nu_1 \nrightarrow \infty$, то ν_1 имеет постоянную подпоследовательность $\nu_1(n_m) \equiv i$. В этом случае

$$\lambda(n_m) = \alpha_1 2^i + \alpha_2 2^{\nu_2(n_m)} + \dots + \alpha_k 2^{\nu_k(n_m)} \twoheadrightarrow \alpha_k 2^{\nu_k(n_m)}$$

и тогда

$$\alpha_2 2^{\nu_2(n_m)} + \cdots + \alpha_k 2^{\nu_k(n_m)} \twoheadrightarrow \alpha - \alpha_1 2^i$$

вопреки разреженности множества $\Lambda(\alpha_2,\ldots,\alpha_k)$.

Положим $\mu(n) := \min\{\nu_1(n), \dots, \nu_k(n)\} - 1 \ (n \in \mathbb{N})$. Тогда

$$\lambda(n) = 2^{\mu(n)} (\alpha_1 2^{\mu_1(n)} + \dots + \alpha_k 2^{\mu_k(n)}),$$

где $\mu_i(n) = \nu_i(n) - \mu(n)$, причем $\mu(n) \to \infty$ и для каждого $n \in \mathbb{N}$ хотя бы одно из натуральных чисел $\mu_1(n), \dots, \mu_k(n)$ равно 1. Для определенности будем считать, что последовательность μ_1 имеет постоянную подпоследовательность $\mu_1(n_m) \equiv 1$. В этом случае

$$\lambda(n_m) = 2^{\mu(n_m)} \left(2\alpha_1 + \alpha_2 2^{\mu_2(n_m)} + \dots + \alpha_k 2^{\mu_k(n_m)} \right) \twoheadrightarrow \alpha,$$

откуда с учетом стремления $\mu(n_m) \to \infty$ следует, что

$$\alpha_2 2^{\mu_2(n_m)} + \cdots + \alpha_k 2^{\mu_k(n_m)} \twoheadrightarrow -2\alpha_1$$

вопреки разреженности множества $\Lambda(\alpha_2,\ldots,\alpha_k)$. \triangleright

Пример. Положим $Y=\lim \prod_{n\in \mathbb{N}}\{2^{n+m}: m\in \mathbb{N}\}$. Тогда Y- плотное под-

пространство $\mathbb{R}^{\mathbb{N}}$, и в пространстве $\mathbb{R}^{\mathbb{N}}_{\text{fin}}|Y$ все линейно независимые множества замкнуты, но имеются незамкнутые архимедовы конусы.

 \triangleleft Пространство Y плотно в $\mathbb{R}^{\mathbb{N}},$ так как для всех $m\in\mathbb{N}$

$$e_m = rac{1}{2^{m+1}}ig(d+2^{m+1}e_mig) - rac{1}{2^{m+1}}d\in Y,$$
 где $d=(2^{n+1})_{n\in\mathbb{N}}.$

Замкнутость всех линейно независимых множеств в $\mathbb{R}^{\mathbb{N}}_{\mathrm{fin}}|Y$ доказывается совершенно аналогично [3, 4.8]. Согласно предложениям 1.11(c) и 1.9 и теореме 1.12(a) для того, чтобы установить наличие в $\mathbb{R}^{\mathbb{N}}_{\mathrm{fin}}|Y$ незамкнутого архимедова конуса, достаточно показать, что $Y \cap]0,1[^{\mathbb{N}} = \varnothing]$. Каждый элемент $y \in Y$ имеет вид

$$y(n) = \alpha_1 2^{n+m_1(n)} + \dots + \alpha_k 2^{n+m_k(n)} = 2^n \lambda(n) \quad (n \in \mathbb{N}),$$

где $k \in \mathbb{N}, \alpha_1, \ldots, \alpha_k \in \mathbb{R}, m_1(n), \ldots, m_k(n) \in \mathbb{N}$ и

$$\lambda(n) = \alpha_1 2^{m_1(n)} + \dots + \alpha_k 2^{m_k(n)} \in \Lambda(\alpha_1, \dots, \alpha_k).$$

Если $y \in]0,1[^{\mathbb{N}}$, т. е. $0 < 2^n \lambda(n) < 1$ для всех $n \in \mathbb{N}$, то $\lambda(n) \twoheadrightarrow 0$, что противоречит разреженности множества $\Lambda(\alpha_1,\ldots,\alpha_k)$. \triangleright

§ 5. Квазиплотность и топологическая плотность

В этом параграфе в качестве ответа на вопрос [1, 9.9] установлено, что квазиплотность в $\mathbb{R}^{\mathbb{N}}$ не равносильна плотности относительно коробочной то-пологии, а также приведены примеры, относящихся к вопросу [1, 9.10] о топологическом характере квазиплотности и показывающие, что параллелотопы не образуют базу какой-либо топологии и не характеризуют квазиплотность в $\mathbb{R}^{\mathbb{N}}$ как топологическую. Кроме того, дан отрицательный ответ на сформулированный в п. 3.7 вопрос о том, образуют ли параллелотопы базу квазивнутренности.

5.1. Лемма. Существует такая последовательность
$$\varkappa\in\prod_{n\in\mathbb{N}}\mathbb{R}^n,$$
 что $\Pi^1_\varkappa\cap\Pi^1_0=\{0\}.$

$$B$$
 частности, если $Y\subset\mathbb{R}^\mathbb{N}$ и $z\notin Y$, то $Y\cap(z+\Pi^1_z)\cap(z+\Pi^1_0)=\varnothing$.

 \triangleleft Пусть $(N_m)_{m\in\mathbb{N}}$ — какое-либо разбиение \mathbb{N} на бесконечные подмножества $N_m\subset\mathbb{N}$. Определим последовательность $\varkappa\in\prod_{n\in\mathbb{N}}\mathbb{R}^n$, полагая $\varkappa_n=n\pi_ne_m$ при

 $n\in N_m$. Рассмотрим произвольный элемент $y\in\Pi^1_\varkappa$, имеющий ненулевое значение $y(m)\neq 0$ для некоторого $m\in\mathbb{N}$, и покажем, что $y\notin\Pi^1_0$. Действительно, если $n\in N_m$ и $n\geqslant m$, то

$$\langle \varkappa_n \, | \, \pi_n y
angle = \langle n \pi_n e_m \, | \, \pi_n y
angle = n y(m),$$

а значит, в силу включения $y \in \Pi^1_{\mathbf{z}}$ для таких n справедливо неравенство

$$|y(n+1)-ny(m)|=|y(n+1)-\langle \varkappa_n\,|\,\pi_ny
angle|<1$$

и, в частности, |y(n+1)|>n|y(m)|-1. Следовательно, $\sup_{n\in N_m}|y(n+1)|=\infty$. ightharpoonup

5.2. Согласно теореме 3.8 всякое квазиплотное подмножество $\mathbb{R}^{\mathbb{N}}$ коробочно плотно (см. также предложения 1.9 и 1.11(с)). Как показывает следующий пример, обратное утверждение неверно даже для плотных векторных подпространств $\mathbb{R}^{\mathbb{N}}$, что дает отрицательный ответ на вопрос [1, 9.9].

Пример. Существует плотное подпространство $\mathbb{R}^{\mathbb{N}}$, являющееся коробочно плотным, но не квазиплотным в $\mathbb{R}^{\mathbb{N}}$.

⊲ Пусть Z — коробочно плотное подпространство $\mathbb{R}^{\mathbb{N}}$, не содержащее ℓ^{∞} и имеющее плотное в $\mathbb{R}^{\mathbb{N}}$ пересечение $Z \cap \ell^{\infty}$. (На роль Z подходит, например, $\lim \mathbb{Q}^{\mathbb{N}}$.) Согласно лемме 5.1 имеется параллелотоп P с центром в нуле такой, что $P \cap \Pi_0^1 = \{0\}$. Используя абсолютную выпуклость P, легко показать, что $(\lim P) \cap \ell^{\infty} = \{0\}$. Положим $Y_0 := Z \cap \ell^{\infty} + \lim P$ и рассмотрим произвольный элемент $b \in \ell^{\infty}$, не принадлежащий Z. Как легко видеть, $b \notin Y_0$ и поэтому имеется подпространство $Y \subset \mathbb{R}^{\mathbb{N}}$ коразмерности 1 такое, что $Y_0 \subset Y$ и $b \notin Y$. Поскольку $Z \cap \ell^{\infty} \subset Y$, пространство Y плотно в $\mathbb{R}^{\mathbb{N}}$. Кроме того, из соотношений $P \subset Y$ и $b \notin Y$ следует $Y \cap (b+P) = \emptyset$, а значит, согласно теореме 3.8 пространство Y не квазиплотно в $\mathbb{R}^{\mathbb{N}}$. Остается показать, что Y коробочно плотно в $\mathbb{R}^{\mathbb{N}}$.

Рассмотрим произвольные последовательности $s\in\mathbb{R}^{\mathbb{N}}$ и $r\in]0,\infty[^{\mathbb{N}}$ и докажем, что $Y\cap (s+\Pi_0^r)\neq\varnothing$. Можно считать, что $r\in\ell^\infty$, т.е. $\Pi_0^r\subset\ell^\infty$. Поскольку codim Y=1, существует такое число $\alpha\in\mathbb{R}$, что $s-\alpha b\in Y$. Благодаря коробочной плотности Z в $\mathbb{R}^{\mathbb{N}}$ имеется элемент $z\in Z\cap (\alpha b+\Pi_0^r)$. Включение $\alpha b+\Pi_0^r\subset\ell^\infty$ влечет $z\in Z\cap\ell^\infty\subset Y$. Кроме того, $z+s-\alpha b\in s+\Pi_0^r$. Следовательно, $z+s-\alpha b\in Y\cap (s+\Pi_0^r)$. \triangleright

5.3. Из леммы 5.1 следует, что параллелотопы не образуют базу какойлибо топологии. Несмотря на то, что любое квазиплотное подпространство $Y \subset \mathbb{R}^{\mathbb{N}}$ пересекается с каждым параллелотопом, в случае $Y \neq \mathbb{R}^{\mathbb{N}}$ найдутся два таких параллелотопа P и Q с общим центром, что

$$Y \cap P \cap Q = \varnothing$$
.

В частности, критерии 1.11 и 3.8 не характеризуют квазиплотность в $\mathbb{R}^{\mathbb{N}}$ как топологическую плотность даже для векторных подпространств. Это наблюдение тем не менее не дает ответа на вопрос [1, 9.10] о том, существует ли топология на $\mathbb{R}^{\mathbb{N}}$, плотность относительно которой была бы равносильна квазиплотности в $\mathbb{R}^{\mathbb{N}}$.

5.4. В дальнейшем каждое из пространств \mathbb{R}^n $(n \in \mathbb{N})$ наделяется евклидовой нормой $\|\cdot\| := \|\cdot\|_2$. Для $S \subset \mathbb{R}^n$ положим $\|S\| := \sup_{s \in S} \|s\|$. Символом 0_n обозначим нулевой элемент $(0,\ldots,0) \in \mathbb{R}^n$. Если $x \in \mathbb{R}^n$ и $\lambda \in \mathbb{R}$, то кортеж $(x(1),\ldots,x(n),\lambda) \in \mathbb{R}^{n+1}$ условимся записывать в виде (x,λ) . В частности,

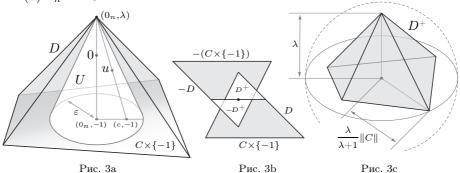
$$(0_n, \lambda) = (0, \dots, 0, \lambda) = \lambda \pi_{n+1} e_{n+1} \in \mathbb{R}^{n+1}.$$

Лемма. Пусть $n \in \mathbb{N}$, C — ограниченное выпуклое подмножество \mathbb{R}^n , $0 \in \operatorname{int} C$ и $\lambda > 0$. Определим подмножества $D, D^+ \subset \mathbb{R}^{n+1}$, полагая

$$D := \operatorname{co}(C \times \{-1\} \cup \{(0_n, \lambda)\}), \quad D^+ := \{d \in D : d(n+1) \geqslant 0\}.$$

Тогда

- (a) $0 \in \text{int } D$;
- (b) $D \cap -D \subset D^+ \cup -D^+$;
- (c) $||D \cap -D|| \leqslant ||D^+|| = \max\{\lambda, \frac{\lambda}{\lambda+1}||C||\};$
- (d) $\pi_n D = C$.



 \triangleleft (а) По условию множество C содержит некоторый шар $\{x\in\mathbb{R}^n:\|x\|<\varepsilon\},$ $\varepsilon>0. Элементарная проверка показывает, что открытая окрестность нуля$

$$U := \left\{ u \in \mathbb{R}^{n+1} : \frac{\|\pi_n u\|}{\varepsilon} + \frac{u(n+1)+1}{\lambda+1} < 1, \ u(n+1) > -1 \right\}$$

содержится в D. Действительно, если $u \in U$ и

$$c := rac{\lambda + 1}{\lambda - u(n+1)} \, \pi_n u,$$

то $\|c\| < \varepsilon$ и вектор u принадлежит отрезку $[(c, -1), (0_n, \lambda)]$ (см. рис. 3a). Остальные соотношения тривиальны (см. рис. 3b и 3c). \triangleright

5.5. Если x — квазивнутренняя точка проективного выпуклого множества $C \subset \mathbb{R}^{\mathbb{N}}$, то в связи с леммой 3.7 можно было бы ожидать, что в C содержится параллелотоп с центром x. Тем не менее доказательство леммы 3.7 обеспечивает лишь наличие параллелотопа $P \subset C$, центр которого отличен от x и, более того, $x \notin P$. Следующий пример показывает, что это обстоятельство является существенным.

Пример. Существует такое проективное выпуклое подмножество $C \subset \mathbb{R}^{\mathbb{N}}$, что $0 \in \text{qi } C$, но C не содержит параллелотопов с центром в нуле.

 \triangleleft Рассмотрим последовательность множеств $C_n \subset \mathbb{R}^n \ (n \in \mathbb{N})$, определенную следующим рекурсивным построением (см. рис. 4):

$$C_1 := [-1, 1],$$

 $C_{n+1} := \operatorname{co}(C_n \times \{-1\} \cup \{(0_n, \lambda_n)\}),$

где числа $\lambda_n>0$ выбираются исходя из условия $\max\left\{\lambda_n, \frac{\lambda_n}{\lambda_n+1}\|C_n\|\right\}\leqslant \frac{1}{n}.$

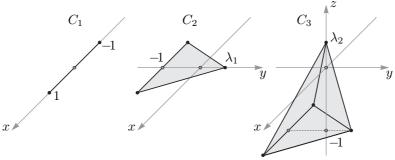


Рис. 4

Согласно лемме 5.4 выпуклые множества $(C_n)_{n\in\mathbb{N}}$ образуют проективную последовательность, причем $0\in$ int C_n и $\|C_n\cap -C_n\|\leqslant \frac{1}{n}$ для всех $n\in\mathbb{N}$. Положим $C:=\varprojlim C_n$. Из теоремы 1.8 следует, что $0\in$ qi C. С другой стороны, если бы множество C содержало какой-либо параллелотоп с центром в нуле, то нашелся бы такой элемент $c\in C\cap -C$, что $c(1)\neq 0$, и тогда для всех $n\in\mathbb{N}$ имели бы место противоречивые соотношения

$$|c(1)| \le \|\pi_n c\| \le \|\pi_n (C \cap -C)\| = \|C_n \cap -C_n\| \le \frac{1}{n}.$$

5.6. Усилим предыдущий пример и покажем, что в рассматриваемом случае точка $0 \in \operatorname{qi} C$ не принадлежит никакому параллелотопу, содержащемуся в C.

Лемма. Пусть $P \subset \mathbb{R}^{\mathbb{N}}$ — параллелотоп и $x \in P$. Тогда имеется параллелотоп P_x с центром x такой, что $P_x \subset P$.

⊲ По теореме 3.4 существуют $z \in \mathbb{R}^{\mathbb{N}}$ и $\Delta \in \triangle^{\!+}(\mathbb{R}^{\mathbb{N}})$ такие, что $P = z + \Delta(\Pi_0^1)$. Как легко видеть, $y := \Delta^{\!-1}(x-z) \in \Pi_0^1$. Определим $r \in]0, \infty[^{\mathbb{N}}$, полагая r(n) := 1 - |y(n)|. Тогда $y + \Pi_0^r \subset \Pi_0^1$ и, следовательно,

$$P_x := x + \Delta(\Pi_0^r) = z + \Delta y + \Delta(\Pi_0^r) = z + \Delta(y + \Pi_0^r) \subset z + \Delta(\Pi_0^1) = P.$$

Следствие. Если множество C не содержит параллелотопов c центром x, то C не содержит и таких параллелотопов P, что $x \in P$.

Таким образом, всякое проективное выпуклое множество $C \subset \mathbb{R}^{\mathbb{N}}$ с непустой квазивнутренностью содержит некоторый параллелотоп, но такие параллелотопы не всегда покрывают квазивнутренность C.

5.7. Говорят, что выпуклое множество $C \subset X$ квазилокально ограничено в точке $x \in \text{qi } C$, если $x \in \text{qi } B$ для некоторого ограниченного подмножества $B \subset C$. Пространство X называют квазилокально ограниченным, если в X любое выпуклое множество C квазилокально ограничено в каждой точке $x \in \text{qi } C$ (см. $[1, \S 5]$).

Согласно теореме [1, 5.10] пространство $\mathbb{R}^{\mathbb{N}}$ является квазилокально ограниченным, но из п. 5.6 следует, что параллелотопы не образуют «базу квазилокальной ограниченности»: если x — квазивнутренняя точка выпуклого множества $C \subset \mathbb{R}^{\mathbb{N}}$, то $x \in \operatorname{qi} B$ для некоторого ограниченного подмножества $B \subset C$, но среди таких множеств B может не найтись ни одного параллелотопа.

ЛИТЕРАТУРА

- **1.** *Гутман А. Е., Емельяненков И. А.* Локально выпуклые пространства, в которых все архимедовы конусы замкнуты // Сиб. мат. журн. 2023. Т. 64, № 5. С. 945–970.
- 2. Wilansky A. Modern methods in topological vector spaces. New York: McGraw-Hill, 1978.
- 3. Гутман А. Е., Емельянов Э. Ю., Матюхин А. В. Незамкнутые архимедовы конусы в локально выпуклых пространствах // Владикавк. мат. журн. 2015. Т. 17, № 3. С. 36–43.

Поступила в редакцию 24 декабря 2023 г. После обработки 24 декабря 2023 г. Принята к публикации 28 января 2024 г.

Гутман Александр Ефимович Институт математики им. С. Л. Соболева СО РАН, пр. Академика Коптюга, 4, Новосибирск 630090; Новосибирский государственный университет, ул. Пирогова, 1, Новосибирск 630090 gutman@math.nsc.ru

Емельяненков Иван Александрович Институт математики им. С. Л. Соболева СО РАН, пр. Академика Коптюга, 4, Новосибирск 630090 i.emelianenkov@yandex.ru