УДК 519.17

ЛЕГКИЕ 3-ЦЕПИ В 3-МНОГОГРАННИКАХ БЕЗ СМЕЖНЫХ 3-ГРАНЕЙ О. В. Бородин, А. О. Иванова

Аннотация. Пусть w_k — максимум минимальной суммы степеней вершин (веса) в k-вершинных цепях (k-цепях) 3-многогранников. Очевидно, что каждый 3-многогранник содержит вершину степени не больше 5, так что $w_1 \leq 5$. Еще в 1955 г. Коциг доказал, что $w_2 \leq 13$ (т. е. найдется ребро веса не больше 13), причем оценка точна.

В 1993 г. Андо, Ивасаки и Канеко доказали, что $w_3 \leq 21$, и эта оценка также неулучшаема ввиду конструкции Йендроля, найденной в 1997 г. В 1997 г. О. В. Бородин уточнил этот результат, показав, что $w_3 \leq 18$ верно для всех 3-многогранников с $w_2 \geq 7$, но для 3-многогранников с $w_2 \geq 8$ имеет место более сильная оценка $w_3 \leq 17$, причем неулучшаемость 18 была подтверждена О. В. Бородиным и др. в 2013 г, а неулучшаемость 17 была известна давно.

За последние три десятилетия большое число работ было посвящено задачам раскраски и структурным задачам на плоских графах, разреженных в том или ином смысле.

В данной статье рассматриваются 3-многогранники без смежных 3-циклов, т. е. не имеющие хордальных 4-циклов (иначе говоря, без $K_4 - e$). Известно, что для таких 3-многогранников $w_1 \leq 4$ и, более того, $w_2 \leq 9$, где обе оценки точны (Бородин, 1992).

Доказано, что всякий 3-многогранник без хордальных 4-циклов содержит 3-цепь веса не более 15, т. е. $w_3 \leq 15$, и эта оценка неулучшаема.

DOI 10.33048/smzh.2024.65.202

Ключевые слова: плоский граф, 3-многогранник, разреженный 3-многогранник, структурные свойства, 3-цепь, вес.

1. Введение

Степень d(x) вершины или грани x в 3-многограннике P есть число инцидентных ребер. Под k-вершиной (k-гранью) понимается вершина (грань) степени k, k^+ -вершина имеет степень не меньше k,и т. д.

Цепь на k вершинах называется k-цепью. Цепь uvw есть (i, j, k)-цепь, если $d(u) \leq i, d(v) \leq j$ и $d(w) \leq k$. Вес w(H) подграфа H в P есть сумма степеней вершин из H в P. Будем опускать аргументы функций, когда они понятны из контекста. Через \mathbf{P}_{δ} обозначим класс 3-многогранников с минимальной степенью вершин δ ; в частности, \mathbf{P}_3 есть множество всех 3-многогранников.

Пусть w_k — максимум минимальной суммы степеней вершин (веса) в kвершинных цепях 3-многогранников из \mathbf{P}_{δ} .

Работа О. В. Бородина (постановка задачи, доказательство) поддержана Министерством науки и высшего образования России (проект FWNF-2022-0017). Работа А. О. Ивановой (детали доказательства, конструкция) поддержана Министерством науки и высшего образования России, соглашение № 075-02-2023-947 от 16 февраля 2023 г.

В 1904 г. Вернике [1] доказал, что если $P_5 \in \mathbf{P}_5$, то P_5 содержит 5-вершину, смежную с 6⁻-вершиной, т. е. $w_2 \leq 11$, причем оценка точна. Этот результат был усилен Франклином [2] в 1922 г., доказавшим существование (6, 5, 6)-цепи в любом P_5 , так что $w_3 \leq 17$ в \mathbf{P}_5 , и эта оценка неулучшаема. В 2016 г. О. В. Бородин и А. О. Иванова [3] доказали, что имеется также и (5, 6, 6)-цепь, а других точных описаний 3-цепей в \mathbf{P}_5 не существует.

Теорема Франклина [2] является основополагающей в структурной теории плоских графов; она была обобщена или уточнена в нескольких направлениях (см., например, [4–13] и обзоры Йендроля, Фосса [14], О. В. Бородина, А. О. Ивановой [15] и Кренстона, Веста [16]).

Очевидно, что каждый 3-многогранник, т. е. из \mathbf{P}_3 , содержит вершину степени не больше 5, так что $w_1 \leq 5$. Еще в 1955 г. Коциг [17] доказал, что $w_2 \leq 13$ (другими словами, что найдется ребро веса не больше 13), причем оценка точна.

В 1993 г. Андо, Ивасаки и Канеко [18] доказали, что $w_3 \leq 21$, и эта оценка также неулучшаема ввиду конструкции Йендроля [8], найденной в 1997 г. В 1997 г. О. В. Бородин [19] уточнил этот результат, показав, что $w_3 \leq 18$ верно для всех 3-многогранников с $w_2 \geq 7$, но для 3-многогранников с $w_2 \geq 8$ имеет место более сильная оценка $w_3 \leq 17$, причем неулучшаемость 18 была подтверждена О. В. Бородиным и др. [20] в 2013 г., а неулучшаемость 17 была известна давно.

За последние три десятилетия большое число работ было посвящено задачам раскраски и структурным задачам на плоских графах, разреженных в том или ином смысле. В частности, новые результаты о строении плоских графов с минимальной степенью 3 и 4 без смежных 3-циклов при различных дополнительных предположениях находят применение в 3-раскраске (как правильной, так и неправильной), предписанной 3- и 4-раскрасках, а также в недавно введенных 3- и 4-DP-раскрасках (такую информацию можно найти в ссылках на выдающуюся статью Дворжака, Постля [21]).

В данной статье рассматриваются наиболее плотные среди разреженных плоских графов, а именно, класс \mathbf{P}_3^{TT} 3-многогранников без $K_4 - e$ (иначе говоря, не имеющих двух 3-циклов с общим ребром). Известно еще с 1992 г., что такие 3-многогранники имеют $w_1 \leq 4$ и, более того, $w_2 \leq 9$, где обе оценки точны [22], откуда следует, в частности, что $\mathbf{P}_5^{TT} = \emptyset$.

Цель данной статьи — доказать, что все 3-многогранники из \mathbf{P}_3^{TT} имеют $w_3 \leq 15$ и эта оценка неулучшаема.

Теорема 1. Всякий 3-многогранник без хордальных 4-циклов содержит 3-цепь веса не более 15, причем оценка неулучшаема.

2. Доказательство теоремы 1

На рис. 1 показано, как преобразовать додекаэдр в 3-многогранник без хордальных 4-циклов такой, что каждая его 3-цепь имеет вес не менее 15.

2.1. Перераспределение зарядов на контрпримере к $w_3 \leq 15$. Предположим, что 3-многогранник *P* имеет все 3-цепи веса не менее 16. По ходу доказательства будем сокращать утверждение «поскольку *P* не содержит (a, b, c)-цепей» до «ввиду не-(a, b, c)!». В дальнейшем через $v_1, \ldots, v_{d(v)}$ будем обозначать соседние с вершиной *v* вершины в циклическом порядке.

Рис. 1. Преобразование додеказдра в 3-многогранник со всеми 3-цепями веса не менее 15, не содержащий хордальных C_4 .

Формулу Эйлера $\left|V\right|-\left|E\right|+\left|F\right|$ = 2 для P,где V,~E,~F суть множества вершин, ребер и граней в Р соответственно, можно переписать в виде

$$\sum_{x \in V \cup F} (d(x) - 4) = -8.$$
(1)

Каждая вершина или грань $x \in V \cup F$ имеет начальный заряд $\mu(x) = d(x) - 4$. Используя свойства 3-многогранника Р как контрпримера, мы зададим локальное перераспределение зарядов μ , сохраняющее их сумму, таким образом, что новый заряд $\mu'(x)$ будет неотрицательным для всех $x \in V \cup F$. Это даст противоречие с тем фактом, что сумма новых зарядов согласно (1) равна -8.

Правила перераспределения зарядов такие (рис. 2).

R1. Каждая 5^+ -грань дает $\frac{1}{3}$ каждой инцидентной 3-вершине.

R2. Каждая *d*-вершина при $d = 5 \lor 6 \lor 7 \lor 8 \lor 9$ дает $\frac{1}{3} \lor \frac{1}{2} \lor \frac{3}{4} \lor \frac{4}{5} \lor 1$ соответственно каждой смежной 3-вершине.

R3. Каждая d-вершина при $d = 5 \lor 6 \lor 7 \lor 8 \lor 9$ дает $\frac{1}{3} \lor \frac{1}{2} \lor \frac{3}{4} \lor \frac{4}{5} \lor 1$ соответственно каждой инцидентной 3-грани за следующим исключением:

(ex) если 8-вершина v лежит в общей 3-грани f с двумя 4-вершинами, то v дает 1 грани f вместо $\frac{4}{5}$.

R4. Пусть 10⁺-вершина v смежна с 3-вершиной w по ребру, инцидентному двум 4^+ -граням. Тогда v дает $\frac{3}{5}$ вершине w за следующим исключением:

(ex) если имеется 4-грань $vwxv_1$ с $d(v_1) \ge 8$, то v вместо этого дает $\frac{9}{10}$ вершине w.

R5. Каждая 10^+ -вершина v, лежащая в 3-грани $f = vv_1v_2$, дает на f:

- (a) 1, если $d(v_1) \le 4$ и $d(v_2) \le 5$, (b) $\frac{1}{2}$, если $d(v_1) \le 4$ и $d(v_2) \ge 6$, или (c) $\frac{1}{3}$, если $d(v_1) \ge 5$ и $d(v_2) \ge 5$.

R6. Если 10^+ -вершина v лежит в общей 3-грани $f = vv_1v_2$ с 3-вершиной $v_1, \text{ то } v$ дает на v_1 : (a) $rac{1}{10}$ при $d(v_2)=3,$

Рис. 2. Правила перераспределения зарядов.

(b) ¹/₅ при 4 ≤ d(v₂) ≤ 5, или
(c) ²/₅ при d(v₂) ≥ 6 за следующим исключением:

(с_ex) если $d(v_2) \ge 10$, а v_1 инцидентна двум 4-граням и смежна с 4⁻вершиной, то v_1 получает $\frac{1}{2}$ от каждой из вершин v и v_2 .

2.2. Проверка того, что $\mu'(x) \ge 0$ при всех $x \in V \cup F$. Для 5⁺-грани f имеем $\mu'(f) = d(f) - 4 - \frac{1}{3} \times \lfloor \frac{2d(f)}{3} \rfloor \le d(f) - 4 - \frac{1}{3} \times \frac{2d(f)}{3} = \frac{7d(f) - 36}{9}$ по правилу R1 ввиду не-(3,3,3)!. Если $d(f) \ge 6$, то отсюда уже $\mu'(f) > 0$, а при d(f) = 5имеется не более трех 3-вершин при грани f, откуда $\mu'(f) = 5 - 4 - \frac{1}{3} \times 3 = 0.$

Если fесть 4-грань, то она не участвует в перераспределении зарядов, а значит, $\mu'(f) = \mu(f) = 4 - 4 = 0.$

Пусть 3-грань $f = vv_1v_2$ имеет $d(v) \ge d(v_1) \ge d(v_2)$. Если $d(v_2) \ge 5$, то $\mu'(f)=3-4+3 imesrac{1}{3}=0$ по правилу R3 в сочетании с R5с, так что можем дальше предполагать, что $d(v_2) \le 4$. Теперь если $d(v_1) \ge 6$, то $\mu'(f) = -1 + 2 \times \frac{1}{2} = 0$ по R3 и R5b.

При $d(v_1) \leq 5$ имеем $d(v) \geq 7$ согласно не-(4, 5, 6)!. Если же $d(v) \geq 9$, то $\mu'(f) = -1 + 1 = 0$ по R3 и R5а. Далее пусть d(v) = 8; если $d(v_1) = 5$, то $\mu'(f) = -1 + \frac{4}{5} + \frac{1}{3} > 0$ согласно R3. Остается допустить, что $d(v_1) \le 4$, откуда

следует ввиду не-(3, 4, 8)!, что $d(v_1) = d(v_2) = 4$, а значит, $\mu'(f) = -1 + 1 = 0$ по R3ex, что и требовалось.

Наконец, если d(v) = 7, то $d(v_1) = 5$ и $d(v_2) = 4$ ввиду не-(3, 5, 7)! в сочетании с не-(4,4,7)!, поэтому $\mu'(f) = -1 + \frac{1}{3} + \frac{3}{4} > 0$ согласно R3.

Теперь рассмотрим вершину v.

Случай 1: d(v) = 3. Пусть сначала v не смежна с 10^+ -вершинами; тогда у нее есть не меньше двух 7⁺-соседей ввиду не-(3, 6, 6)! Значит, v получает не менее $\frac{3}{4}$ от каждого из них по R2, а следовательно, $\mu'(v) \ge 3 - 4 + 2 \times \frac{3}{4} > 0$.

Теперь пусть имеется 10^+ -сосед v_1 , а v_2 и v_3 — две другие соседние с vвершины.

Подслучай 1.1: v₁ — единственный 10⁺-сосед; тогда правило R6a не применимо к v_1 ввиду не-(3,3,9)!, и можно считать, что $d(v_2) \ge 7$ ввиду симметрии в сочетании с не-(3, 6, 6)!. Если $d(v_2) = 9$, то $\mu'(v) \ge -1 + 1 = 0$ по R2. Если $d(v_2)=8,$ то $\mu'(v)\geq -1+rac{1}{3}+rac{4}{5}>0$ по R2 и ввиду отсутствия (3,4,8)-цепей. Наконец, если $d(v_2) = 7$, то $\mu'(v) \ge -1 + \frac{1}{2} + \frac{3}{4} > 0$ по R2 и не-(3, 5, 7)!.

Подслучай 1.2: у v не менее двух 10^+ -соседей. Если найдется три 10^+ соседа, то $\mu'(v) \ge -1 + 3 \times \frac{2}{5} > 0$ согласно R6c. Если имеются в точности два 10⁺-соседа, v_1 и v_2 (а $d(v_3) \le 9$), то возможны два случая.

Пусть сначала при v нет 3-граней. Тогда $\mu'(v) \ge -1 + 2 \times \frac{3}{5} > 0$ по R4, что и требовалось доказать. Далее пусть v инцидентна 3-грани f. Вспомним, что v инцидентна лишь одной 3-грани ввиду отсутствия хордальных 4-циклов.

Подслучай 1.2.1: $f = v_1 v v_2$. Если при v имеется 5⁺-грань, то $\mu'(v) \ge$

Подслучай 1.2.2: $f = v_1 v v_3$. Если при v имеется 5⁺-грань, то $\mu'(v) \ge$ $-1 + \frac{1}{3} + \frac{3}{5} + \frac{1}{10} > 0$ по R1, R4 и одному из пунктов правила R6.

Пусть $v_1vv_2\dots$ и v_2vv_3x — 4-грани при v. Если $5 \le d(v_3) \le 9$, то $\mu'(v) \ge -1 + \frac{1}{3} + \frac{3}{5} + \frac{1}{5} > 0$ по R2, R4 в сочетании с R6b или R6c. Наконец, если $3 \leq d(v_3) \leq 4,$ то $d(x) \geq 9$ ввиду (3,4,9)!, откуда $\mu'(v) \geq -1 + \frac{9}{10} + \frac{1}{5} > 0$ по R4ex и R6b.

Случай 2: d(v) = 4. Поскольку v не участвует в перераспределении зарядов, имеем $\mu'(v) = \mu(v) = 4 - 4 = 0.$

Случай 3: $5 \le d(v) \le 9$. Заметим, что у v не более одного 3-соседа ввиду не-(3,3,9)! и не более $\lceil \frac{d(v)}{2} \rceil$ инцидентных 3-граней из-за отсутствия хордальных 4-циклов в Р.

При d(v),равном 5, 6 и 7, отсюда следует согласно R2 и R3, что $\mu'(v)=5-4-(1+2)\times\frac{1}{3}=0,$ $\mu'(v)=6-4-(1+3)\times\frac{1}{2}=0$ и $\mu'(v)=7-4-(1+3)\times\frac{3}{4}=0$ соответственно.

Далее пусть d(v) = 8. Если у v есть 3-сосед, то у v нет 4-соседа ввиду не-(3,4,8)!, поэтому R3ex неприменимо к v, а значит, $\mu'(v) \ge 8 - 4 - (1+4) \times \frac{4}{5} = 0$ по R2 и основной части правила R3. В противном случае $\mu'(v) \ge 8 - 4 - 4 \times 1 = 0$ по R3 и R3ex.

Наконец, d(v) = 9 влечет $\mu'(v) > 9 - 4 - (1+4) \times 1 = 0$ согласно R2 и R3.

Случай 4. $d(v) \ge 10$. Для оценки суммарной передачи зарядов вершиной vсмежным 3-вершинам по R4 и R6 и инцидентным 3-граням по R5 удобно распределить эти передачи по инцидентным v ребрам так, чтобы каждое инцидентное ребро забирало не боле
е $\frac{3}{5}$ от v. Действительно, тем самым мы докажем, чт
о $\mu'(v)\geq d(v)-4-d(v)\times \frac{3}{5}=\frac{2(d(v)-10)}{5}\geq 0.$

C этой целью применим следующие продолжения $\overrightarrow{R4ex}$, $\overrightarrow{R5}$ и $\overrightarrow{R6c}$ -ex к правилам R4ex, R5 и R6c_ex соответственно (см. рис. 3), где в нескольких случаях 10^+ -вершина позволяет себе давать 3-грани даже больше в $\overline{\text{R5}}$, чем предписано правилом R5:

 $\overrightarrow{\mathbf{R4ex}}$. Пусть 10⁺-вершина v смежна с 3-вершиной w по ребру, инцидентному двум 4^+ -граням, (по меньшей мере) одна из которых есть 4-грань $vwxv_1$ $c \ d(v_1) \ge 8$; тогда v переключает $\frac{3}{10}$ на ребро vv_1 из заряда $\frac{9}{10}$, даваемого wсогласно R4ex.

 $\overrightarrow{\mathbf{R5}}$. Каждая 10^+ -вершина v, лежащая в 3-грани $f = vv_1v_2$, переключает ребрам vv_1 и vv_2 следующие порции заряда, даваемого грани f согласно R5:

(a1) $\frac{1}{2}$ каждому из vv_1 и vv_2 , если $d(v_1) = d(v_2) = 3$,

(a2) $\frac{2}{5}$ на vv_1 и $\frac{3}{5}$ на vv_2 , если $d(v_1) = 3$, а $4 \le d(v_2) \le 5$,

 $(a3) \frac{3}{5}$ каждому из vv_1 и vv_2 , если $d(v_1) = 4$, а $4 \le d(v_2) \le 5$,

(b1) $\frac{1}{5}$ Ha vv_1 H $\frac{3}{10}$ Ha vv_2 , если $d(v_1) = 3$, a $d(v_2) \ge 6$, (b2) $\frac{1}{5}$ Ha vv_1 H $\frac{3}{10}$ Ha vv_2 , если $d(v_1) = 4$, a $d(v_2) \ge 6$, (c) $\frac{3}{10}$ Ha каждое ИЗ vv_1 H vv_2 , если $d(v_1) \ge 5$ H $d(v_2) \ge 5$.

 $\overrightarrow{\mathbf{R6c_ex}}$. Если 10⁺-вершина v лежит в общей 3-грани $f = vv_1v_2$ с 3-вершиной v_1 и 10^+ -вершиной v_2 , а v_1 смежна с 4^- -вершиной w, которая инцидентна двум 4-граням по ребру v_1w , то v переключает $\frac{3}{10}$ на ребро vv_2 , а также на ребро, ведущее в 9⁺-вершину z в грани vv_1wz .

Лемма 2. После применения правил R4–R6, $\overrightarrow{R4ex}$, $\overrightarrow{R5}$ и $\overrightarrow{R6-ex}$ каждая 10⁺-вершина посылает неположительный заряд граням и не более $\frac{3}{5}$ каждой смежной вершине.

Доказательство. Пусть $d(v) \ge 10$. Заметим, что согласно $\overrightarrow{\text{R4ex}}$, $\overrightarrow{\text{R5}}$ и $\overrightarrow{\text{R6c}}$ ни одно ребро из вершины v в 7⁻-вершину v_1 не получает дополнительного заряда через 4⁺-грань.

Кроме того, при $d(v_1) \ge 6$ видно из $\overrightarrow{\text{R4ex}}$, $\overrightarrow{\text{R5b}}$ и $\overrightarrow{\text{R5c}}$ совместно с $\overrightarrow{\text{R6c}}$, что ребро vv_1 в итоге забирает от v не более $2 \times \frac{3}{10} = \frac{3}{5}$.

При $4 \le d(v_1) \le 5$ ребро vv_1 получает не более $\frac{3}{5}$ от (единственной) инцидентной 3-грани, что происходит согласно $\overrightarrow{\text{R5a2}}$, $\overrightarrow{\text{R5a3}}$ и $\overrightarrow{\text{R5c.}}$

В дальнейшем будем считать, что $d(v_1) = 3$.

Случай 1: вершина v смежна с v_1 по ребру, не инцидентному 3-граням. Если к ребру vv_1 применимо основное правило R4, а не исключение из него R4ex, to vv_1 не получает ничего по $\overrightarrow{\text{R4ex}}$ и $\overrightarrow{\text{R5}}$, а значит, по-прежнему проводит $\frac{3}{5}$ or v.

В противном случае R4ex применимо к vv_1 хотя бы один раз и тогда это ребро проводит не более $\frac{9}{10} - \frac{3}{10} = \frac{3}{5}$, что и требовалось.

Рис. 3. Дополнительные правила $\overrightarrow{R4ex}$, $\overrightarrow{R5}$ и $\overrightarrow{R6c_ex}$ передачи зарядов от 10⁺- вершины.

Случай 2: вершина v лежит в 3-грани vv_1v_2 . Если v_2 также 3-вершина, то каждое из ребер vv_1 и vv_2 получает $\frac{1}{10} + \frac{1}{2} = \frac{3}{5}$ от v по R6a и R5al, как и требовалось.

Если $4 \leq d(v_2) \leq 5$, то vv_1 получает $\frac{1}{5} + \frac{2}{5} = \frac{3}{5}$ согласно R6b и $\overrightarrow{\text{R5a2}}$, а vv_2 получает $\frac{3}{5}$ по $\overrightarrow{\text{R5a2}}$ (и ничего через инцидентную 4⁺-грань).

Если $d(v_2) \ge 6$, а $\overrightarrow{\text{R6c}}$ неприменимо, то vv_1 получает $\frac{2}{5} + \frac{1}{5} = \frac{3}{5}$ по R6c и $\overrightarrow{\text{R5b1}}$, а vv_2 получает $\frac{3}{10}$ согласно $\overrightarrow{\text{R5b1}}$ и не более $\frac{3}{10}$ через инцидентную 4⁺-грань по $\overrightarrow{\text{R4ex}}$, т. е. не больше $\frac{3}{5}$ в сумме.

Наконец, если v_1 подчиняется правилу $\overline{\text{R6c}}$, а значит, v смежна по циклу с вершинами z, v_1, v_2 степеней соответственно 9^+ , $3 \text{ и} \ge 10$, то ребра vz, vv_1 и v_2 после усреднения проводят не более $2 \times \frac{3}{10}, \frac{1}{2} + \frac{1}{5} - \frac{3}{10} = \frac{2}{5}$ и $2 \times \frac{3}{10}$, что и требовалось доказать.

Этим завершается доказательство леммы 2 и теоремы 1.

ЛИТЕРАТУРА

- 1. Wernicke P. Über den kartographischen Vierfarbensatz // Math. Ann. 1904. V. 58. P. 413–426.
- 2. Franklin P. The four color problem // Amer. J. Math. 1922. V. 44. P. 225–236.
- Borodin O. V., Ivanova A. O. An analogue of Franklin's theorem // Discrete Math. 2016. V. 339, N 10. P. 2553–2556.
- Borodin O.V., Ivanova A.O. An extension of Franklin's theorem // Sib. Electron. Math. Rep. 2020. V. 17. P. 1516–1521.
- Ferencová B., Madaras T. Light graphs in families of polyhedral graphs with prescribed minimum degree, face size, edge and dual edge weight // Discrete Math. 2010. V. 310, N 12. P. 1661–1675.
- Fijavz G., Juvan M., Mohar B., Skrekovski R. Planar graphs without cycles of specific lengths // Europ. J. Combinatorics. 2002. V. 23, N 4. P. 377–388.
- Hudak P., Maceková M., Madaras T., Siroczki P. More on the structure of plane graphs with prescribed degrees of vertices, faces, edges and dual edges // Ars Math. Contemp. 2017. V. 13, N 2. P. 355–366.
- Jendrol' S. Paths with restricted degrees of their vertices in planar graphs // Czechoslovak Math. J. 1999. V. 49, N 3. P. 481–490.
- 9. Jendrol' S. A structural property of convex 3-polytopes // Geom. Dedicata. 1997. V. 68. P. 91–99.
- 10. Jendrol' S., Madaras T., On light subgraphs in plane graphs with minimum degree five // Discuss. Math. Graph Theory. 1996. V. 16. P. 207–217.
- 11. Madaras T. Note on the weight of paths in plane triangulations of minimum degree 4 and 5 // Discuss. Math. Graph Theory. 2000. V. 20, N 2. P. 173–180.
- Madaras T. Two variations of Franklin's theorem // Tatra Mt. Math. Publ. 2007. V. 36. P. 61–70.
- Mohar B., Škrekovski R., Voss H.-J. Light subgraphs in planar graphs of minimum degree 4 and edge-degree 9 // J. Graph Theory. 2003. V. 44. P. 261–295.
- 14. Jendrol' S., Voss H.-J. Light subgraphs of graphs embedded in the plane a survey // AIP Conf. Proc. 2013. V. 313, N 4. P. 406–421.
- Borodin O.V., Ivanova A.O. New results about the structure of plane graphs: a survey // AIP Conf. Proc. 2017. V. 1907, N 1. P. 030051.
- Cranston D.W., West D.B. An introduction to the discharging method via graph coloring // Discrete Math. 2017. V. 340, N 4. P. 766–793.
- Kotzig A., West D. B. Contribution to the theory of Eulerian polyhedra // Mat.-Fyz. Casopis. 1955. V. 5. P. 101–113.
- Ando K., Iwasaki S., Kaneko A. Every 3-connected planar graph has a connected subgraph with small degree sum (Japanese) // Ann. Meeting Math. Soc. Japan. 1993.
- 19. Borodin O. V. Minimal vertex degree sum of a 3-path in plane maps // Discuss. Math. Graph Theory. 1997. V. 17, N 2. P. 279–284.
- 20. Borodin O. V., Ivanova A. O., Jensen T. R., Kostochka A. V., Yancey M. P. Describing 3-paths in normal plane maps // Discrete Math. 2013. V. 313, N 23. P. 2702–2711.
- Dvořák Z., Postle L. Correspondence coloring and its application to list-coloring planar graphs without cycles of lengths 4 to 8 // J. Combin. Theory Ser. B. 2018. V. 129. P. 38–54.
- 22. Borodin O. V. An extension of Kotzig's theorem on the minimum weight of edges in 3-poly-

topes // Mathematica Slovaca. 1992. V. 42, N
 4. P. 385–389.

Поступила в редакцию 17 октября 2023 г. После доработки 2 ноября 2023 г Принята к публикации 28 ноября 2023 г.

Бородин Олег Вениаминович Институт математики им. С. Л. Соболева СО РАН, пр. Академика Коптюга, 4, Новосибирск 630090 brdnoleg@math.nsc.ru Иванова Анна Олеговна (ORCID 0000-0002-6179-3740)

Северо-Восточный федеральный университет имени М.К. Аммосова, ул. Кулаковского, 48, Якутск 677000 shmgnanna@mail.ru