Теорема Альперина для периодических групп с конечной силовской 2-подгруппой

Теорема Альперина для периодических групп с конечной силовской 2-подгруппой

Лю А-М., Го В. Б., Ли Б. Дж., Лыткина Д. В., Мазуров В. Д.

УДК 512.542 
DOI: 10.33048/smzh.2024.65.407


Аннотация:

Известная теорема Альперина о слиянии $p$-элементов в силовских $p$-подгруппах конечных групп переносится на периодические группы с конечной силовской 2-подгруппой для случая $p = 2$. Основой для такого переноса служит знаменитая теорема В. П. Шункова о локальной конечности периодической группы $G$, содержащей инволюцию, централизатор в $G$ которой конечен.

Литература:
  1. Gorenstein D. Finite groups. New York: Chelsea Publishing Company, 1980.
     
  2. Шунков В. П. О периодических группах с почти регулярной инволюцией // Алгебра и логика. 1972. Т. 11, № 4. С. 470–493.
     
  3. Остылевский А. Н., Шунков В. П. О $q$-бипримарно конечных группах с условием минимальности для $q$-подгрупп // Алгебра и логика. 1975. Т. 14, № 1. С. 61–78.

Работа первого, второго и третьего авторов выполнена при поддержке Национального фонда естественных наук Китая, проекты No. 12101165, 12171126, 12371021; работа четвертого автора выполнена за счет гранта Российского научного фонда № 23-41-10003; работа пятого автора выполнена при поддержке Программы фундаментальных исследований РАН, проект № FWNF-2022-0002.


Лю А-Минг
  1. Школа математики и статистики, Хайнаньский университет, 
    570228, Хайкоу, Хайнань, КНР

E-mail: amliu@hainanu.edu.cn

Го Вэньбинь
  1. Школа математики и статистики, Хайнаньский университет, 
    570228, Хайкоу, Хайнань, КНР

E-mail: wbguo@ustc.edu.cn

Ли Баоджун
  1. Школа математики и статистики, Наньтунский университет, 
    226019, Наньтун, КНР

E-mail: libj@ntu.edu.cn

Лыткина Дарья Викторовна
  1. Сибирский государственный университет телекоммуникаций и информатики, 
    ул. Кирова, 86, Новосибирск 630102
  2. Новосибирский государственный университет, 
    ул. Пирогова, 2, Новосибирск 630090

E-mail: daria.lytkin@gmail.com

Мазуров Виктор Данилович
  1. Институт математики им. С. Л. Соболева СО РАН, 
    пр. Академика Коптюга, 4, Новосибирск 630090
  2. Сибирский государственный университет телекоммуникаций и информатики, 
    ул. Кирова, 86, Новосибирск 630102

E-mail: vic.mazurov@gmail.com

Статья поступила 12 января 2024 г. 
После доработки — 27 апреля 2024 г.
Принята к публикации 20 июня 2024 г.